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1 Introduction

The CDF collaboration has published a final measurement of the top quark production cross
section using data collected during 1992-1995 (Run I) [1]. This measurement is basically a
counting experiment, where one relates the production cross section, σt t, to the number of
candidate events, Nt t, using the formula

σt t =
Nt t − Nbkg

εL , (1)

where Nbkg is the number of background events in the candidate sample, ε is the efficiency
for identifying a t t event as a member of the candidate sample, and L is the integrated
luminosity for the experiment.

The “random” uncertainties associated with this measurement come from the Poisson
fluctuations in Nt t. This note summarizes the treatment of uncertainties in this measure-
ment in a context where a number of channels were combined together to give a final Run
I result.

The primary reference to the measurement discussed here [3] provides a very nice capsule
overview of how the final result was determined. Details on the cross section measurements
in the individual channels are provided in a series of notes referenced therein.

2 Definition of Uncertainties

We conventionally divide sources of uncertainty into two classes, “random” or “statistical”
uncertainties, and “systematic” uncertainties. Random uncertainies are those that would
normally scale by the total size of the data sample, typically with a 1/

√
N dependence.

Systematic uncertainties can be defined in various ways [2], but for this measurement are
those that affect a parameter or procedure used in extracting the result from the data.
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Statistical uncertainties arise from the random fluctuations in the data sample. In the
case of an observation where one counts the number of events, the Poisson fluctuations in
the statistic of relevance, namely the number of observed events, would be the source of
the statistical uncertainty. In more complex examples, it is typical to define a likelihood
function that describes the data and use the shape of the likelihood function to determine
a statistical uncertainty.

Systematic uncertainties, on the other hand, are the result of uncertainties in various
parameters or inputs into the measurement that are required to interpret the results, or
more generally uncertainties in the experimental conditions or the theoretical model used
to interpret the data. These uncertainties can be characterized in a number of ways. There
are in principle some sources of uncertainty where the effects scale with the total number of
events, but are considered by convention to be systematic uncertainties. There are on the
other hand, those sources of uncertainty that do not have any dependence on the size of
the data sample. There are at two least reasons why we would wish to make the distinction
between these two types of systematic uncertainty:

1. The uncertainties that depend on the event sample size will scale with the total
integrated luminosity of the sample, and will therefore be reduced in future running.
The other class of uncertainties will not be reduced unless steps are taken to improve
the measurement.

2. The two classes of uncertainty are likely to create different correlations between our
measurement and measurements made by a different experiment or different tech-
nique. This difference should be taken into account when combining two or more
measurements.

3 The Total Cross Section Measurement

The CDF collaboration detected pair production of top quarks by selecting events in which
there was evidence of the semileptonic or hadronic decay of two top quarks. Events in
which both top quarks decay semileptonically, ie. t → blνl where l denotes either a muon or
electron, are by far the cleanest since the backgrounds associated with a dilepton signal are
relatively low. It is, however, a small sample due to the approximately 10% semileptonic
branching fraction for a single top quark. The largest sample of events arises in the case
where both top quarks decay hadronically, ie. t → bqq̄′, but this sample also is severely
contaminated with background arising from QCD multi-jet production. The sample arising
from the case where one top quark decays semileptonically and the other hadronically pro-
duces an event signature consisting of a single lepton candidate, missing transverse energy
from the neutrino and in principle 4 quark jets. This “lepton+jets” channel is intermedi-
ate in size between the dilepton and all hadronic channel, and has moderate background
contamination (most of the background arises from W + bb̄ + X production).

Thus, the strategy used in the Run I cross section measurement was to select samples
of top quark candidates for these three channels, estimate the backgrounds in each sample,
and then correct the estimated number of signal events for acceptance and efficiency effects
to derive a cross section measurement in each channel. The final step was to combine the
measurements from the different channels into a single measurement.
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Channel Total Events Background Rate Aceptance×Efficiency
Dileptons 9 2.4 ± 0.5 0.0074 ± 0.0008
Lepton+Jets (SVX tags) 29 8.0 ± 1.0 0.039 ± 0.006
Lepton+Jets (SLT tags) 25 13.2 ± 1.2 0.012 ± 0.002
All Hadronic (kinematic) 42.8 ± 17.9 N/A 0.055 ± 0.012
All Hadronic (double tag) 36.7 ± 13.7 N/A 0.045 ± 0.014

Table 1: The data for the Run I top quark cross section measurement. The values for the
“All Hadronic” channels represent the signal sample sizes after background subtraction.

