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  Layers of Detector Systems around Collision Point 

Generic Detector 



Solid State Detectors 

•  Specifically 
–  microstrip & pixel trackers 

•  Have become trackers of choice (if affordable) 
–  high spatial resolution 
–  radiation hard 

•  rely on development of micro-electronics fabrication 
techniques 

•  Central to heavy flavour tagging, lifetimes 
–  vertex detection 

•  B flavour 
•  Top 
•  Higgs 
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Top Quark Discovery at CDF 



Semiconductors 

• Have a large energy gap 

energy 
conduction 
electrons 

holes 

~ 1eV 

conduction 
band 

valence 
band 

• Small number of charge carriers in conduction band 
•  electrons thermally excited across the band gap 
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increases with temperature 



Doped Semiconductors 

energy 

conduction 

valence 

•  In n-type , extra conduction electrons easily excited 
into conduction band  

•  In p-type, valence electrons excited into impurity 
band – holes in valence band conduct 

•  n-type   -  electrons – majority carriers 

- increase conductivity 

donor impurity 
acceptor impurity 

n-type p-type 

•  p-type   -  holes – majority carriers 
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p-n Junction 

n-type 

Fermi - level 
p-type 

Fermi-level 
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depletion region 

• Both n & p are initially 
electrically neutral 

•  holes diffuse into n-region - “fill” 
electrons 

•  electrons diffuse into p-region - “fill” 
holes 

•  charge buildup  
•  electric field 

repels carriers from 
depletion zone 
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reverse bias – no current 

depletion zone grows with bias 
majority carrier current 

electrons and holes have different mobility 
1
3H eµ µ=

+ve -ve 

depletion zone 
with reverse bias  

no bias  

n p 
for                                    cf          

need high resistivity Si for large bias voltage 
- high purity or compensated 

0 300V V= 5d mm= 75µ



Depletion Zone as a Detector 

•  Ionizing particle passing through depletion zone 

•  Liberates electron-hole pairs – current flows 

•  Intrinsic field not high enough to efficiently collect carriers – small signal 
•  Small depletion layer – large capacitance – large noise into electronics 

•  Reverse biased p-n junction  – no majority carriers – no current 

•  Depth of Depletion Zone 
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Principle of micro-strip Detector 

insulator 

fully depleted n-type 
detector zone  

highly doped to exclude depletion zone 

to get ohmic connection n+ 

p+ 

for 60V 300µ

•  1 e-h pair / 3.6 eV -         e-h per micron - dense 210

•  unlike gas – no multiplication of primary ionization              for 43 10× 300µ

•  noise reduced by full depletion – reduce capacitance 
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Fabrication 
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• micro strip structure 

• position resolution < 10 microns 

• limited by diffusion and delta-rays 
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Capacitive Charge - Division 

•  many strips resulting from         pitch 20µ
 many electronics channels – many $$ 

•  stray capacitive coupling of strips – read out every      strip thn

 read out every        strip – effective           pitch -- 6th 120µ 8σ µ:

12
pitchσ =
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Time Development of Signal 
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• Effect of magnetic field 
on space resolution 

field off 

field on 
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TRT endcap A+B 

TRT endcap C 

TRT barrel 

SCT barrel 
SCT endcap 

Pixels 

The ATLAS Inner Detector 



SCT barrel  



SCT EndCap 





Signal from Si Detector 
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electron mobility 2 1 11400e cm V sµ − −:

drift velocity 1~ 42 nsµ −

for 300µ 7D nsτ :

• for a source charge  sq ~ 5fC  

• peak electron (hole) currrent 710 nA  (240 nA)  

• How does this compare to the noise level? 
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detector is current source 
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•  resistors – source of thermal noise – thermal energy kT 
•  noise is spread uniformly over all frequencies 

Equivalent Circuit of Detector + Amplifier 
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•  current made of  – discrete carriers 
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•  need to limit bandwidth or infinite noise 
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• for a frequency range of 100 MHz and 1mA 

• 126 nA – pretty close to signal 
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•  Thermal – 
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•  Thermal -  
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•  Low temp 
•           large 
•           small 
•           small 
•           small 

SR
BI
SC
BR

parallel noise 

series noise 
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SC

•  minimize  detector cap – minimize noise 

•  long strips? – cheap – too noisy 

usual choice 

•  transistor noise 

money no object 
 choice 

25
25

SC pF
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=
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~ 1000 electrons 

cf signal ~ 31000 electrons 
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Total Noise 

cancel tail 

pole-zero shaping 

raw 

impulse response 
- noise 
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Space Point 

•  Harder to fabricate (more expensive) 
•  Less material – less MCS 
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Pixel Detector 

•  Each sensor gives a space point 

•  Enormous advantage in high occupancy 
environment 





Pixel System 



Pixel Layer-2 – half shell 

Pixel Layer2, once clamped, outside 

Pixel Layer2, once clamped, inside 

“Ready for installation” date is 1st April 2007 



Inner Detector (ID) 
The Inner Detector (ID) comprises four 

sub-systems: 
 
•  Pixels  (0.8 108 channels) 
 
•  Silicon Tracker (SCT) 

 (6 106 channels) 
 
•  Transition Radiation Tracker (TRT) 

 (4 105 channels) 
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Utility of Si Tracker 











•  Order of magnitude increase in Data rates, Occupancy, Irradiation 
•  No TRT – Si strips 
•  Pixels moved to larger radius 
•  New technology for inner layers 
•  R&D required on sensors, readout, and mechanical engineering 

Inner Detector Replacement 



Pixel-layer Technologies 

Si pixel sensor 
BiCMOS analogue 

CMOS digital 

Cluster3  

Cathode (drift) 
plane 

Integrated Grid 
(InGrid)  

Cluster2  
Cluster
1  

Slimmed Silicon Readout 
chip Input 

pixel 

1mm,	

100V	


50um, 	

400V	


50um	


•  Harshest radiation environment (R~4cm) 
– investigate new technologies 

•  3D Si  
•  Thin silicon + 3D interconnects  
•  Gas over thin pixel (GOSSIP)  
•  Diamond pixels  
•  May test in pre-SLHC b-layer replacement 

(~2012) 
 




