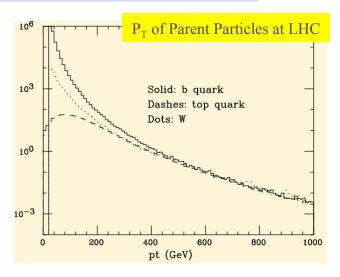
Hard Scattering in Hadron-Hadron Collisions: Physics and Anatomy

Section 5: Identification of Charged Leptons

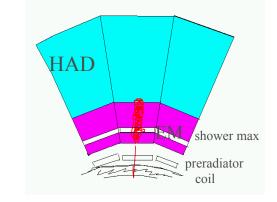

- 1. Sources of leptons
- 2. ID techniques for electrons, muons and taus
- 3. Identification efficiencies
- 4. Background considerations
- 5. Example: Top quark decays to τ leptons

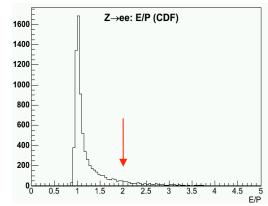
Winter 2017 PHY2407

Sources of Leptons

- In hadron-hadron collisions, leptons arise from
 - Semileptonic decay of heavy quarks (t/b/c)
 - W and Z boson decay
 - Drell-Yan production
 - "Onia" production/decay
- Various sources of backgrounds
 - Electrons
 - > Photon conversions
 - > Misidentified jets
 - Muons
 - > Cosmic rays
 - > Decays-in-flight of hadrons
 - Taus
 - > Misidentified jets

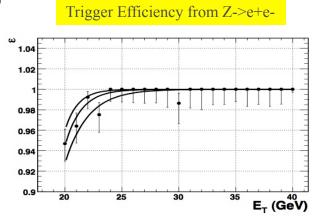
 $d\sigma/dpt$ (pb/5 GeV)

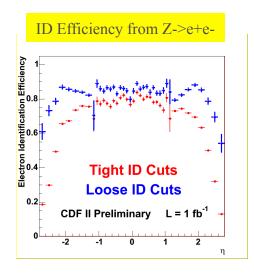



Courtesy of M. Mangano

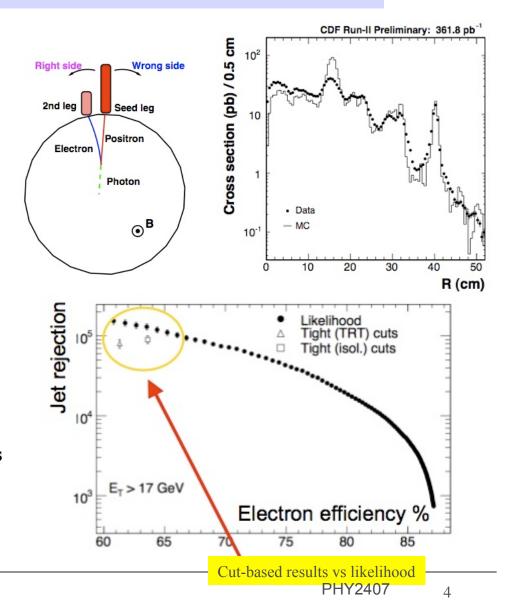
Electron Identification Strategies

Identification makes use of

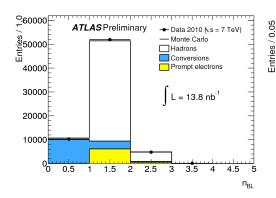

- Calorimeter
 - > Shower shape and location
- Charged particle reconstruction
 - > Position matching
 - > Energy vs Momentum
- TRD and/or dEdX
 - > TRD perhaps has the highest rejection power

