
Recommendations on Signal Significance
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Significance, as it is normally defined, is the frequentist probability of making an
observation that is at least as inconsistent with the null hypothesis as the observation
actually made.  In the statistics literature, this is formally known as the “p-value” of the
observation.  We (and the Particle Data Group) recommend that this terminology be used.
See Reference [1] for a more detailed introduction to this concept.

Some Facts About P-Values

There are a number of useful “facts” about p-values that assist in understanding how to
use them:

1. A p-value expresses the probability for a given hypothesis, of obtaining data at
least as extreme as ours. For example, if the hypothesized distribution is a Poisson
of mean 2.9 and we have observed 10 events, the p-value is

Sum(n=10-->infinity) exp(-2.9)*2.9^n/n!

Small p-values imply that the data is unlikely for the given model (and the
deviation is in the “interesting” direction).

2. In ideal situations, and assuming the hypothesis is correct, p-values will be
uniformly distributed between 1 and zero. In contrast, when the data is discrete
rather than continuous (e.g. for a Poisson distribution, where the data values are
only integers), the possible p-values are also discrete, are not equidistant in p, and
do not have equal weights. The p-value distribution cannot be uniform in the
sense of dn/dp being constant. However it is “as uniform as possible” for a
discrete distribution, with Prob(observing p.le.c) = c, where c is the location of
any p-value.

3. A p-value is a useful quantity.  a) It measures the compatibility of the data with
the given hypothesis.  b)  It enables p-values from different experiments to be
combined (even though this procedure has some degree of arbitrariness associated
with it). The combined p-value determines how consistent the collection of
experiments are with the hypothesis. Assuming that the p-value distributions are
uniform, p-values may be combined by using the formula given by Eq (13) in
Reference [1].  A slightly unfortunate feature of this formula is that, when
combining 3 p-values, the result can be different if all 3 are combined directly; if
p_1 and p_2 are combined, and the result is then combined with p_3; if p_2 and
p_3 are combined, and the result is then combined with p_1; etc. c) See also point
4).

4. Measures of significance are also used in Hypothesis Testing, where a p-value is
used to accept or reject a given hypothesis. One defines, before the measurement
is performed, a significance level alpha and then uses a test statistic (like a
measure of goodness of fit) to see whether the data are consistent with the
hypothesis at this level, by checking whether p.le.alpha. The expected rate of



`Errors of the First Kind' (i.e. how often the hypothesis is rejected when it is in
fact true) is then alpha, and not the p-value.  The p-value may be reported but its
actual value is not relevant to the statistical conclusion.

5. A p-value measures the probability of observing DATA at least as extreme or
unlikely as ours, assuming the hypothesis is true. It does NOT measure the
probability that the HYPOTHESIS IS TRUE, based on our data. (See point 10 for
an example.) This is an example of the difference between the probability of data,
given a hypothesis; and the probability of the hypothesis, given the data.  In
particular, the following inferences are both WRONG:  I)  If p=3%, the
probability of rejecting a true hypothesis is 3%.  This is determined by alpha, not
p.  II)  If p=7%, the probability that the hypothesis is in fact correct is 7%.  The p-
value cannot say anything about the probability of the hypothesis being correct
(that is not even a frequentist concept!).

6. P-values are often used to summarize measures of “Goodness of Fit,” ie, where
we are comparing data distributions to a given hypothesis. Such measures are not
to be regarded as a test of the null hypothesis.  Similarly, a single p-value does not
provide a means of Hypothesis Testing, in which two hypotheses are compared.
Thus, a p-value can be used to see whether data is consistent with the Standard
Model. If the p-value is small, this in itself does not imply that the Standard
Model should be rejected. A useful procedure would be to compare the quality of
the fits of the data to the Standard Model and to an a priori credible alternative.
That still doesn’t prove that the Standard Model is correct though.

7. P-values are invariant with respect to monotonic transformations of the data
variable. They are not invariant with respect to the choice of statistic.

8. A Composite Hypothesis is one which involves free parameters (Contrast a
Simple Hypothesis, which is completely defined).   To calculate the compatibility
of data with a Composite Hypothesis, choices must be made about what to do for
the free parameter(s). A simple case would involve fitting the parameters using as
a statistic to be minimized such as the weighted sum of squared deviations
between data and the hypothesis. The probability for observing this chi-squared
value or a larger value, corresponding to N-f degrees of freedom [N and f are the
numbers of data points and of free parameters] is a p-value for the hypothesis.
This is equivalent to using as p-value the largest one (i.e. the best fit) as the
parameter(s) are varied. In other cases, it is possible to use one statistic for
determining the best values of the parameters, and another for measuring the
discrepancy between data and prediction. In determining the p value, Monte Carlo
simulation is likely to be very useful. Because the parameters have been allowed
to vary, this  p-value may be biased upwards.

