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11 Parallell Plate Capacitor and Angular Motion

11.1 Overview

• Parallel Plate Capacitor

• Rigid Body Rotation

• Angular Variables

11.2 Parallel Plate Capacitor

The parallel plate capacitor consists of two identical plates of area A that are held a distance L
apart, as shown in Fig. 1. If these are conducting plates (which we can assume they are), and we
connect them together in such a way that there is a potential difference between the plates (eg.,
this could be done with a 1.5 V battery), then the top plate will accumulate a charge Q, and the
bottom one will accumulate a charge −Q. We now have enough information to determine how
the charge on the plates (which is why a capacitor is considered as a device that stores charge) is
related to the potential difference across the plates.

Let’s first consider the top plate, with area A and charge Q. Let’s define our coordinate system
so that the ẑ axis is normal to the plates. We will place the bottom plate at z = 0 and place the
top plate at z = L. The surface charge density on the top plate will be

σt ≡
Q

A
. (1)

From the previous lecture, we know that the electric field associated with this plate will be pointing
away from the plate and will be

�Et =
{

σt/(2ε0)ẑ, z > L,
−σt/(2ε0)ẑ, z < L.

(2)

For the bottom plate, a similar analysis shows that the electric field is now pointing towards the
plate and will be

�Eb =
{−σt/(2ε0)ẑ, z > 0,

σt/(2ε0)ẑ, z < 0.
(3)

Note that the charge density on the bottom plate is −σt, and this has been taken into account
in Eq. 3. The total field of the two parallel plates is, by superposition, the sum of the individual
fields. This sum yields

�Etot =




0, z > L,
−σt/(ε0)ẑ, 0 < z < L,
0, z < 0.

(4)
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Figure 1: A parallel plate capacitor consisting of two plates of area A, the top one having a
charge +Q uniformly distributed on its surface and the bottom one holding a charge −Q uniformly
distributed on its surface.

This tells us that the electric field is zero except between the plates where it is a constant value,
pointing downwards in the ẑ direction.

Now, we want to determine the potential difference between the two plates, ∆V = Vtop−Vbottom.
The work performed by the electric field when we move a test charge qt from the bottom plate to
the top plate is equal to −∆V/qt, from our definition of the electric potential. Thus,

∆V = −W/qt (5)

=
−qt �Etot · Lẑ

qt
(6)

= (σt/ε0)ẑ · Lẑ (7)

=
QL

ε0A
, (8)

where we have reintroduced the total charge and area of the top plate.

This shows us that the total charge stored on each plate will be proportional to the voltage
difference placed across the plate. When we hook up a battery to the plates, where does the charge
come from? It is provided by the battery itself, draining some of the charge stored in the battery.
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11.2.1 Capacitance

We often characterize a capacitor by its capacitance C, defined as

C ≡ Q

∆V
, (9)

which has units of charge/voltage or Coulombs/Volt. The SI unit for this quantity is the Farad.
For a parallel plate capacitor, the capacitance becomes

C =
Q

∆V
(10)

=
ε0A

L
. (11)

To give some idea of what a typical capacitor would be like, let’s assume that we have a parallel
plate capacitor with plates 2 mm on a side, separated by 1 mm. The capacitance of this arrangement
is

C =
ε0A

L
(12)

=
(8.85× 10−11)(4× 10−6)

1× 10−3
= 3.54× 10−14 F. (13)

We usually deal with small capacitances, so the typical unit used is the picoFarad, or 10−12 Farad
(often called a “puff”). This capacitor would therefore have a capacitance of 0.035 pF.

11.3 Rigid Body Rotation

We have up till now only considered kinematics in a context where we talk about the displacement
of point masses or centres of mass and apply Newton’s Laws. We therefore have assumed that
the motion of masses are unconstrained. We are now going to look at a particular type of motion
where the body in motion is constrained to keep one point fixed in space, so that the only allowed
motion is rotation about this point. We will call this “rigid-body rotation” and spend the next few
lectures analyzing this specialized type of motion.

The generic picture is illustrated in Fig. 2. A rigid body rotates about an axis P̂ . We usually
define a fixed reference axis perpendicular to P̂ and then identify the position of a point �r(t) by
the rotation angle θ and its perpendicular distance from the axis of rotation, r (which is fixed).

11.3.1 Angular Velocity

Having identified a rotation axis P̂ about which a rigid body will rotate, we can then describe the
orientation of this rigid body by a single angle θ. If in a time interval ∆t, the body rotates through
an angle ∆θ, then we can define the average angular velocity as

ω̄ ≡ ∆θ
∆t

, (14)
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Figure 2: A generic rigid body rotation about an axis P̂ . A reference axis is defined about which

where the units of ω̄ are rad/s (ω is the Greek letter “omega”). For a given point in the rigid body,
the average velocity of this point would be v̄ = rω̄, where r is the perpendicular distance the point
is away from the axis. We define the sign of ∆θ using the right-hand rule. A rotation about the
axis P̂ that is in the same direction that the fingers of your right hand point in when your thumb
is aligned with P̂ will be a positive rotation.

If we allow the time interval ∆t shrink to zero, then in this limit we can define the magnitude
of the instantaneous angular velocity as

ω = lim
∆t→0

∆θ
∆t

(15)

=
dθ

dt
. (16)

By definition, we define the instantaneous angular velocity as a vector with direction parallel to
the P̂ and magnitude as given above. Thus,

�ω = ωP̂ . (17)

As a concrete example, we can consider the Earth as a rigid-body rotating uniformly about an
axis P̂ running through the north and south poles. The instantaneous angular velocity is

ω =
2π

1 day
(18)

=
2π

8.64× 104
= 7.27× 10−5 rad/s (19)

with a direction pointing up through the north pole (check this – where does the sun rise and set?).
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11.3.2 Angular Acceleration

We can now define the average angular acceleration as

ᾱ ≡ ∆ω
∆t

, (20)

where ∆ω is the change in the instantaneous angular velocity in a time interval ∆t (α is the Greek
letter “alpha”). In the limit where ∆t shrinks to zero, we define the magnitude of the instantaneous
angular acceleration

α = lim
∆t→0

∆ω
∆t

(21)

=
dω

dt
(22)

=
d2θ

dt2
. (23)

We define the instantaneous angular acceleration as a vector with direction parllel to P̂ :

�α = αP̂ . (24)
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