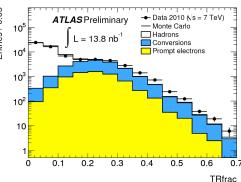


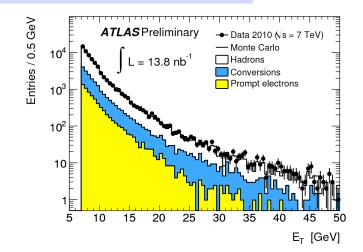
Strategy works well, but

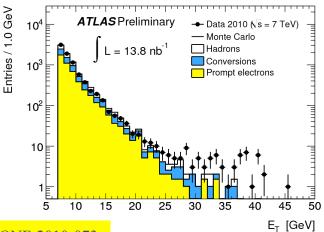

- Depends on a large number of ID variables
 - > Have to be well-modelled
- Requires "isolated" lepton candidates
 - > Electrons from b/c decays difficult to reconstruct
- Have correlation between tracks& calorimetry in trigger

Backgrounds to Electrons

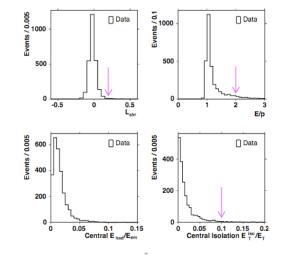

- Backgrounds have to be measured
 - Conversions (γ -> e⁺e⁻)
 - Source of real electrons (about 30-40% of electrons above P_T>12 GeV/c)
 - Search for partner leg, or
 - No charged track
 - Large background, but also a good control sample
 - Jets
 - $> \pi^+/\pi^0$ overlap
 - Two pions overlap & mimic electron signature
 - > Charge-exchange
 - $\pi^+ p \rightarrow \pi^0$ n early in calorimeter
- Can get to relatively pure samples
 - S/N > 10-100, depending on process
 - ATLAS/CMS expect to be able to do very well
 - > Z->e⁺e⁻ provides excellent "standard candle"




Performance of ATLAS


- Developed sets of ID cuts that efficiently select electrons
 - Key is to separate "prompt" electrons from
 - > Conversions (γ ->e⁺e⁻)
 - > Candidate from hadrons/jets
 - Use two variables
 - > Number of hits in pixel detector
 - Conversions typically have fewer
 - > Fraction of large pulse-height "hits" in TRT
- **Can then solve for the three components**

$$\begin{split} N &= N^h + N^{\gamma} + N^{Q} \\ N_{TR} &= N^h \varepsilon_{TR}^h + N^{\gamma} \varepsilon_{TR}^{\gamma} + N^{Q} \varepsilon_{TR}^{Q} \\ N_{BL,TR} &= N^h \varepsilon_{BL}^h \varepsilon_{TR}^h + N^{\gamma} \varepsilon_{BL}^{\gamma} \varepsilon_{TR}^{\gamma} + N^{Q} \varepsilon_{BL}^{Q} \varepsilon_{TR}^{Q}, \end{split}$$

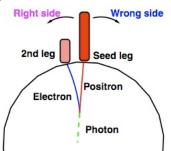


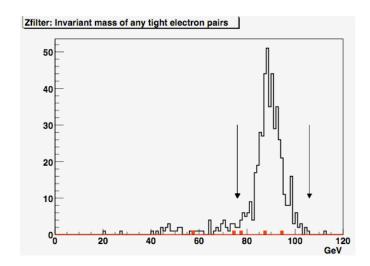
ATLAS-CONF-2010-073

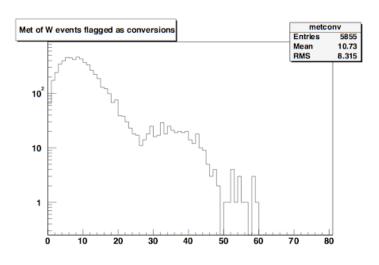
Component	h-	$\rightarrow e$	γ-	$\rightarrow e$	Q.	$\rightarrow e$
Method	Matrix	Likelihood	Matrix	Likelihood	Matrix	Likelihood
Fraction of electron candidates	65.2 ± 0.4	65.4 ± 0.3	19.8 ± 0.2	19.4 ± 0.2	15.0 ± 0.2	15.2 ± 0.2

Cut-Based Lepton ID Selections

- Electron ID uses a large number of variables
 - Traditionally, define selection criteria
 - Measure efficiencies of each cut in wellunderstood control sample
 - > Relax the cut and see how control sample responds
- Challenge is how to measure efficiencies & backgrounds
 - Need to understand correlations between cuts
 - Multiple control samples are very helpful
 - Remember trigger also performs selection!

