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Section A (20%)

1. If the force of gravity has a r−(2+δ) behaviour, then by equating the centripetal force required
for circular motion with the gravitational force, we have the period T = 2πr/v [1 mark] and

mv2

r
=

GMm

r(2+δ)
(1)

⇒ 4π2r

T 2
=

GM

r(2+δ)
(2)

⇒ T 2 =
4π2

GM
r(3+δ) (3)

[2 marks]. So Kepler’s Third Law is modified by having the power of r change by whatever
value δ takes on [1 mark].

2. A spinning top is stable because it has significant angular momentum [2 marks] and it has
very few if any external torques acting on it [1 mark]. Examples of rotating objects with few
torques are frisbees and airplane gyroscopes [1 mark].

3. A tidal force is created when the force acting on an object varies with location [3 marks].
Such forces are not unique to gravity, as similar effects occur with any rapidly changing force
field [1 mark].

4. The work function of a metal is the minimum energy that a photon must have to release an
electron via the photoelectric effect [4 marks].

5. Compton scattering is the process by which a very high-energy photon scatters elastically
off an electron [2 marks]. It was one of the clearest indications that photons interact with
electrons in the same manner that other particles do, further illustrating the “particle” nature
of the photon [2 marks].

Section B (80%)

1. Full marks on this question required you to write a coherent short essay addressing all or
most of the issues outlined below, as well as providing an outline. Marks were awarded on
content [8 marks], on organization and coherence [8 marks], and style [4 marks].

(a) Classical physics was able to predict the experimental relationship between the power
emitted by a glowing object and the temperature of the object (the Stefan-Boltzmann
Law) and the relationship between the wavelength of maximum radiance and tempera-
ture (the Wein Displacement Law). The breakdown of the classical physics description of
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black body radiation had as its key component the fact that the observed power emitted
by a black body as a function of wavelength was seen to fall off at lower wavelengths,
whereas classical physics predicted that the power would rise rapidly as decreasing wave-
length. This incorrect prediction was called the “ultraviolet catastrophe.” This discrep-
ancy then led to Planck’s development of first his formula for the radiance of black body
radiation as a function of wavelength and subsequently his theory explaining it, which
predicted that the energy levels of an atom had to be discrete and the emitted photons
had specific energies and wavelengths.

(b) The conservation of angular momentum is used in many systems to great advantage. One
immediate example is the use of gyroscopes for navigational aids. A second example is
the use of gyroscopes to allow spacecraft to adjust their attitude so as to maintain very
stable orientations (the Hubble Space Telescope uses 6 gyroscopes in normal operation).
Angular momentum is also used in large flywheels to maintain smooth motion under
varying loads. This is the case in large generating systems and turbines. More prosaic
examples where angular momentum is used is in a) figure-skating, where a skater is able
to execute a fast spin by decreasing his or her moment of inertia, b) a playground merry-
go-round, where the rotating deck is put into rotational motion with children riding on
it, and c) the toss of a frisbee. There are many other possible examples!

2. (a) The torque acting on the molecule about the axis through its centre point is


τ =
∑
i


ri × 
Fi (4)

= −Q+E
l

2
sin(π − θ)P̂ +Q−E

l

2
sin(π − θ)P̂ (5)

=
− (Q+ −Q−)El

2
sin θ P̂ (6)

[7 marks] where the axis P̂ points out of the page.

(b) There will be an equilibrium point at θ = 0, and it will oscillate about this point. The
equation of motion will be given by


τ = I
α, (7)

where the moment of inertia I is just that of a rod about an axis through its centre,
namely

I =
1
12
ml2. (8)

[6 marks] The equation of motion is thus

− (Q+ −Q−)El
2

sin θ =
1
12
ml2

d2θ

dt2
(9)

⇒ d2θ

dt2
=
−6 (Q+ −Q−)E

ml
sin θ. (10)
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(c) From b), we find that for small oscillations (θ � 1)

d2θ

dt2
� −6 (Q+ −Q−)E

ml
θ (11)

⇒ θ(t) = A sin(ωt) +B cos(ωt) (12)

[3 marks] for the general case. Requiring that the boundary conditions be satisfied,

