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21 Enter Schrödinger and his Equation

21.1 Overview

• Fundamental Principles of Quantum Mechanics

• Schrödinger’s Equation

• Probability Densities

21.2 Fundamental Principles

With the discovery of photons and particles having both wave and particle properties, the hunt
was on in the late 1910’s and early 1920’s for a theory that could give a unified description of both
matter and light. Any such theory had to find some means by which the quantization of energy
could be explained or accommodated.

Underlying this search were two principles that most physicists felt had to be at the basis of
this new theory:

1. The “Principle of Complementarity” postulated that the wave-particle duality associated with
photons and matter particles had to be different “faces” of the same reality, i.e., that any
theory had to explain both sets of phenomena in a unified way.

2. The “Correspondence Principle” stated that the predictions of any new theory had to be con-
gruent with what was already known from classical mechanics. Even though the description
at the atomic level might be inconsistent with our everyday experience, the predictions of
macroscopic classical phenomena had to correspond with what had already been established
many centuries earlier.

These two principles helped shape the debate and the development surrounding the “new physics”
that many felt had to be at play at the atomic level of matter.

21.3 Schrödinger’s Equation

It was in this context that Erwin Schrödinger in 1925 postulated a new theory based on the existence
of “wave functions” that described the behaviour of matter. He suggested that the behaviour of a
particle with mass m influenced by a potential energy function U(x) would be dictated by a wave
function ψ(x) that satisfied the differential equation

− h̄2

2m
d2ψ

dx2
+ U(x)ψ(x) = Eψ(x), (1)
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where E is the total energy of the particle. This differential equation is the time-independent
Schrödinger’s Equation, and it forms the basis of any introduction to what we now call Quantum
Mechanics.

What is this wave function ψ(x)? It is not an observable quantity, although it is a function
of space. In principle, it is also a function of time, but we will avoid that complication here. In
fact, there is still much debate about how to interpret it, but the traditional interpretation we will
assume here is that we consider ψ(x) to be a means of computing the probability density for the
particle,

P (x) = |ψ(x)|2. (2)

To understand what this means, let’s digress to define properly what a probability density is.

21.4 Probability Densities

Let us consider a concrete example of a single particle trapped in a one-dimensional box. For now,
let’s suppose we know nothing about the particle except its mass m and the fact that it must be in
a 1-D box. Let L be the width of the box, so that we can define x to be the position of the particle
in the box relative to one edge (thus x ∈ (0, L)).

Let us periodically take a look into the box and note where we find the particle. Let these
observations form a set of N measurements of x, (a1, a2, a3, . . . , aN ). Let’s define a specific interval
inside the box, x ∈ (x0, x0 + ∆x). Then the fraction of time we will find the particle inside this
interval will be given by the ratio

N(ai ∈ (x0, x0 + ∆x))
N

, (3)

where the numerator is simply the number of times we have seen the particle inside this interval.
If we now let N get very large, then this fraction will approach a specific number. If at the same
time, we let ∆x become small compared to the length L, so that we can write ∆x → dx, then
we define the limit of this ratio as the probability that we will find the particle inside the given
interval. Mathematically, we would write this as

Probability ≡ P (x) dx = lim
N→∞

(
N(ai ∈ (x0, x0 + δx))

N

)
, (4)

where now we have introduced the probability density P (x).

Note that the probability density is not a probability per se, as it has units of 1/length in
this case. We have to multiply it by a length to obtain a probability (which by definition is a
dimensionless quantity). If for example, the particle in the box had equal probability of being
anywhere in the box, we would then expect to find that the probability density for the particle in
the box is constant.

One feature of any probability is that when we sum up the probabilities of anything occuring,
it must equal to unity. This is clearly satisfied by our definition above. This gives us a convenient
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means of normalizing the probability density, for in this simple case of a 1-D box of length L, we
would be able to write

1 =
∑

P (x)dx →
∫ L

0
P (x)dx. (5)

In the case of a particle with equal probabilities of being found anywhere in the box, this relationship
would give us

1 =
∫ L

0
P (x)dx (6)

= PL (7)
⇒ P = 1/L, (8)

where we have now explicitly assumed that the probability density is now a constant and indepen-
dent of x.

As a concrete example, suppose that L = 1× 10−6 m. This means that

P = 1/L = 1× 106 m−1. (9)

The fundamental postulate of Quantum Mechanics is that |ψ(x)|2 is the probability density
for a particle. We’ll see how this can be used to predict the quantum mechanical behaviour of a
particle.
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