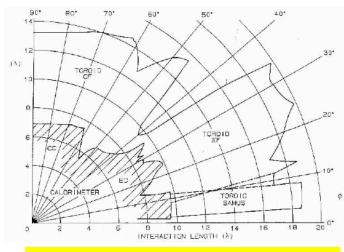

- Likelihood techniques in principle more efficient
 - But more difficult to understand in detail
 - Correlations are important to get right

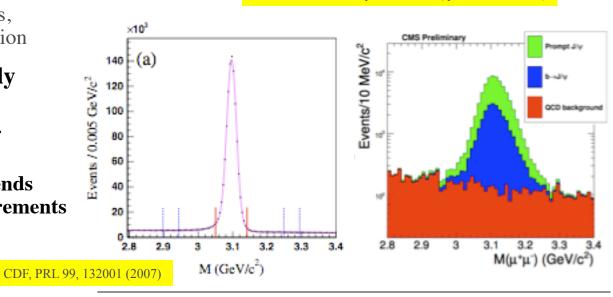

Z Selection and Efficiency


Selection Criteria	Number of Events	Net Acceptance
Total Events	507500	-
$ z_{vtx} < 60 \text{ cm}$	490756	-
$66 \text{ GeV}/c^2 < M_{ee}(\text{Gen}) < 116 \text{ GeV}/c^2$	376523	-
Central EM Cluster	363994	0.9667 ± 0.0003
Calorimeter Fiducial Cuts	299530	0.7955 ± 0.0007
Electron Track $p_T > 10 \text{ GeV/}c$	252881	0.6716 ± 0.0008
EM Cluster $E_T > 25 \text{ GeV}$	186318	0.4948 ± 0.0008
Second EM cluster (Central or Plug)	176417	0.4685 ± 0.0008
Second Cluster Calorimeter Fiducial Cuts	146150	0.3882 ± 0.0008
Second Electron Track $p_T > 10 \text{ GeV/}c$ (Central)	138830	0.3687 ± 0.0008
Second EM Cluster $E_T > 25$ GeV (Central), 20 GeV (Plug)	125074	0.3322 ± 0.0008
Second EM Cluster $E_{had}/E_{em} < 0.125$ (Plug)	124881	0.3317 ± 0.0008
$66 \text{ GeV}/c^2 < M_{ee}(\text{Rec}) < 116 \text{ GeV}/c^2$	120575	0.3202 ± 0.0008
Opposite Charge (Central-Central)	119925	0.3185 ± 0.0008

Example: Conversion Removal

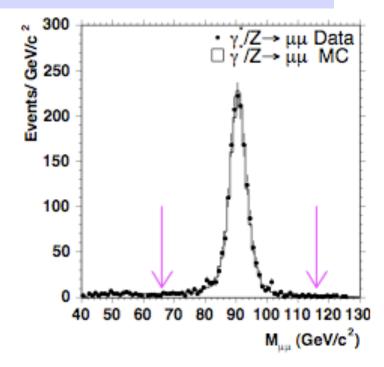
- To identify conversions, CDF uses presence of 2nd track & SVX hits
 - ~85% efficiency in identifying conversions in electron sample with P_T>9 GeV/c
 - Residual background depends on other cuts
 - Significant "over-efficiency"
 - > Probability of misidentifying a prompt electron as γ
 - > Measure this using Z->e+e-decays
 - > Get between 5-10%, depending on details of algorithm
 - Measured to be **4.5±0.6%**
 - Check against W's
 - > "Bump" at high MET are Ws identified as conversions
 - > Gives a consistent answer





