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9 Using Gauss’s Law

9.1 Overview

• Gauss’s Law

• Solving for Electric Fields Using Gauss

9.2 Gauss’s Law

9.3 Applications of Gauss’s Law

Coulomb’s Law has several implications. It first tells us that electric charges are “sources” of the
electric field. It also tells us that the Coulomb force is very long-range, given the 1/r2 behaviour
of the force. Together, these two aspects give the electric field an unusual property, which is
encapsulated in Gauss’s Law.

First, let’s go back to the simple case of a single point charge q. Let’s place an imaginary sphere
around this charge at a radius r and let’s now look at the surface of this sphere. We can divide
up the sphere’s surface S into a large number of small “patches” or elements, which I will denote
by dSi, where the value of dSi is the actual area of the ith small patch. Each patch, provided it
is small enough, can be approximated as a flat tile so that we can define the unit vector n̂i as the
vector normal to the surface dSi, as shown in Fig. 1. To make the notation more compact, I will
denote the product dSin̂ = 
dAi.

Now at each patch 
dAi, let 
Ei be the electric field vector at the centre of the patch. We then
define the flux of the electric field through the surface element to be

dφi ≡ 
Ei · 
dAi. (1)

The flux is a scalar quantity, and one can think of it as representing the “flow” of the electric field
through the surface element. However, it does not have a real physical interpretation as a flow,
since there really is nothing flowing. However, it is a convenient picture.

For a surface element on the imaginary sphere surrounding the charge q, we can readily calculate
the flux through any surface element. We note that the electric field at a distance r from the charge
is


E =
kq

r2
r̂, (2)

while the surface element of a patch of the sphere would have a normal pointing in the r̂ direction.
This means that

dφi = 
Ei · 
dAi (3)
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Figure 1: The calculation of the surface integral of a sphere centred on the charge q. The imaginary
sphere of radius r is centred on the point charge. The surface element dAi has a normal to it that
is parallel to the electric field 
Ei at the centre of the patch.

=
kq

r2
r̂ · dSir̂ (4)

=
kq

r2
dSi. (5)

We see that the ratio on the right-hand side is a constant at any point on the sphere.

We can then define the total flux of the electric field through the surface S to be

φ =
∑
i

dφi (6)

=
∑
i


Ei · 
dAi (7)

→
∫
S


E · 
dA, (8)

where we have let the size of each surface element become infinitesimally small and form a two-
dimensional surface integral. We can calculate the surface integral by introducing spherical-polar
angular coordinates, θ′ and φ′, in which case the surface element becomes dS = r sin θ′ rdφ′:

φ =
∫
S


E · 
dA (9)

=
∫ 2π

0

∫ π

0

kq

r2
r2 sin θ′ dθ′ dφ′ (10)

=
kq

r2
r2

∫ 2π

0

∫ π

0
sin θ′ dθ′ dφ′ (11)

= 4πkq, (12)
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since the integral is now just the total surface area of a sphere with unit radius.

We see that the total flux through this imaginary surface only depends on the charge inside
the volume defined by the surface, and doesn’t depend on the radius of the sphere. This is called
Gauss’s Law.

9.3.1 Gauss’s Law for Arbitrary Surfaces

The result obtained in the previous section holds not only for symmetric surfaces, but for any
arbitrary surface S that contains a volume V . Furthermore, this result can be extended to arbitrary
charge distributions inside the volume.

To express what is really going on, we can write

φ ≡
∫
S


E · 
dA (13)

= 4πk
∫
V
ρ(
r ′) dV ′, (14)

where we have used ρ(
r) to denote the charge density in the volume V . In effect, the right-hand
side of Eq. 14 counts up the total charge inside the volume V .

There is one minor wrinkle to this, which is that normally Gauss’s Law is expressed in terms
of the permittivity ε0, which is defined as

ε0 ≡
1

4πk
= 8.85× 10−12 C2/N m2. (15)

With this definition, we can write

φ ≡
∫
S


E · 
dA =
1
ε0

∫
V
ρ(
r ′) dV ′ (16)

Gauss’s Law could be considered a curiousity of the electric field if it were not such a useful
tool for calculating electric fields or charge distributions in cases where there is enough symmetry.
We will work a few examples to see how this works.

9.3.2 Point Charge

Let’s return to a point charge q placed at the origin. We will use Gauss’s Law to determine the
electric field anywhere.

We first note that this problem has a spherical symmetry, so that the electric field must be
proportional to r̂ everywhere. Furthermore, at a given distance r, the electric field would have to
have equal strength, | 
E(
r)|, regardless of the which direction 
r is pointing from the charge.

This, the electric flux through an imaginary sphere drawn around the charge with radius r
would be

φ =
∫
S


E · 
dA (17)
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Figure 2: A linear charge distribution, and the imaginary “Gaussian” cylinder used to apply Gauss’s
Law. The small surface element shown here as dA has a normal that is parallel to the electric field
at the centre to the patch (shown as 
E).

= | 
E(r)|
∫
S
dS (18)

= 4πr2| 
E(r)| (19)

=
1
ε0

∫
V
ρ(
r′) dV ′ (20)

=
q

ε0
(21)

⇒ | 
E(r)| =
q

4πε0r2
, (22)

which if you look closely is just Coulomb’s Law for a point charge. Note that we will often use the
term “Gaussian” surface to identify these imaginary surfaces that are used to apply Gauss’s Law.

9.3.3 Line Charge

A similar argument holds for a linear charge distribution. Suppose we have a long straight wire
sitting on the ẑ axis with a charge distributed on it so that it has λ charge per unit length.

First, we note that by symmetry, the electric field can only be perpendicular to the line charge.
Thus the ensuing electric field has cylindrical symmetry. The natural coordinate system for this
problem is cylindrical: Relative to a Cartesian coordinate system defined by a set of x̂, ŷ and ẑ
axes, any point in space can also be described by (ρ, φ, z), where ρ is the distance from the ẑ axis,
φ is the azimuthal angle of the point in the x̂− ŷ plane, and z is the position along the ẑ axis. In
this coordinate system, the electric field would always point in the ρ̂ direction.1

1Don’t confuse the coordinate ρ with the charge density function ρ(�r). Where any confusion is possible, I will
make the distinction between these concepts by always noting that charge density to be a function of space.
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To take advantage of this symmetry, we create an imaginary “Gaussian” cylindrical surface of
radius ρ and length L, as shown in Fig. 2. The electric field, being in the direction perpendicular
to the ẑ, is now perpendicular to the normal to the surface at each end of the cylinder, so that the
dot product 
E · 
dA on the ends of the cylindrical surface are zero. Thus, the flux of the electric
field through the cylinder’s surface is

φ =
∫
S


E · 
dA (23)

=
∫
sides

E(ρ)ρ̂ · ρ̂ dS (24)

= E(ρ)
∫
sides

dS (25)

= E(ρ)2πρL, (26)

where the integral in Eq. 25 is just the area of the cylinder, or 2πρL. The charge enclosed in the
cylinder is just the length of the line charge in the cylinder times the linear charge density λ. Thus,
Gauss’s Law tells us

φ = E(ρ)2πρL =
1
ε0
λL (27)

⇒ E(ρ) =
λ

2πε0ρ
. (28)

Note that the electric field falls off as 1/ρ instead of as 1/r2 in the case of the point charge.
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