9. Nuisance parameters can cause complications. Possible ways of dealing with
them are discussed briefly in the Appendix below.

10. Here is a simple example illustrating that p-values do NOT give the probability of
the hypothesis being wrong: Consider a particle identifier for pions, using dE/dx
or the Cherenkov ring angle. For the pion hypothesis, the p-value distribution
should be flat between 1 and zero. Now suppose that muons result in a p-value
distribution of 1 - 0.1*(p-0.5) i.e. not too different from that for pions (because the
pion and muon masses are similar), but slightly more peaked at small p. For a



sample of tracks with equal numbers of pions and muons, those with p close to
0.1 for the pion hypothesis will have a pion/muon ratio of  1/1.04. With a perhaps
more realistic particle composition of 100 times more pions than muons, the small
p pion/muon ratio becomes 100/1.04. In neither case would the wrong rejection of
the pion hypothesis be anywhere near 10%

Recommendations for the Care and Feeding of P-Values

The following recommendations should be considered when determining the p-value of
an observation.

1. To estimate a p-value, one must first define how one classes all possible
observations given a specific null hypothesis.  For example, if one is looking for a
signal for the production of a certain class of events, the statistic x could be the
number of candidate events in each observation.  In this case, a large number of
candidate events above the expected background rate would be increasingly
inconsistent with the null hypothesis (in general, the chosen statistic must be able
to discriminate between a specific null hypothesis and the other classes of
hypotheses that are of physics interest).  The choice of x is not, however,
unambiguous.  For example, if one is comparing a data histogram to one predicted
by a Monte Carlo calculation, one could use the chi-square statistic, or a binned
Kolmogorov-Smirnov distance, or any number of other measures.  The p-value
will depend on the choice of statistic.  See Reference [2] for a case study of
multiple significance measures.

2. If one knows the frequentist probability density p(x) of the random variable x
assuming the null hypothesis, and then makes an observation x_0, then the p-
value would be the integral of p(x) from x_0 to infinity.  This assumes that x is a
one-sided statistic, with smaller values implying better agreement with the null
hypothesis.

3. One often cannot analytically determine p(x).  In that case, one can resort to a
Monte Carlo calculation where one estimates p(x) from the distribution of x in the
MC experiments. The Monte Carlo calculation should sample the complete
ensemble of possible experimental outcomes given the null hypothesis (this
principle also should be satisfied by p(x)).  It should take into account
uncertainties in the inputs into the Monte Carlo calculation.  Given that
significance is a frequentist concept without Bayesian counterpart [3], systematic
uncertainties should be treated in a frequentist manner.   For example, if one is
looking for an excess of events over a background with a known Gaussian
uncertainty, the common procedure whereby one fluctuates the mean of a Poisson
random variable according to a Gaussian density is not correct from a frequentist
point of view.  The correct procedure, and a further discussion of ensembles, can
be found in reference [4].  For an example that violates this, see Example D in the
Appendix.

4. In the case where one makes several, possibly correlated, simultaneous
observations of random variables, one must first categorize the outcomes
according to some measure that determines their consistency with the null



hypothesis.  This may be the joint probability of the observations assuming the
null hypothesis (this may not be the most sensitive or optimal measure), or some
other function of the random variables.  If the random variables are totally
uncorrelated, then the combined significance is given by Eq. (13) in reference [1].

5. In cases where one is seeking a signal in several different channels, a straight-
forward way to estimate the p-value of the simultaneous observations is to
combine all channels together into a single measure of the signal rate [5].  This
may not be optimal if the channels have very different background rates.

6. Although it is common to see p-values quoted in terms of the equivalent number
of standard deviations a measurement should be from the expected mean of a
normal distribution, it is more straight-forward to quote the actual p-value (ie.,
probability) and state explicitly the technique and assumptions used to estimate it.
If you do quote equivalent standard deviations, remember that an upper limit
should be converted to a one-sided Gaussian p-value estimate.

7. The design of an experiment usually involves estimating the sensitivity of a
particular approach.  In cases where one is observing a number of signal events S
and one expects a number of background events B, one often sees measurement
techniques optimized on the basis of the ratio S/sqrt(B), or S/sqrt(S+B) (see
Reference [6] for a thorough discussion).  In both cases, one is in fact making the
assumption that S and B are normally distributed distributions.  These may result
in misleading “optimal” strategies, especially in cases where S and or B have non-
Gaussian probability densities (as is the case where they represent numbers less
than of order 10 events).