θ(0) = θ0 and
dθ

dt
(0) = 0, (13)

⇒ θ(t) = θ0 cos(ωt) (14)

where the angular frequency ω is [3 marks]

ω =

√
6 (Q+ −Q−)E

ml
(15)

=

√
6(1× 10−17)(2× 106)
(2× 10−25)(2× 10−8)

= 3× 1022 s. (16)

(d) The oscillatory motion will still continue in the rest frame of the molecule, but the
molecule itself will accelerate in the direction opposite to the electric field. This is
because there is a net force on the molecule of


F = Q+

E +Q− 
E (17)

= (Q+ +Q−) 
E = m
d2x

dt2
x̂, (18)

[4 marks] where x is in the direction of the electric field. The solution to this is

x(t) =
(Q+ +Q−) t2

2m
E (19)

= −(5× 1013)t2 m, (20)

which is a very rapid acceleration.

3. (a) The wavelength, λmax, of the photon that will generate a photoelectron when the work
function φ = 2.1 eV is determined by the minimum photon energy, Eγ :

Eγ = φ =
hc

λmax
(21)

⇒ λmax =
hc

φ
(22)

=
(6.63× 10−34)(3× 108)

(2.1)(1.602× 10−19)
= 5.9× 10−7 m. (23)

[7 marks]
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(b) The energy of the electron as it is released from the surface, Es, is

Es = Eγ − φ (24)

=
hc

λ
− φ (25)

=
(6.63× 10−34)(3× 108)
(300)(1.602× 10−19)

− 2.1 = 2.0 eV. (26)

[7 marks] It is then accelerated through a potential difference of 1× 103 V, giving it an energy of
1× 103 eV. Thus, the electron’s energy after acceleration is

Ef = Es + (1× 103) = 1, 002 eV. (27)

(c) The current flow is the number of Coulombs per second. This is equal to the rate of
electrons being produced times the charge per electron,

[6 marks]

I = Rp(20)(1.602× 10−19) = 3.2× 10−12 A. (28)

4. (a) The ball is thrown with a velocity vi = 160 km/h = 44.44 m/s, at an angle θ from the
horizontal. The subsequent horizontal and vertical positions of the ball will be

x(t) = vi cos θ t (29)

y(t) = vi sin θ t−
1
2
gt2. (30)

If ∆t is the time taken to cover the distance D = 20 m, then the vertical position and
speed at ∆t/2 will satisfy

ymax = vi sin θ ∆t/2− 1
2
g(∆t/2)2 (31)

vy = 0 = vi sin θ − g(∆t/2). (32)

[6 marks] We also know that

D = vi cos θ ∆t (33)

⇒ ∆t =
D

vi cos θ
. (34)

We can substitute that expression into Eq. 32 to eliminate ∆t:

0 = vi sin θ −
gD

vi cos θ
(35)

⇒ v2
i 2 sin θ cos θ = gD (36)
⇒ v2

i sin(2θ) = gD (37)

⇒ θ =
1
2

sin−1

(
gD

v2
i

)
(38)

=
1
2

sin−1
(

(9.8)(20)
(44.44)2

)
= 0.050. (39)
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We can then solve for the time taken,

∆t =
D

vi cos θ
= 0.451 s. (40)

Then, we can subsitute these values back into the expression for the maximum deflection

ymax = vi sin θ ∆t/2− 1
2
g(∆t/2)2 (41)

= (44.44)(0.050)(0.451/2)− 1
8
(9.8)(0.451)2 = 0.25 m. (42)

(b) Uniform circular motion requires that the force F acting on the ball with mass m must
satisfy

F =
mv2

r
, (43)

[6 marks] where v is the speed of the ball and r is the radius of its orbit. This must equal the
gravitational attraction of the asteroid, whose mass M is given by

M =
4
3
πr3ρ. (44)

Thus, we have

mv2

r
=

GMm

r2
(45)

⇒ mv2

r
=

4πGρmr
3

(46)

⇒ r =

√
3v2

4πρG
(47)

=

√
3(44.44)2

4π(2.5× 103)(6.67× 10−11)
= 5.32× 104 m. (48)

(c) In this case, the energy of the ball with mass m is
[3 marks]

E =
−GMm

2r
(49)

=
−4πGρr2m

6
. (50)

(d) The speed of the ball would have to equal its escape velocity, which is the speed that
makes the kinetic energy equal to the negative of the potential energy of the ball, ie.

