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27 Properties of Hydrogen Atom Wave Functions

27.1 Overview

• Solutions to Schrödinger’s Equation

• Normalization

• Probobility Calculations

27.2 Solutions to Schrödinger’s Equation

In the previous lecture, had shown that the ground state solution for the wave function of the
hydrogen atom is

ψ1(r) = A1e
−r/a0 , where (1)

a0 =
h̄2

kme2
= 5.29× 10−11 m and E1 = − h̄2

2ma2
0

= −13.6 eV. (2)

There are an infinite number of additional solutions to Schrödinger’s equation that only depend on
the radius, and these can be characterized by the principal quantum number n and have

ψn(r) = (polynomial in r) e−r/na0 , with (3)

En = − h̄2

2ma2
0

1
n2
. (4)

The wave function psin(r) has n − 1 “nodes,” ie. places where it is zero, and increases in spatial
extent as n increases. Thus, the higher the excited state, the larger the electron’s orbital radius.

27.3 Normalization

Recall that in the 1-dimensional case, the probability of finding the particle in an interval (x, x+dx)
was given by the expression

P (x)dx = |ψ(x)|2dx, (5)

where we called the function P (x) the probability density. In 3-dimensions, we have to replace the
infinitesimal dx with its 3-dimensional analogue

dV = dx dy dz, (6)

which is just a microscopic cube. This is easy to visualize in Cartesian cordinates, but the analogous
expression in spherical-polar coordinates looks more complicated:

dV = r2 sin θdrdθdφ. (7)
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This can be seen to just be the volume of the object defined by the intervals (r, r+ dr), (θ, θ+ dθ)
and (φ, φ+ dφ).

With this definition, we can define for a hydrogen atom in its ground state the overall probability
of finding an electron anywhere around the hydrogen nucleus to be

1 =
∫ ∞
0

∫ π

0

∫ 2π

0
A2

1e
−2r/a0r2 sin θdrdθdφ (8)

We can rearrange this to do the integrations in φ and θ first since they are easy:

1 = A2
1

∫ ∞
0

r2e−2r/a0dr

∫ π

0
sin θdθ

∫ 2π

0
dφ (9)

= A2
1

∫ ∞
0

r2e−2r/a0dr (2) (2π) . (10)

The integral in r requires a little more work. We can integrate it by parts to obtain
∫ ∞
0

r2e−2r/a0dr = −r
2a0

2
e−2r/a0

∣∣∣∣∣
∞

0

+
a0

2

∫ ∞
0

2re−2r/a0 dr (11)

= a0

∫ ∞
0

re−2r/a0 dr. (12)

We can repeat this integration by parts to yield the final result:

a0

∫ ∞
0

re−2r/a0 dr = −a
2
0

2
re−2r/a0

∣∣∣∣∣
∞

0

+
a2

0

2

∫ ∞
0

e−2r/a0dr (13)

=
a2

0

2

∫ ∞
0

e−2r/a0dr (14)

=
a3

0

4
. (15)

Hence, the normalization of the ground state is defined by

1 = A2
14π

a3
0

4
(16)

= A2
1πa

3
0 (17)

⇒ A1 =
1

√
πa

3/2
0

= 1.46× 1015 m3/2. (18)

27.4 Probobility Calculations

With this result, we can now use the wave function to calculate specific probabilities for the be-
haviour of the electron in the hydrogen atom.

As a specific example, how often would we expect the electron to be within one Bohr radius of
the proton? This is

P(r<a0) =
∫ a0

0
|ψ|2 dV (19)
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=
1
πa3

0

(4π)
∫ a0

0
r2e−2r/a0dr (20)

= 0.323. (21)

The factor of (4π) comes from performing the angular integrations first. Verify the final result by
doing the integration by parts!

We see that the electron is far more likely to be found outside the Bohr radius than in it when
it is in the ground state. From the radial dependence of the excited states, one finds this to be
increasingly the case, again reflecting the general tendency for the atom to grow as the level of
excitation of the atom increases.
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