

Electromagnetic Showers

Number of particles after $t \cdot \chi_0$ $N = 2^t$

Average energy $E(t) = \frac{E_0}{2^t}$

At the critical energy $E_t(\max) = \frac{E_0}{2^{t \max}} = E_C$

assume this is max depth

$$N_{\max} \approx \frac{E_0}{E_c}$$
 $t_{\max} = \frac{\ln \left(E_0 / E_c \right)}{\ln 2}$

$$t_{\max} \sim \ln E_0$$
 shower grows as $\ln E$
 $N_{\max} \propto E_0$ linear energy measurement
 $\sigma_E \sim \sqrt{N} \sim \sqrt{E}$ resolution improves with
energy

1

R.S. Orr 2009 TRIUMF Summer Institute

Transverse Shower Profile

- Shower Broadens as it develops
 - Pair
 - Brems
 - Compton
 - Multiple Coulomb
 - Shower Broadens as it develops
 - dense central core
 - spreading with depth

• Moliére Radius
$$R_M = \chi_0 \frac{E_s}{E_c} E_s = m_e c^2 \sqrt{\frac{4\pi}{\alpha}} = 21.2 \, MeV$$

- Like radiation length, Moliére radius scales for different materials
- In terms of Moliére radius, shower width is roughly independent of material 90% of energy in $2 \times R_M$

Comparison of Hadronic & Electromagnetic Showers

R.S. Orr 2009 TRIUMF Summer Institute