The primary data for this measurement are summarized in Table 1. The method used
to combine these data was to perform a maximum likelihood fit, where the likelihood was
parametrized as a function of σt t.

4 Random Uncertainties

The random uncertainties in this measurement arise from the total number of candidate
events, namely 29 observed SVX-tagged events, 25 SLT-tagged events, 9 dilepton events
and the observed rate of all-hadronic events above background. The two lepton+jets sam-
ples have an overlap of 7 events but this is ignored (as the effect has been shown to be
less than 10% in the overall uncertainty of the cross section derived from these two mea-
surements). There are two samples of hadronic candidate events with large backgrounds.
The background-subtracted numbers of events for these two samples are 42.8 ± 17.9 and
36.7 ± 13.7, which are assumed to be correlated Gaussian statistics. The correlation in the
two all-hadronic event samples was significant and was modelled by including a correlation
coefficient ρ = 0.34 in the joint probability density for the number of observed all-hadronic
events in the sample

Ghad(Nhad1, Nhad2, ρ, µhad1, µhad2), (2)

where µhad1 and µhad2 are the expected mean number of observed events (and are functions
of the σt t). Note that this latter term does not include any background contribution as
the event rates Nhad1 and Nhad2 are both numbers of signal events above background. The
form of this probability density is shown in Fig. 1.

The uncertainties associated with the observed event rates are incorporated into the
final result through the use of a maximum likelihood fit. In effect, the numbers of dilep-
ton and lepton+jet events are treated as Poisson statistics. In order to combine the “all
hadronic” events, the likelihood function includes the two-dimensional Gaussian probability
distribution Ghad. The means µhad1 and µhad2 of this Gaussian distribution would be given
by the total top quark cross section times its branching fraction and acceptances into the
two all-hadronic channels. The natural logarithm of this likelihood function is shown in
Fig. 2, where we fix each of the other parameters in the calculation to their nominal value
and just vary σt t.

In order to include the uncertainties in the measurement, the overall form of the likeli-
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Figure 1: The form of the likelihood distribution for the two correlated hadronic channel
measurements. The vertical and horizontal axis are µhad1 and µhad2, respectively. The
contours are in units of 0.1 in likelihood.

hood function is augmented from that described above to be

L =




svx,slt,dil∏
i

P (Ni, µi(σt t, ...))


 ×

Ghad(Nhad1, Nhad2, ρ, µhad1, µhad2) ×
16∏

j=1

G(Xj , X̄j , σj), (3)

where the first two factors represent the statistical uncertainties (the Poisson probability
distributions for the observed number of events and the Gaussian probability distribution
describing the uncertainties in the two all-hadronic rates). The last factor represents the 16
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Figure 2: The dependence of the logarithm of the likelihood on σt t. The value for each
“nuisance parameter” has been set to its nominal value.

sources of systematic uncertainty, discussed below, where G is a one-dimensional Gaussian
distribution with the form

G(X, X̄, σ) =
1√
2πσ

exp

(
−(X − X̄)2

2σ2

)
, (4)

where X is the fitted deviation of the parameter suffering the systematic uncertainty, X̄
is estimate of the parameter determined from independent studies and σ is its associated
uncertainty.

5 Systematic Uncertainties

The philosophy chosen in this analysis is to estimate the individual effects that created
further uncertainty in the resulting top quark cross section. These effects ranged from
detector acceptance, trigger efficiency and lepton identification efficiency to uncertainties in
the modelling of the top quark production process (which then affect the measurement by
modifying the expected top quark acceptance and efficiency). Overall, there are 16 different
sources of systematic effects, parametrized by Xj , j = 1, 2, · · · , 16 with uncertainties ranging
in relative size from about 4% to about 70%. Typically, each of these have been estimated
from studies based on either data or Monte Carlo samples (often both), with the goal of
identifying a range that corresponds to a 68% confidence level interval. The very largest
uncertainty (70%) is associated with a relatively small component of a background source
and so does not contribute significantly to the overall uncertainty in σt t. The rates of
expected events Ni are now functions of the Xj as well as σt t.
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Although the sources of these additional uncertainties are quite different, they are incor-
porated into the σt t measurement by treating them as Gaussian statistics Xj with normal
distributions characterized by the uncertainty σj assigned to the central value X̄j of each
parameter. With this assumption, the systematic uncertainties can be included in the likeli-
hood function, as illustrated in Eq. 3. The cost of this is that the likelihood is now no longer
just a function of the parameter of interest (σt t), but also of 16 “nuisance” parameters.

