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1. (a) We can solve this by direct substitution into the left-hand side of equation (1) in the
discussion question. We find that
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which means that ψ is a solution if we require that the total energy of the state be
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(b) We apply the same boundary conditions as before, namely that ψ = 0 at x = 0 and L
and at y = 0 and L. The proposed solution already satisfies the boundary conditions at
x = 0 and y = 0. The boundary conditions at x = L and y = L are satisfied if

sin(kxL) = 0 (6)
⇒ kxL = nxπ where nx = 1, 2, 3, . . . (7)

⇒ kx =
nxπ

L
, nx = 1, 2, 3, . . . (8)

sin(kyL) = 0 (9)
⇒ kyL = nyπ where ny = 1, 2, 3, . . . (10)

⇒ ky =
nyπ

L
, ny = 1, 2, 3, . . . (11)

(c) The three lowest lying energy states are
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(15)

There is only one state with energy E0 with nx = ny = 1. There are two states with
energy E1, given by nx = 1 and ny = 2 and nx = 2 and ny = 1. There is only one state
with energy E2: nx = ny = 2 (I leave the energy level diagram to the tutorial). Thus
the degeneracies of these three states are 1, 2 and 1, respectively.
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Figure 1: The probability distribution for the ground state of an electron in a 2-D box. I haven’t
bothered normalizing it (What is the normalization constant for this wave function?).

(d) In order for E0 = 10 eV, we need

E0 =
h̄2π2

mL2
(16)

⇒ L =

√
h̄2π2

mE0
(17)

=

√
(6.58× 10−16)2π2

(5.11× 106)(10)
= 2.89× 10−19 m, (18)

where I have expressed h̄ and the mass of the electron using units of electron Volts
instead of Joules (h̄ = 6.58× 10−16 eVs and m = 5.11× 106 eV).

(e) The probability distribution for the ground state is just |ψ(x, y)|2 and would look like
the plot shown in Fig. 1.

2. (a) In the region x ∈ (0, L), we have
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and for the region x > L, we have
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= Eψ2 (24)

⇒ U0 − E =
h̄2k2

2

2m
. (25)

Thus, ψ1 and ψ2 are solutions if the relationships between E, k1 and k2 are satisfied.

(b) We have already shown that

E =
h̄2k2

1

2m
(26)

U0 − E =
h̄2k2

2

2m
. (27)

(c) In order to tunnel as far as possible, we wish to make k2 as small as possible (to reduce
the variation in ψ2 as a function of x). This can be achieved if we require that U0 − E
be as small as possible.
The optimal value for L requires a little more thought. We have to consider the boundary
conditions at x = L to determine this. In this case, the boundary condition of continuity
of the wave function and its derivative requires that we do some work. These conditions
imply that

A sin(k1L) = B exp(k2L) and Ak1 cos(k1L) = Bk2 exp(k2L) (28)

⇒ sin(k1L) =
k1

k2
cos(k1L) (29)

⇒ tan(k1L) =
k1

k2
. (30)

What this means is that for a fixed ratio of k1 and k2 (which is determined by the relative
sizes of E and U0), L is fixed by this continuity condition, modulo a factor of nπ/k1

where n can be a positive integer. Since we are trying to find solutions that have ψ2

as large as possible, the optimal choice for L is one that minimizes k2L (the argument
to the exponential in ψ2), or the smallest value of L that also satisfies the condition in
Eq. 30.

(d) We have already looked at the impact of the boundary conditions on k1 and k2. For
given L and U0, the condition in Eq. 30 determines the allowed energy levels. Once we
have those, we then have to require that there be continuity at x = l, namely

A sin(k1L) = B exp(k2L) (31)

⇒ B = A
sin(k1L)
exp(k2L)

(32)

and that the entire wave function is normalized:
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0
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exp(w)dw (34)
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. (36)

3. The uncertainty in the electron’s vertical position, ∆y, leads to an uncertainty in the vertical
component of their momentum, ∆py, that must satisfy

∆py ≥
h̄

∆y
. (37)

Since the electrons have a horizontal momentum of px, we can determine the minimum spread
in the electron beam, ∆θ, by noting that

tan ∆θ =
∆py
px

(38)

≥ h̄

px∆y
(39)

=
h̄

mevx∆y
=

1.055× 10−34

(9.11× 10−31)(2.2× 107)(9× 10−8)
(40)

= 5.85× 10−5 radians. (41)

Note that the Heisenberg Uncertainty Principle applies to each coordinate separately!
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