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13 More on Torques and Moments of Inertia

13.1 Overview

• Torque on a bicycle wheel

• More moments of inertia

13.2 Torque on Bicycle Wheel

Let’s look at the bicycle wheel we had considered in the last lecture, and now suppose that there
is a valve stem on the wheel with a mass mv = 25 g. The gravitational force on the valve stem
is going to cause the wheel to rotate. Let’s see how we can understand this in the context of our
angular laws of motion.

Let the angular displacement of the valve stem from it’s most stable position (where the stem
as at the bottom of the wheel) be given by the angle θ, as shown in Fig. 1. First let’s work out
the new moment of inertia of the wheel, including the valve stem. That will just be the original
moment of inertia plus the moment of inertia of the valve stem itself relative to the wheel’s axle.
Therefore,

I ′w = Iw +R2mv (1)
= 0.197 kg m2. (2)

How suppose initially the wheel is at rest with the valve stem located at an angle θ0. The force on
the valve stem will be the gravitational force �Fg, as shown in Fig. 1. The torque that is associated
with this force when the angular displacement is θ will be

�τw = �r × �Fg (3)
= −R (mvg) sin θ P̂ , (4)

where we have explicitly calculated the magnitude of the torque. The vector P̂ is along the axle
pointing out of the page. We can relate this to the angular acceleration:

�τw = I ′w�α (5)
⇒ −R (mvg) sin θ P̂ = I ′w�α (6)

⇒ �α =
−Rmvg

I ′w
sin θ P̂ . (7)

We see this is a restoring torque, as we would expect. If we displace the valve from its equilibrium
position, we would expect the motion to be periodic and oscillatory. If the displacement θ is small
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Figure 1: The bicycle wheel with a valve stem that causes a torque to act on the wheel about its
axle.

enough, we can then make the approximation

sin θ � θ (8)

⇒ α � −Rmvg

I ′w
θ (9)

⇒ d2θ

dt2
� −Rmvg

I ′w
θ, (10)

which is the formula for simple harmonic motion with an angular frequency ωw given by

ωw =

√
Rmvg

I ′w
(11)

=

√
(0.32)(0.025)(9.8)

0.197
= 0.63 rad/s. (12)

This corresponds to an oscillation with a period of about 10 seconds.

13.3 More Moments of Inertia

In order to obtain more familarity with moments of inertia, let’s calculate a few for relatively simple
objects.
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13.3.1 A Rod

Suppose we have a uniform rod of length l and mass M . Let’s calculate its moment of inertia about
an axis perpendicular to the rod and through its centre. Let A be the cross-sectional area of the
rod. We turn to the general formula for the moment of inertia of an extended object

I =
∫
V
r2ρ(�r) dV (13)

and note that in this case the mass density ρ is constant. This means that the only thing that
varies in this integral is the distance the mass in the rod is away from the centre point.

We can therefore break up the rod into very short length intervals dx, as shown in Fig. 2, and
perform the integral by noting that the volume element associated with the length interval dx is
just dV = Adx. The volume of the rod is V = Al, so the mass density is

ρ =
M

Al
. (14)

Then the moment of inertia will be

Ir =
∫
rod

r2ρ(�r) dV (15)

=
∫ +l/2

−l/2
x2M

Al
Adx (16)

=
M

l

∫ +l/2

−l/2
x2 dx (17)

=
M

l

x3

3

]+l/2

−l/2
(18)

=
Ml2

12
. (19)

We see that the cross-sectional area (or the shape of the cross section) does not matter – only the
length of the rod and its mass are relevant.

13.3.2 A Disk

Let’s do a similar calculation, but now for a uniform disk of radius R and thickness D, with mass
M . We will calculate the moment of inertia for an axis through the centre of the disk and along
its axis of symmetry. In order to evaluate the volume integral that would give us the moment of
inertia, we first note that the mass density is uniform and is

ρ =
M

πR2D
. (20)

We also observe that all of the mass a specific distance away from the axis forms a hollow cylinder.
So consider the hollow cylinder that has an inner radius r and an outer radius r + dr, as shown in
Fig. 2. The volume of this cylinder is

dV = 2πrD dr (21)
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Figure 2: The calculation of the moments of inertia for a rod about an axis perpendicular to the
rod passing through its centre, and for a uniform disk about an axis parallel to its axis of symmetry.
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Thus the moment of inertia becomes

Id =
∫
disk

r2ρ(�r)dV (22)

=
∫ R

0
r2

M

πR2D
2πDr dr (23)

=
2M
R2

∫ R

0
r3 dr (24)

=
2M
R2

r4

4

]R
0

(25)

=
MR2

2
. (26)

Note that this doesn’t depend on the thickness of the disk D.
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