Hard Scattering in Hadron-Hadron Collisions: Physics and Anatomy

Section 6: Neutrinos and Missing Transverse Energy

- **1.** Philosophy of MET techniques
- **2.** Instrumental strengths and compromises
- **3.** Measurement techniques
- 4. Background considerations
- 5. Example: MET in SUSY events

Basic MET Philosophy

- UA1 pioneered "missing energy" technique to detect non-interacting particles
 - Build "hermetic" calorimeter
 - Most hadrons interact in calorimeter
 - > EM objects also measured in calorimeter
 - Can identify and measure μ leptons separately
 - Correct for cracks, nonlinear energy response
 - Worked surprisingly well
 - Discovery of W boson

- Become essential to most measurements
 - Require it when expect a noninteracting particle in final state
 - Require little MET if one expects all particles to be observable

PHY2407S 2

Measurement Techniques

- Usual strategy is to take "raw" energy in each cell i
 - Compute vector MET

$$\vec{E}_T = -\sum_{\substack{i \text{ cal} \\ towers}} \left(E_T^i \vec{x} + E_T^i \vec{y} \right) \text{ and } \vec{E}_T \equiv \vec{E}_T \mid$$

- Identify μ, jet candidates
 - > For muons, identify energy deposition in calorimeter
 - Substract EM+Had deposition
 - Add -ve of **µ** momentum to MET
 - > For jets, identify jet objects
 - Subtract ET of towers making up jet
 - Add back in "corrected" jet energies
- Remaining "unclustered" energy
 - > Correct on average for energy response
- Corrected MET thus depends on definition of other objects

Resolution depends on "average" calorimeter resolution

$$\sigma(\mathbb{E}_T) \approx k \sqrt{\sum E_T^i}$$

- But also varies with final state

- > Need to measure it
- > Example from W mass measurement

Fit gives k~0.4 and 0.5 power

Further Improvement at LHC

- ATLAS uses the following calculation for each component $E_{x(y)}^{\text{miss,calo}} = E_{x(y)}^{\text{miss},e} + E_{x(y)}^{\text{miss},\gamma} + E_{x(y)}^{\text{miss},\tau} + E_{x(y)}^{\text{miss,jets}} + E_{x(y)}^{\text{miss,calo},\mu} + E_{x(y)}^{\text{miss,cellOut}} + E_{x(y)}^{\text{miss,cellOut}} + E_{x(y)}^{\text{miss,cellOut}}$
 - Identify e, γ, τ, μ & jet candidates
 - > Correct each for appropriate calorimeter response
 - Jet term restricted to jets with p_T>20 GeV/c
 - Soft jets with $7 > p_T > 20$ GeV/c corrected with a different response
 - Include all calorimeter cells not part of one of these objects in "CellOut" term
 - Each gets its own adjustment to energy response

- Has been investigated in detail in various event samples
 - Resolutions still behaves

$$\sigma(\mathbb{E}_{T}) \approx k \sqrt{\sum E_{T}^{i}}$$

k is now around 0.4-0.5

What Dominates MET at LHC?

Can study the sources of MET from the various terms

Although this is channel specific, one sees that "jets" still play the single dominant role

Sensitivity to Luminosity

- Measurement averages over entire calorimeter
 - Sensitive to # of multiple interactions
 - > instantaneous luminosity

Take this into account

- Typically by including luminosity profile in simulated events
- Constrain simulation using real data
 - > Example here is Z→e⁺e⁻ for W mass measurement

Fake MET Signatures

- Instrumental effects are largest single source of MET
 - Calorimeter misbehaviour
 - > Hot/warm cells
 - Cracks in calorimeter
 - > Especially when you believe there is a jet nearby
- Other backgrounds come from a host of sources (depending on the analysis):
 - Cosmic rays, beam halo, beam "splash"

- In CDF and D0, biggest source of MET comes from "poorly measured" jets
 - Two sources
 - > Statistical fluctuations in energy
 - > Cracks and/or dead regions
 - Reduce these by rejecting events with MET correlated with large energy deposition (such as a jet)
 - Attempting to correct MET for these has not worked particularly well

Use of MET in Analyses

- MET is primarily a measure of ν P_T
 - What you DON'T get is the P_z of the neutrino
 - > Don't know x₁ or x₂ of initial state partons
 - > And life is complicated if there are $\ge 2 \nu'$ s expected
- Lack of P_z motivated introduction of "transverse mass"

$$M_T = \sqrt{2P_T^l E_T (1 - \cos \Delta \phi)}$$

- Virtue is that it is approximately Lorentzinvariant
- Retains significant information in measurements such as M_W
- Use in top dilepton events shows that one can deal with multiple v final states

Can One Recover P_z?