[3 marks]

1
2
mv2

es =
GMm

r
(51)
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⇒ ves =

√
2GM
r

(52)

=

√
8πGρr2

3
(53)

=

√
8π(6.67× 10−11)(2.5× 103)(3.32× 104)2

3
= 62.88 m/s. (54)

This is a fairly well hit ball, and shows you must be careful when playing ball on an
asteroid (or bring lots of balls).

(e) Even if the ball is hit with this speed at a 45◦ angle from the vertical, it still has enough
kinetic energy to escape the gravitational pull of the asteroid. However, it’s orbit in this
case would be a parabola.

[2 marks]

5. (a) The motion of the skaters is circular rotation about a common centre of mass (which is
at rest). The initial angular velocity, ωi, of a skater at the point they grasp the bar is
the same as their linear velocity, v, so that

ωi =
v

ri
(55)

=
10
1.5

= 6.67 rad/s, (56)

[7 marks] where ri is the radius of the initial circular motion (half the length of the bar).

(b) By reducing their separation by a factor of 3, they have reduced their moment of inertia
by a factor

If
Ii

=
2msr

2
f

2msr2i
=

1
9
, (57)

[6 marks] where Ii and If are the initial and final moments of inertia, ms is the mass of each
skater and rf is the final radius of rotation. Since angular momentum is conserved, the
final angular velocity must satisfy

Iiωi = Ifωf (58)

⇒ ωf =
Ii
If
ωi (59)

= 9ωi = 60 rad/s. (60)

(c) In part a), the kinetic energy is

Ki =
1
2
Iiω

2
i (61)

= msr
2
i ω

2
i (62)

= (50)(1.5)2(6.67)2 = 5.0× 103 J. (63)
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[7 marks] Similarily, the final kinetic energy is

Kf =
1
2
Ifω

2
f (64)

= msr
2
fω

2
f (65)

= (50)(0.5)2(60)2 = 4.5× 104 J. (66)

6. (a) The volume of the wire of length l = 2 m is

Vw = πr2wl (67)

so the charge density in the wire is

ρw =
Qw
Vw

(68)

=
2.0× 10−9

π(5× 10−4)2(2)
= 1.27× 10−3 C/m3. (69)

[6 marks] The volume of the metal sheath surrounding the insulator is

Vs = 2πrsrml, (70)

where we have approximated this by calculating the surface area of the sheath and
multiplying by its thickness. The charge density on the sheath is

ρs =
Qs
Vs

(71)

=
−2.0× 10−9

2π(5× 10−3)(5× 10−4)(2)
= −6.37× 10−5 C/m3. (72)

(b) Gauss’s Law states that the flux through a cylinder of radius r and length L surrounding
the wire and inside the insulator is proportional to the charge enclosed. This implies
that

[6 marks] ∫
cyl


E(r) · n̂ dS = 2πrE(r)L (73)

=
1
ε0

∫
vol
ρ dV (74)

=
πr2wLρw
ε0

(75)

⇒ E(r) =
r2wρw
2ε0r

. (76)
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(c) The potential difference, ∆V , between the wire and the outer sheath is given by the
integral of the electric field between r = rw and r = rs, namely

[4 marks]

∆V =
∫ rs

rw
E(r)dr (77)

=
r2wρw
2ε0

∫ rs

rw

1
r
dr (78)

=
r2wρw
2ε0

ln (rs/rw) (79)

=
(5× 10−4)2(1.27× 10−3)

(2)(8.85× 10−11)
ln(10) = 4.13 V. (80)

(d) The capacitance per unit length of the cable is the charge it carries per unit length
divided by the voltage difference:

[4 marks]

C ≡ Qw/l

∆V
(81)

=
2.0× 10−9

(2)(4.13)
= 2.42× 10−10 F. (82)
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