8. Posteriori decisions on the random variable used to measure a signal (such as the
selection criteria used to identify a candidate event sample) make it difficult if not
impossible to accurately calculate a p-value for a given observation once the
observation has been made.  Blind analyses avoid this specific problem, and
should be considered when a search for new phenomena is undertaken.   See
Reference [7] for a description of blind analyses.

9. When one uses binned data to search for a possible signal and the location of the
expected signal is not known, the p-value will be larger than a simple Poisson
probability calculation would predict.  See reference [8] for more details on how
to account for this effect.

10. Always completely document the technique used to determine the p-value for an
observation.  Do not assume that it is too trivial or is well-known.  In our
experience, neither assumption is correct.  One may always refer to an earlier
paper where a complete description of the technique has been provided.
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APPENDIX:    Methods of dealing with nuisance parameters

 (A) The plug-in p-value

Method:    Replace the nuisance parameter by some estimate, for example the
maximum-likelihood estimate.

Comment: If the data to be tested is included in the estimate, this leads to double use
of the data (once in the estimate, and once in the p-value); the resulting p-
value will not be uniform.  This p-value does not always account for the
uncertainty on the estimate.

Example 1: Suppose you observe a number of events N from a Poisson process with
unknown mean mu, and a separate measurement provides a Gaussian
estimate m+/-u for mu.  If you include both N and m in a maximum-
likelihood estimate of mu, the resulting p-value for the hypothesis that the
observation arises from only the presence of background will depend on
the uncertainty u, but the double use of N makes the p-value non-uniform.
If you do not include N, and simply replace mu by m, then the p-value will
not take the uncertainty u into account.

Example 2:  Suppose you use a chi-square statistic to test whether a bunch of points lie
on a straight line with unknown slope and intercept.  You can use the
points themselves to first estimate the slope and intercept by minimizing
the chi-square, but then the resulting p-value will be non-uniform, unless
you correct the chi-square to a probability by subtracting two degrees of
freedom.

(B) The supremum p-value

 Method:    Calculate the p-value for all possible values of the nuisance parameter
given a set of data and keep the largest one.

Comment:   Generally does not result in a p-value with a uniform distribution.  Biased
toward larger p-values, so may be conservative if one wants to minimize
the chance of rejecting a true hypothesis.  It also has reduced power.



Example:   Chisquare statistic to test whether a bunch of points lie on a line with
unknown slope and intercept.  Vary the slope and intercept until you find
the largest p-value.  This does not yield a uniform p-value.

(C) The similar p-value

Method: Assume there exists a sufficient statistic for the nuisance parameter.  Then
the conditional probability density of the data, given the sufficient statistic,
does not depend on the nuisance parameter and can be used to calculate a
p-value.

Comment:  Based on a proper probability computation, imbuing the end result with
desirable properties.   However, a suitable sufficient statistic may not
always exist.

Example:   Observation of a number of events N1 from a Poisson process with
unknown mean mu.  An estimate of mu is available from another Poisson
measurement N2 (with a possibly non-trivial sensitivity reduction factor).
The sufficient statistic for mu is N1+N2, and the density of N1 given
N1+N2 is binomial and independent of mu.

(D) The prior predictive p-value

Method:   Suppose you have a reasonable prior density for the nuisance parameter.
Multiply the probability density for the data by this prior density and
integrate out the nuisance parameter.  Use the resulting density to calculate
a p-value.

Comment:  Based on a proper Bayesian probability computation.   The p-value is only
uniform in an average sense over the nuisance parameter.  The p-value
depends on a prior and therefore requires that this dependence be checked
for sensitivity to the choice of prior.   If prior dependence is a problem, it
may be tempting to try a non-informative prior.  However, non-
informative priors are often improper, leading to divergent marginalization
integrals (uniform priors over an infinite parameter range are improper
too).

Example:   Observation N from a Poisson process with unknown mean mu for which
there exists an independent Gaussian measurement result m+/-u.  Assume
a uniform prior for mu and multiply this by the likelihood function for the
data (a Poisson with mean mu) Convolute this probability density in mu
with a Gaussian with mean m and width u.  The resulting distribution
depends only on m and u and can be used to calculate the p-value of N.

(E) The posterior predictive p-value



Method: This is similar to the prior predictive p-value, except that instead of
integrating with respect to the prior, one integrates with respect to the
posterior for the nuisance parameter.  This posterior is calculated using the
data to be tested.

Comment:  Makes double use of the data, first to calculate the posterior and then to
calculate the p-value.   Generally works with improper non-informative
priors, since the posterior will typically be proper.