- Traditional way of recovering P_z is to employ kinematic constraints
 - In top quark mass measurement, require l+MET come from W
 - Constrain to W mass gives quadratic equation in P_z
 - > Solve and choose one solution
 - One algorithm is to choose the most probable one (ie., smallest P_z)
- Variants of this used in some Top & SUSY analyses
 - It doesn't "buy" a lot because of the integration over the initial state partons

- One example comes from M_{top} analysis in dilepton events
 - Use all kinematic constraints
 - > 23 equations and 24 variables
 - Solve for P_Z of ttbar system
 - > Independent of M_{top}
 - For each event, can define a posteriori probability vs M_{top}
 - Product probability used to estimate M_{top}
 - Bottom line is that it doesn't create more information

Background Considerations

- At very large MET (aside from instrumental effects), most serious backgrounds are "irreducible"
 - Physics signatures that produce real MET, e.g.

$$Z + X \rightarrow (\nu \overline{\nu}) + X$$
$$W + X \rightarrow (\tau \overline{\nu}) + X$$

- Several strategies to estimate and control these
 - For invisible Z decays, use $Z \rightarrow l^+l^-$ as control sample
 - Many examples of this technique from CDF & D0
 - ATLAS and CMS have also employed this

PHY2407S

Example: MET in Gluino Search

- Search for gluino production
 - Assume sbottom+b decay
 - Look for >=2 b-tagged jets + MET
- Selection
 - MET
 - > L1/L2/L3 trigger > 25/35/45 GeV
 - Offline MET>70 GeV
 - Jet cuts
 - > >=2 jets E_T>25 GeV and $|\eta|<2.4$
 - > Leading jet $E_T > 35 \text{ GeV}$
 - > At least two b-tags
- Define three control regions
 - QCD, Lepton, Pre-optimization
 - Defined so that should be dominated by SM sources
 - QCD: 2nd jet "aligned" with MET -- |Δφ|<0.4
 - Lepton: require isolated lepton with P_T>10 GeV
 - Pro-optimization: no alignment of jets with MET and no lepton
 - Check that event rates made sense

CDF Run II Preliminary 2.5 fb⁻¹

Two Inclusive Tags	QCD	Lepton	Preoptimization
	Region	Region	Region
W/Z + jets production	10 ± 7	19 ± 14	29 ± 22
Diboson production	0.4 ± 0.1	2 ± 0.6	4 ± 1
Top pair production	18 ± 6	107 ± 34	140 ± 45
Single top production	1 ± 0.2	4 ± 1	6 ± 1
HF QCD Multijets	864 ± 432	23 ± 11	273 ± 136
Light-flavour contamination	238 ± 48	8 ± 2	57 ± 11
Total expected	1132 ± 435	164 ± 38	510 ± 145
Observed	1104	156	455

SUSY Search Results

- Employ a NN to further discriminate signal from background
 - Trained on pre-optimization region (for background) and MC (for signal)
 - > No evidence of signal
 - > Set limit using NN output

12

CMS Monojet Search

CMS has looked at monojets in 19.5 fb⁻¹

- Looks in 7 regions with $E_T^{miss} > 250 \text{ GeV}$ to $E_T^{miss} > 550 \text{ GeV}$ in 50 GeV steps
- Looks at events with only one recoil jet

Compares with expected SM backgrounds

Set 95% CL limits on possible DM yield as a function of M_D and δ (number of extra dimensions)

10

10

10²

10

0

CMS Preliminary

100 200 300 400 500 600

√s = 8 TeV

 $L dt = 19.5 \text{ fb}^{-1}$

Ζ→νν

W→h

QCD

Z→l⁺ľ

700 800

900 1000

p_(Jet_) [GeV/c]

Data

tī