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14 Angular Motion and the Parallel Axis Theorem

14.1 Overview

• Example: Satellite spinning down

• Parallel axis theorem

14.2 Satellite Spinning Down

As a concrete example of an application of the ideas of torque and moments of inertia, let’s look
at the case of a cylindrical satellite spinning about its axis of symmetry, as shown in Fig. 1. The
satellite has a mass M = 940 kg, has a diameter of 1.4 m (so its radius is R = 0.7 m), and is
initially spinning at a rate of 10 revolutions per minute (rpm). We can assume that the satellite
has a uniform mass density. It also has two thrusters located on opposite sides of the satellite.
When fired, each thruster produces a force Fj = 20 N. We are asked how long would the thrusters
have to be fired in order to stop the spinning of the satellite.

Before delving into this problem, it is useful to consider why satellites would be launched with
a spin anyways. The answer is that a spinning object has associated with a dynamic stability that
will tend to keep the axis about which it is spinning oriented in the same direction. We will see
later that this is directly related to the conservation of angular momentum. For now, you should
just note that this is in fact a useful property of rotating objects (and something that we employ
when we throw circular things such as frisbees).

I’ll denote the spin axis by P̂ and assume that the initial angular velocity ωi is along this axis
(ie, the satellite is spinning counter-clockwise as viewed from the top). Let’s first compute the
moment of inertia, I, of the satellite. Since it is a cylinder spinning about the axis of symmetry,
the moment of inertia is

I =
MR2

2
. (1)

When the two thrusters fire, the torque produced by the thrusters is

�τj = �r1 × �Fj1 + �r2 × �Fj2 (2)
= −2RFjP̂ . (3)

The angular acceleration is therefore along the P̂ axis and satisfies

�τ = I�α (4)

⇒ �α =
−2RFj
MR2/2

P̂ (5)

=
−4Fj
MR

P̂ . (6)
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Figure 1: A satellite spinning down by firing a pair of thrusters.

We can express this is a differential equation for the angular velocity ω(t) as a function of time:

dω

dt
=
−4Fj
MR

(7)

⇒ ω(t) = ωi −
−4Fj
MR

t. (8)

We are now only left with determining the time tf when the angular velocity is zero. Thus,

ω(tf ) = 0 = ωi −
−4Fj
MR

tf (9)

⇒ tf =
ωiMR

4Fj
(10)

=
(1.047)(940)(0.7)

4(20)
= 8.6 s. (11)

14.3 Parallel Axis Theorem

Our introduction of the moment of inertia made no assumptions about where the axis of rotation
was located. However, we know that the moment of inertia does depend on its position and
orientation. For objects with certain symmetries, it is in fact possible to easily relate moments of
inertia about different axes. The Parallel Axis Theorem provides one such relationship.
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14.3.1 Centre of Mass

We first have to define what we mean by the centre of mass of an object. Let’s look at an extended
object V that is experiencing a force that acts on the various elements of V , possibly in different
ways. To see this more clearly, let’s divide up the object V into a number of small volume elements
dVi, with each volume element having a mass mi and being located a position �ri from an origin O,
as shown in Fig. 2. Each volume element dVi experiences a force �Fi, and therefore would experience
an acceleration �ai.

The total force acting on this object will be

�Ftot =
∑
i

mi�ai (12)

=
∑
i

mi
d2�ri
dt2

(13)

= M

[
d2

dt2

∑
i

mi�ri
M

]
, (14)

where we have introduced the total mass of the object, M , and have just rearranged the order of
the summation and differentiation. Now define the position vector

�Rcm ≡
∑
i

mi�ri
M

(15)

as the “centre of mass” of the object V . With this definition, we see that

�Ftot = M
d2 �Rcm
dt2

, (16)

which means that the total force applied to the object serves to accelerate the point defined by
�Rcm – ie, all the forces appear to act just through that point.

This definition of the centre of mass in fact is what we normally would call the “centre of
gravity” of an object. However, we see that it is defined not in the context of gravity itself, but in
a more general way that doesn’t depend on the nature of the applied force. However, the centre of
mass has some special features. One has to do with moments of inertia calculated about axes that
pass through the centre of mass.

14.3.2 Moments of Inertia Through the Centre of Mass

Let’s suppose that we have an axis P̂ that passes through the centre of mass of an object V , as
shown in Fig. 3. Let I be the moment of inertia about the axis. Now suppose we have a second
axis, P̂ ′, that is paralle to P̂ and located a distance �h away from the centre of mass. Let’s calculate
the moment of inertia, I ′, about this new axis.

From the definition of the moment of inertia, we have

I ′ =
∫
V
r2ρ(�r)dV, (17)
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Figure 2: An arbitrary object V divided up into a set of smaller volume elements, dVi, each located
at a position �ri from an origin O.

where �r is the distance from the axis P̂ ′ as shown in Fig. 3. We can rewrite this vector �r as the
position of the same point defined relative to the centre of mass, �rcm, so that

I ′ =
∫
V
|�rcm − �h|2ρ(�rcm)dV (18)

=
∫
V

[
r2cm + h2 − 2

(
�rcm · �h

)]
ρ(�rcm)dV (19)

=
∫
V
r2cmρ(�rcm)dV +

∫
V
h2ρ(�rcm)dV − 2

∫
V

(
�rcm · �h

)
ρ(�rcm)dV. (20)

The first integral is just the moment of inertia about the axis P̂ . The second term is in fact
just h2M , since �h is a constant vector. The last term is in fact

2
∫
V

(
�rcm · �h

)
ρ(�rcm)dV = 2�h ·

(∫
V
�rcmρ(�rcm)dV

)
(21)

= 2�h · 0 = 0, (22)

since the integral on the right-hand side is in fact just the definition of the centre of mass relative
to itself, which is a zero vector!

Thus, the moment of inertia about the parallel axis P̂ ′ is

I ′ = I + h2M, (23)

a simple and useful result.
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Figure 3: The calculation of the moment of inertia about an axis P̂ ′ parallel to the axis P̂ that
passes through the centre of mass.

14.3.3 Moment of Inertia of Rod

As a concrete example, let’s revisit the calculation of the moment of inertia of the rod of length l
about the axis through its centre, P̂ . To determine the moment of inertia of the rod about an axis
at the end of the rod and parallel to P̂ , we just note that this new axis is a distance h = l/2 from
the centre of mass. Thus, the new moment of inertia is

I ′ = I +
(
l

2

)2

M (24)

=
Ml2

12
+
Ml2

4
(25)

=
Ml2

3
. (26)
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