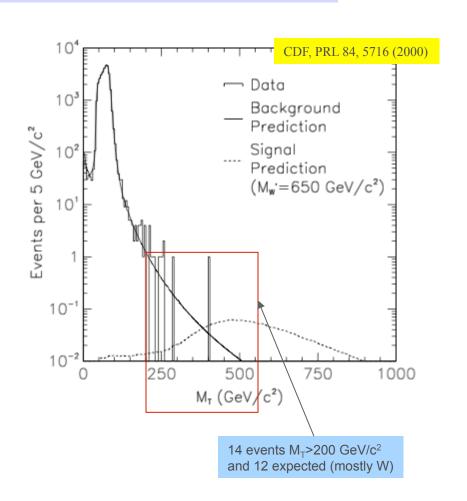
Muon Identification

- All techniques are based on highlypenetrating nature of γ
 - Have large amount of material (>10 λ)
 - > Require min-ionizing particle
 - Calorimeter energy deposition
 - Track particles before and after material
 - > Momentum analyze
 - Shown to be very effective
 - > High rejection factors, especially with isolation
- Backgrounds are primarily
 - Cosmic rays
 - Decay-in-flight for lower momentum candidates
 - Size of background depends critically on other requirements



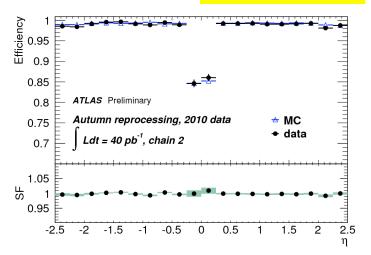
D0 Material Inventory vs Azimuth (quarter of detector)

Muon ID Efficiencies


- Efficiencies for high-P_T μ determined from Z->μ⁺μ⁻
 - Select events requiring one μ candidate $P_T > 20$ GeV/c
 - Look at efficiency of reconstructing second leg
- Can get MC/simulation to agree approximately
 - Predicts 92.1% efficiency, but measure 88.6±0.9%
 - Rejection hard to quantify
 - > Key question is "rejection from what?"
 - In some sense, not relevant if one measures remnant background directly
 - > Limiting backgrounds are
 - Cosmic rays
 - QCD jets "punching through"

	data		MC	
No cuts applied	1153		28271	
Em Cut	1126	0.9766 ± 0.0044	27203	0.9622 ± 0.0011
Had Cut	1131	0.9809 ± 0.0040	27654	0.9782 ± 0.0009
Cot Cut	1128	0.9783 ± 0.0043	28226	0.9984 ± 0.0002
d0 Cut	1150	0.9974 ± 0.0015	28254	0.9994 ± 0.0001
isol Cut	1126	0.9766 ± 0.0045	27692	0.9795 ± 0.0008
dxemu Cut	1114	0.9662 ± 0.0053	28228	0.9985 ± 0.0002
all Cuts	1022	0.8864 ± 0.0093	26025	0.9206 ± 0.0016
all (w/o isol) Cuts	1044	0.9055 ± 0.0086	26523	0.9382 ± 0.0014

Backgrounds to Muons

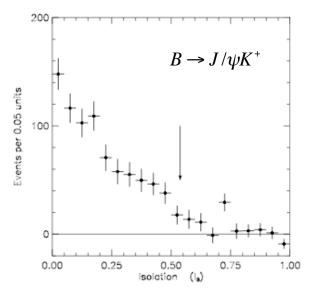

- Backgrounds depend on the physics process & other requirements
 - Already see that dilepton signals are very clean
 - Probably most difficult region is high momentum
 - > Example is W' -> $\mu\nu_{\mu}$
 - Only high P_T object in detector is μ candidate
 - > Data comes from Run 1 with 100 pb⁻¹
- Difficult to find a signal limited by backgrounds!
 - Most backgrounds at high P_T are "intrinsic" -- ie., have a real μ



Muon Backgrounds at ATLAS

CDF, PRL 84, 5716 (2000)

