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(a) We can solve this by direct substitution into the left-hand side of equation (1) in the
discussion question. We find that
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which means that 1 is a solution if we require that the total energy of the state be
R (s 2
E = (k2 +K2) (5)

(b) We apply the same boundary conditions as before, namely that v» = 0 at z = 0 and L
and at y = 0 and L. The proposed solution already satisfies the boundary conditions at
x =0 and y = 0. The boundary conditions at x = L and y = L are satisfied if

sin(kzL) = 0 (6)
= kL = ngm wheren, =1,2,3,... (7)
Sk, = ”z”, ng=1,2,3,... (8)
sin(kyL) = 0 9)
= kyL = nym wheren, =1,2,3,... (10)
=k, = %T” ny=1,2,3,... (11)
(c) The three lowest lying energy states are
R h2m?
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B= oY= g, (13)
h2m? 4272
B = 2mL? (4+4) mL? (14)
(15)

There is only one state with energy Ey with n, = n, = 1. There are two states with
energy E1, given by n, =1 and ny = 2 and n, = 2 and n, = 1. There is only one state
with energy Eo: ng, = n, = 2 (I leave the energy level diagram to the tutorial). Thus
the degeneracies of these three states are 1, 2 and 1, respectively.



Probability of Lowest Energy State

Figure 1: The probability distribution for the ground state of an electron in a 2-D box. I haven’t

bothered normalizing it (What is the normalization constant for this wave function?).

(d) In order for Ey = 10 eV, we need
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(6.58 x 10—16)272
(5.11 x 106)(10)

=289 x 107 m,

(16)
(17)

(18)

where I have expressed h and the mass of the electron using units of electron Volts

instead of Joules (h = 6.58 x 10716 eVs and m = 5.11 x 106 eV).

(e) The probability distribution for the ground state is just |¢(z,y)|?> and would look like

the plot shown in Fig. 1.

2. (a) In the region z € (0, L), we have
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and for the region x > L, we have
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(b)
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Thus, 1 and 9 are solutions if the relationships between F, ki and ks are satisfied.

We have already shown that

h2k?

E = 2m1 (26)
h2k2

U —E = —2m2. (27)

In order to tunnel as far as possible, we wish to make ko as small as possible (to reduce
the variation in 12 as a function of x). This can be achieved if we require that Uy — F
be as small as possible.

The optimal value for L requires a little more thought. We have to consider the boundary
conditions at © = L to determine this. In this case, the boundary condition of continuity
of the wave function and its derivative requires that we do some work. These conditions
imply that

Asin(k1L) = Bexp(koL) and Akjcos(k1L) = Bkaexp(kaL) (28)
k
=sin(kiL) = k:_l cos(k1L) (29)
2
k
= tan(k1L) = - (30)
ko

What this means is that for a fixed ratio of k1 and ks (which is determined by the relative
sizes of E' and Uy), L is fixed by this continuity condition, modulo a factor of nw/k;
where n can be a positive integer. Since we are trying to find solutions that have )
as large as possible, the optimal choice for L is one that minimizes koL (the argument
to the exponential in 1)3), or the smallest value of L that also satisfies the condition in
Eq. 30.

We have already looked at the impact of the boundary conditions on k; and ks. For
given L and Uy, the condition in Eq. 30 determines the allowed energy levels. Once we
have those, we then have to require that there be continuity at = [, namely

Asin(kiL) = Bexp(kaL) (31)
Sin(kﬁlL)
=B exp(kaoL) (32)

and that the entire wave function is normalized:
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= —/ sin? zdz + —/ exp(w)dw (34)
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3. The uncertainty in the electron’s vertical position, Ay, leads to an uncertainty in the vertical
component of their momentum, Ap,, that must satisfy

h

Since the electrons have a horizontal momentum of p,, we can determine the minimum spread
in the electron beam, A6, by noting that

A
tan A9 = =P (38)
D
h
> 39
T pAy ( )
B hooo 1.055 x 10734 (40)
T omev Ay (9.11 x 10731)(2.2 x 107)(9 x 10-8)
= 5.85 x 107° radians. (41)

Note that the Heisenberg Uncertainty Principle applies to each coordinate separately!