To proceed from the likelihood to a measured value and uncertainty for the parameter
of interest, one has to adopt a statistical framework to express the result. This analysis
implicitly assumes a Bayesian approach where one uses the likelihood and an assumption
for a prior for σt t to obtain a posterior probability. Since the likelihood incorporates the
systematic uncertainties as “nuisance parameters,” a standard technique to factor them out
is the “profile likelihood” technique: The log of the likelihood function is maximized using
MINUIT with respect to the {Xj} for each value of σt t to obtain a function of only σt t. One
then assumes a uniform prior for σt t and multiplies the profile likelihood with this prior to
obtain a posterior probability. The uncertainty in the cross section is then defined to be the
one-half unit change in the log-likelihood of this posterior probability from its maximum
value. The result is

σt t = 6.55+1.68
−1.41 pb, (5)

where the uncertainty now includes both statistical and systematic effects. Note that this
is approximately 0.15 larger than the maximum likelihood estimate for σt t that one would
“read off” of Fig. 2. This is due to the fact that the systematic uncertainties have different
effects on the five event rates that are being constrained to a common mean.

6 Discussion

The choice to include in the likelihood function all of the systematic uncertainties is one
that has been employed in many other analyses within CDF [4]. It has the convenient effect
of burying in the likelihood both statistical and systematic uncertainties and providing a
formula for combining them. Clearly, this procedure rests on the assumption that one
can describe uncertainties arising from the systematic effects with Gaussian probability
distributions (with a large enough number of independent systematic effects, one can invoke
the mean limit theorem, but the sensitivity of the result to the form of the probability
distributions for the nuisance parameters should be checked in each analysis).

Of perhaps more immediate interest is the interpretation of this likelihood function for
those wishing to use it to place confidence intervals on the t t production cross section,
as was done in Eq. 5. In what was actually done, a Bayesian approach was used once a
profile likelihood had been obtained, thereby factoring out the nuisanace parameters. An
alternative Bayesian approach [5] would have been to define the likelihood without the
product of the Gaussian systematic terms, i.e. as

Lalt =




svx,slt,dil∏
i

P (Ni, µi(σt t, ...))


 ×

Ghad(Nhad1, Nhad2, ρ, µhad1, µhad2). (6)
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One now could assume priors for each of the parameters. A natural choice would be use
a Gaussian distribution for the prior for each of the systematic uncertainties, and a prior
for σt t that is uniform from σt t = 0 to infinity.1 The product of Lalt with these prior
distributions results in a 17-dimensional posterior density that one can then use to set
credibility intervals. A typical approach would be to integrate out the nuisance parameters,
resulting in a reduced posterior density that is a function of σt t only, and that can then be
used to set Bayesian credibility intervals for σt t.

A frequentist statistician could use the likelihood to determine the best measurement of
σt t. However, the most robust technique to define a confidence interval given the complexity
of the liklihood function would be to perform a Monte Carlo calculation. She or he would
have to define the appropriate ensemble of repetitions of the measurement, taking into
account changes in procedure and assumptions that result in the variations in the parameters
that introduce the “systematic uncertainties.” To the extent that each parameter does
have a single true value and the experiment provides different estimates of its value when
repeated (as modelled by the Gaussian distribution function incorporated into the likelihood
function), a standard frequentist confidence interval could be determined. However, this
approach could be computationally very prohibitive. Practical approaches to address this
calculation are available [6].

This interpretation is not possible in principle in the context where the systematic
uncertainty arises from theoretical considerations that we are unable to constrain from the
data. In this case, an alternate approach would be to not include such theoretical effects
as systematic uncertainties, but instead to characterize the sensitivity of the final result
(and its uncertainty) on variations in the theoretical assumptions. This would more clearly
identify such assumptions and allow different experiments to more effectively combine their
measurements using a common framework.
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