- ATLAS muon reconstruction is intrinsically cleaner
 - The primary background sources are hadrons decaying in flight
 - > Become neglible at large p_T
 - See this most clearly when looking at Z
 -> μμ decays
 - > Very clean sample, with less than 1% background from non-m
- Efficiency overall is ~97%
 - Comes from a combined strategy of matching tracks in inner detector with muon spectrometer
 - This sample shows how effective "isolation" is in separating out the different sources
 - > Heavy flavour decay
 - > Z and ttbar production

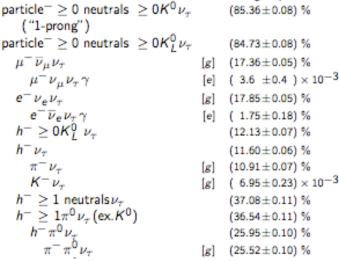


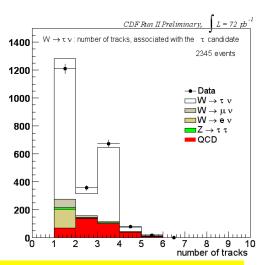
Comment on Isolation

- Isolation requirements on lepton candidates appear to be powerful tool.
- Why?
 - Think about backgrounds:
 - > Jets faking leptons tend to be associated with additional particles
 - > Semileptonic decays of b/c jets also have associated energy
 - On the other hand, leptons from W/Z decay are generally isolated
- But many forms of "isolation cuts"
 - Some implicit
 - > Example: lepton ID criteria
 - Some explicit
 - > Energy (or charged tracks) in a cone ΔR =0.2 or ΔR =0.4
 - Cut on ratio of E_T in cone to lepton candidate (10% typical)

- However, there are many ways to look at isolation
 - Example comes from B -> $\psi(2S)\pi\pi$
 - Form cone of ΔR=1.0 around B candidate
 - > Sum up tracks not associated with B candidate
 - > Reject events with $I_B > 7/13$

$$I_{\mathrm{B}} = \frac{\sum_{i \neq \mathrm{B}}^{R} \vec{p}_{i} \bullet \vec{p}_{B}}{|\vec{p}_{B}|}$$


Tau Lepton Identification


Tau Listing, 2008 PDG

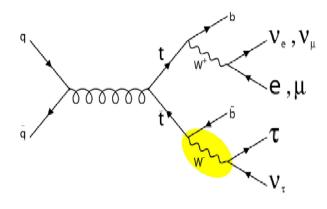
Tau leptons difficult to identify

- Decay to either
 - > Leptonic final state ($\mu/e+\nu\nu$)
 - 37% of time
 - > Hadronic final states
 - 12% with single charged particle
 - 37% with h⁻ + neutral hadrons
- Look for low-multiplicity "jets"
 - > Work to reconstruct π^0
 - > Shower shape cuts to reduce QCD backgrounds
- Use track multiplicity to estimate observed yield
 - > 26 pb of W-> τv_{τ}
 - Compare with 500 pb of W->e ν_e
 - Factor of x20 lower efficiency
 - > Purity also about x10 worse
- Means that tau physics has been "poor" cousin to electrons & muons

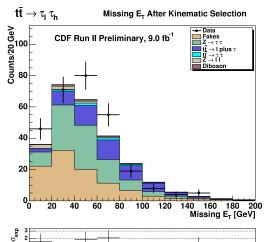
Modes with one charged particle

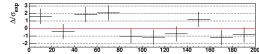
Tau Lepton Reconstruction

Why is τ reconstruction so lousy?


