Networking Issues for CDF/Canada Computing

Pekka K. Sinervo

Department of Physics

University of Toronto

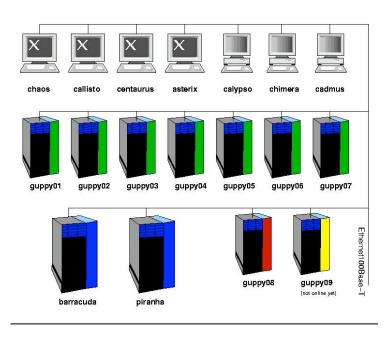
15 Apr 2003

- 1 Overview
- 2 Requirements
- 3 Network Status
- 4 Next Steps

CDF Computing Problem

- Tevatron collecting data to 2006
 - Maxium data logging rate 80 Hz
 - With running efficiency of 30%
 - Collect 0.8B events/year
 - ❖ Results in 2.0B events by 2004
 - Integrated luminosity of 2.5 fb⁻¹
 - Plan on 0.6B MC events by 2004
- With 30% reprocessing, requires
 - 560 GHz processors for data farms
 - 200 GHz processors for MC farms
- Creates a flood of physics data
 - 100 TB/fb⁻¹ of reconstructed data
 - 1.1 PByte archival tape storage

CDF/Canada Networking

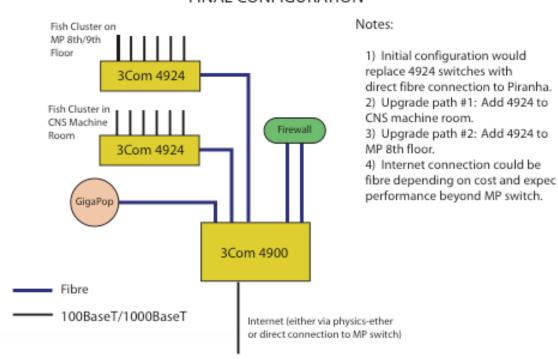

- Two sets of local requirements
 - 1) Computing for local physics analysis, calibration and simulation
 - Difficult to assess, but experience shows that one needs:
 - Linux w/s for each physicist
 - Access to fast turn-around batch
 - Need of order 100 GB/activity
 - Many analyses limited by disk read speed
 - 100BaseT network inadequate
 - 2) CDF MC Production Facility
 - Planned to produce 150M events/year
 - Store MC DSTs at FNAL
 - At 0.15 MB/event, need approximately 1 MB/s DC
 - Data analysis needs add an additional 0.5 MB/s DC

Networking Layout

- Components of the network
 - Work stations and disk (fish cluster)
 - ◆ 100BaseT providing 5-7 MB/s
 - NFS-mounted disk on disk/compute servers
 - Big Mac Cluster
 - Internally GigE networking
 - Connection through firewall
 - 1000SX connectivity
 - Data transfer >70 MB/s
 - Wide-Area Network
 - Connect to CA*Net4 Gigapop
 - CA*Net4 to StarLight (Chicago)
 - ESNet to Fermilab (via StarTap)
 - Limitation is ESNET
 - OC3 (156Mbps) + OC12 (622 Mbps) link from StarTap

Toronto Fish Cluster

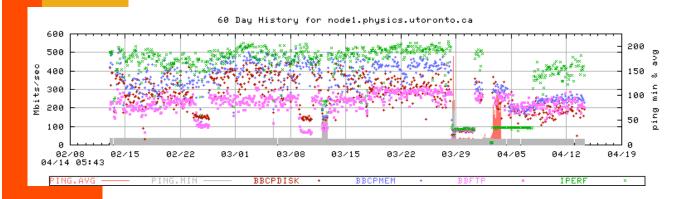
- Have small Linux cluster
 - Worker nodes (8) and w/s (12)
 - Disk space of 2.0TB
 - Connected via 100BaseT
 - One server (piranha) has 1000SX
 GBIC interface



Local Network Plan

- Deployed 3Com 4900 switch
 - Provides connectivity between Big Mac, GigaPop, and HEP cluster
 - Additional 3Com 4924 switches to be added to get beyond 100BaseT
 - ❖ One for servers on 3rd floor
 - One for 8th/9th floor w/s

FINAL CONFIGURATION



External Connectivity

- UofT Connectivity is complex
 - Actual I/O from desktop to Fermilab was limited to 1-2 MB/s
 - Limitation is artificial
 - Gateway to CA*Net4 is 15 Mbps
 - Now have dedicated connection to GigaPop
 - ❖ In principle have >2 Gbps service in place
 - Have been monitoring bandwidth since Nov 2002
 - ♣ Readily get 20 MB/s disk-to-disk
 - 3.5 GB transfer test takes 3 min
 - Monitoring using IEPM software
 - Shows consistent and clear pipe to Fermilab
 - Limitation remains ESNET

IEPM Monitoring

- Software installed on piranha
 - Internet End-to-End Performance Monitoring package developed at SLAC
 - Monitors status every 15 min

– Comments:

- Bandwidth is quite stable
 - Differences in actual measures are significant
- Actual throughput measured via ftp is closer to 160 Mbps
- - Note well tuned at this point

Next NetworkingSteps for CDF/Canada

- Start monitoring Alberta & McGill links
 - To Toronto and Fermilab
 - Goal is to have clear pipes between all four institutions
- Develop most robust and efficient data transfer tools
 - ftp is clearly limited
 - ❖ Session limited to 2.5 MB/s
 - ♣ But can do multiple sessions
 - bbcp protocol looks reasonable
 - Gets 25 MB/s with single session
- Locally move to 1000BaseT network adiabatically as needed