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19 Beginnings of Quantum Mechanics

19.1 Overview

• Atomic Spectra

• Balmer and Lyman Lines

• Bohr Model of the Atom

19.2 Atomic Spectra

It was noted already in the late 1800’s that atomic gases interact with light. In particular, if one
excited a diffuse gas by either heating it or by passing a current through it, one found that a given
gas gave off specific frequencies of light. This “emission spectra” was characteristic of the type of
gas. In the case of a current, we understand the interaction of the electrons flowing through the
gas and the atoms of the gas to excite the atoms causing them to give off light.

A second form of spectra can be observed if one simply shines a light through a diffuse gas.
In this case, the atoms preferentially interact with light of given frequencies, causing this light
to be scattered in essentially all directions. The other light passes through the gas without any
interaction. The result is that the spectrum of the light passing through the gas shows absorption
lines, where it appears that specific frequencies have been removed from light by passing through
the gas. The absorption lines in this spectra are exactly at the same frequency as the emitted light
seen in emission spectra. The two are this the one and the same phenomenon.

An understanding of this interaction of matter and light was considered to be one of the chal-
lenges in the late 1800’s by physicists and chemists trying to understand the structure of matter
and the nature of light.

19.3 Balmer and Lyman Lines

The earliest studies of these emission spectra showed that the frequencies emitted by the gas had
some pattern. In 1884, Johann Balmer showed that the first four lines of the emission spectra of
hydrogen obeyed the rule
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where n = 3, 4, 5 and 6, and the Rydberg constant RH = 1.097× 107 m−1. These sets of lines have
been named the “Balmer series” in recognition of his initial observation. However, he was unable
to explain the reason for this pattern. Shortly after this, additional sets of lines were discovered
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outside of the visible spectrum. The Lyman series were a set of lines observed in the ultraviolet
spectrum, and satisfied a similar equation
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while additional lines were observed in the infrared (the Paschen series is the next one to be
discovered). The general pattern was that the wavelength of an emission line satisfied
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where n1 = 1, 2, 3, . . . and n2 = n1 + 1, n1 + 2, . . ..

19.4 Bohr Model of the Atom

These observations motivated Niels Bohr in 1913 to develop a new theory of the atom. At this
time, the nucleus had already been discovered by Lord Rutherford in 1909, and so it was thought
that the electrons in an atom were in some sort of orbit around the positively-charged nucleus. He
also knew that he had to introduce a principle that required the electron in an atom to have specific
energy states. To this end, he suggested that the angular momentum of an electron orbiting the
nucleus of an atom had to be quantized. We will focus on the example of the hydrogen atom, which
has a nucleus consisting of only one proton.

In particular, he proposed that this angular momentum take on the values

L = nh̄, (4)

where n = 1, 2, . . ., and h̄ ≡ h/(2π) = 1.03× 10−34 J s. Then he just used classical mechanics. For
a circular orbit, we know that the electrostatic force acting on the electron
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where q1 and q2 are the electric charges of the electron and nucleus, r is the radius of the orbit, me

is the mass of the electron and v is its orbital speed.1 The kinetic energy of the electron is therefore
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where we have now assumed that the electron carries one negative unit of elementary charge
e = 1.60 × 10−19 C and the nucleus carries one unit of positive charge. Since the total energy

1We have assumed that we can ignore the motion of the nucleus, which is not so unreasonable given the mass of
the nucleus is so much larger than the mass of the electron.
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of the electron, E, is given by the sum of the electrostatic potential energy and the kinetic energy,
we find that
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Since the total energy is equal to the negative of the kinetic energy, we have
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If we now introduce Bohr’s quantization condition, we find
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This predicts that the atom has an infinite number of possible energy states, given by Eq. 15. It
also predicts that the electron should be orbitting the nucleus at a fixed radius that depends on the
energy level. For the n = 1 state, which is now seen as the lowest energy state of the Bohr atom,
we find that the orbital radius is

r1 ≡ a0 =
−ke2
2E

(16)
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ke2me
= 5.29× 10−11 m. (17)
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