- Have at least one v, sometimes several
 - > Compromises energy measurement
 - > Reduces energy scale (and efficiency)
- Reject decays to lv_lv_{τ}
 - > Background from leptons too large
- Reliance on charged tracking information and π^0 reconstruction
 - > Hit by BR and reconstruction efficiencies
- Trigger is less efficient
 - > Presence of v in effect pushes up the minimum v P_T
 - > Work to add other information
 - τ + MET trigger
 - τ + lepton trigger
 - Help but don't solve the fundamental problem

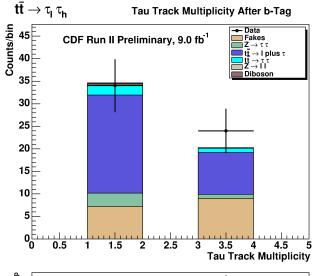
Criteria for τ identification


- 1 charged track + evidence of π^0
 - > Requires reconstruction of π^0 in EM calorimeter
 - > BR $\sim 1/3!$
- Look for "narrow" jet
 - > Seed tower $E_T > 6$ GeV
 - > Seed track P_T>4.5 GeV/c
 - > <=6 towers with E_T>1 GeV in cluster
 - > Overall efficiency of ~50%
- A further "isolation" cut to reduce backgrounds from QCD jets
 - > Typical cut: E_T in cone R=0.4 < 10% of τ candidate E_T
 - > About 60-70% efficient
- Loss of x10 compared with e or μ
 - And backgrounds still high


Example: Top decaying to $\tau v_{\tau} b$

- Top quark decays to τ lepton should be observable
 - Also key signature for H⁺
- Analysis strategy
 - Look for isolated e or μ
 - Isolated τ candidate
 - MET > GeV
 - >=2 jets
 - > Leading jet E_T > 25 GeV and 2nd jet E_T > 15 GeV
 - > Reduce Z->ττ
 - Require significant energy in event
 - $> H_T > 205 \text{ GeV}$
- MET distribution for electron+τ
 - Kinematic cuts
 - Require >=2 jet

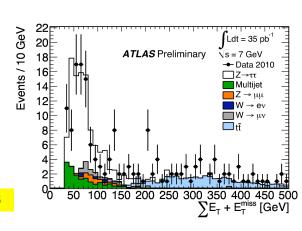
http://www-cdf.fnal.gov/physics/new/ton/2012/tthar_taulen_xsec_9invfb/Publichage.html

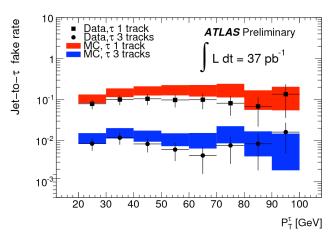


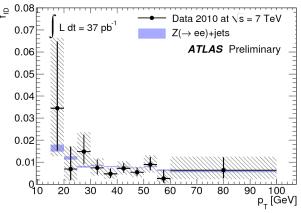

CDF Results

- Backgrounds dominated by "fake" τ candidates
 - To estimate, use dijet data
 - > Create "fake matrix" that gives probability of jet passing τ criteria
 - Have to be careful about "denominator"
 - Also correlations with rest of event
 - Primary background from W+jets
- See 290 candidate events in 9 fb⁻¹
 - Expect 60 from top quark production
- This is hard!
 - ee/e μ / $\mu\mu$ + 2 jets (1 b tag) has 80 candidate events with 2.8 fb⁻¹
 - > Estimate 4 background!
 - Guess that ~8(?) of these are from ttbar -> ττbb

	e+tau	mu + tau
	(events)	(events)
Jet -> tau	65±14	36±8
Drell Yan	54±11	47±10
Тор	33±3	26±3
WW	2.4±0.3	1.8±0.3
Total expected	154±20	110±14


	Observed	175	115
--	----------	-----	-----





LHC τ's are not poor cousins

- **Use similar techniques to separate τ candidate**
 - The width of the EM energy deposition
 - The width of the charged track energy deposition
 - The invariant mass of the charged tracks
- Can measure rejection rates from jets and electrons
 - Get rejection rates of order 20-100
 - With these, can see a clear $Z \rightarrow \tau\tau \rightarrow e\mu$ signal
 - > A little bit of a cheat, as it only looks for events with $25 < m_{e\mu} < 80 \text{ GeV/c}^2$
 - A good start allowing one to build toward a full analysis
 - Efficiencies only 10-20% that for electrons, muons

ATLAS-CONF-2011-045