Generic Detector

A detector cross-section, showing particle paths

Layers of Detector Systems around Collision Point

Tracking Detectors

- Observe particle trajectories in space with as little disturbance as possible
 - use a thin $(gm.cm^{-2})$ detector
 - $(\sigma: cm)$ Scintillators $(\sigma: 150\mu)$
 - Scintillating fibres
 - Gas trackers
 - Solid state trackers
- $(\sigma: 150\mu)$ $(\sigma: 10\mu)$
- Gas Based Detectors
 - Multiwire proportional chamber
 - Drift Chamber
 - Time projection chamber
 - Gas microstrip
 - GEM (gas electron multiplier)

Multiwire Proportional Chamber

Drift Chamber – measure arrival time of charge = spatial resolution

Schematic of Wire Chamber Cell

Repeat "n" times

•

3) In high E field region near wire, primary ionization electrons gain enough energy to start ionizing the gas

- Avalanche
- More charges
- Charge amplification $\sim 10^7$
- Noise free amplifier

microvolt signal if no amplification

Distance from centre of wire

Behaviour as Voltage Increased

- Collection Recombination dominated
- All charge collected
- Amplification by gas multiplication
 - Still proportional particle ident
- Saturation
- Breakdown Geiger/Mueller

Diffusion

Ions & electrons diffuse in space
E field determines average direction

- Collisions limit velocity
- Maximum average velocity=Drift velocity

Diffusion

- Ions and electrons diffuse under influence of electric field
 - Maxwell velocity distribution

$$v = \sqrt{\frac{8kT}{\pi m}}$$

$$v_e: 10^6 cm.s^{-1}$$
 $v_{I^+}: 10^4 cm.s^{-1}$

• From Kinetic theory, after *t*, linear distribution due to diffusion

$$\frac{dN}{dx} = \frac{N_0}{\sqrt{4\pi Dt}} \exp\left\{\frac{-x^2}{4Dt}\right\}$$

Diffusion coefficient

RMS Spread

$$\sigma(r) = \sqrt{6Dt} \quad \text{and} \quad \sigma(r) = \sqrt{6Dt} \quad \text{and} \quad \sigma(r) = \sqrt{6Dt} \quad \text{and} \quad \sigma(r) = \sqrt{6Dt} \quad \sigma$$

 $\sigma(x) = \sqrt{2Dt}$ 2-d

about 1mm after 1 sec in air

Mobility

• For a classical gas

$$\mu = \frac{2}{3\sqrt{\pi}} \frac{q}{p\sigma_0} \sqrt{\frac{kT}{m}} = \frac{u}{E} \underbrace{\frac{drift \ velocity}{electric \ field}}_{electric \ field}$$

- $\begin{array}{l} q,m \quad \text{ion charge and mass} \\ p \quad \text{gas pressure} \\ \sigma_0 \quad \text{ion scattering cross section} \quad & \\ & & \\ & & \\ \mu_e = 40 \frac{\mu m/ns}{kV/cm} \\ & & \\ & & \\ \mu_{I^+} = 0.1 \frac{\mu m/ns}{kV/cm} \\ \end{array}$
- In argon

Diffusion and Drift Chamber Accuracy

 $D = \frac{1}{3^{*}} v\lambda$ Diffusion coefficient from kinetic theory $\lambda = \frac{1}{\sqrt{2}} \frac{kT}{\sigma_0 p}$ Mean free path

$$D = \frac{2}{3\sqrt{\pi}} \frac{1}{\sigma_0 p} \sqrt{\frac{\left(kT\right)^3}{m}}$$

In argon
$$D_e: 10\mu^2/ns$$

Diffusion gives limit on spatial accuracy drift chamber

- To reduce D
 - Lower temperature
 - Raise pressure (reduce mobility)

Working Gas

- Noble gases give multiplication at lowest electric field
 - Polyatomic gases have nonionization energy loss mechanisms
- Choose cheap noble gas with low ionization potential
 - Krypton X rare, expensive
 - Xenon X
 - Argon OK cheap welding etc

Argon

- Cheap, safe, non-reactive
 - remove electro-negative contaminants O_2, CO_2, H_2O
- Pure argon limited to gain $\leq 10^3$
- Many excited ions produced during avalanche

$$Ar^{*+} \to Ar^{+} + \gamma (11.6 \, eV)$$

absorbed on cathode

$$\gamma + cathode \rightarrow e^{-} (photo - emission)$$

returns to anode - breakdown

• Absorb 🕅 - quenchers

Quenchers

Polymerization

- Organic quenchers polymerize
- Deposits on cathodes
 - high resistance
 - ion buildup discharge
 - sparks, broken wires
- Add non-polymerizing agent water methylal

Typical gases $\begin{array}{l} 80\% \ Ar + 20\% \ CH_4 \\ 90\% \ Ar + 10\% \ C_3H_8 \end{array} G: \ 10^6 \end{array}$

or add electronegative gas (a bit of poison)

 $X + (photo - electron) \rightarrow X^{-}$

Typical 90% $Ar + 10\% CO_2$ $G: 10^7$

Magic Gas75% Ar $24.5\% (CH_3)_2 CH CH_3$ 0.5% Freontrace methylal $1\% H_2O$

R.S. Orr 2009 TRIUMF Summer Institute

POTENTIAL

$$\phi(r) = \frac{CV_{o}}{2\pi\varepsilon_{o}} \ln\left(\frac{\Gamma}{a}\right)$$

 w_{iRE}
RADIUS

- Electrons produced in avalanche close to anode wire
- Small dr small signal
- +ve ions drift across whole radius
- Large dr large signal

$$V_{ion} = +\frac{Q}{lCV_0} \int_{a+\lambda}^{b} \frac{d\phi(r)}{dr} dr = -\frac{Q}{2\pi\varepsilon_0 l} \ln \frac{b}{a+\lambda}$$

$$V_{electron} / V_{ion} = \ln \frac{a + \lambda}{a} / \ln \frac{b}{a + \lambda}$$

Typically 1%

R.S. Orr 2009 TRIUMF Summer Institute

Time Development of Signal

TYPICAL $\alpha = Up, b = 8mm$ C = 8pF/m $<math>\mu^{\dagger} = 1.7 \text{ cm}^2 \text{ s}^{-1} \text{ V}^{-1} \text{ a} \text{ f} \text{ m}^{-1}$ $V_0 = 3 \text{ kV}$

SIGNAL GROWS QUICKLY 50% IN 10-3 TN 700ms TERMINATE COUNTER WITH R T= RC

TOTAL DRIFT TIME $T = \frac{t_o}{a^2} \left(b^2 - q^2 \right)$