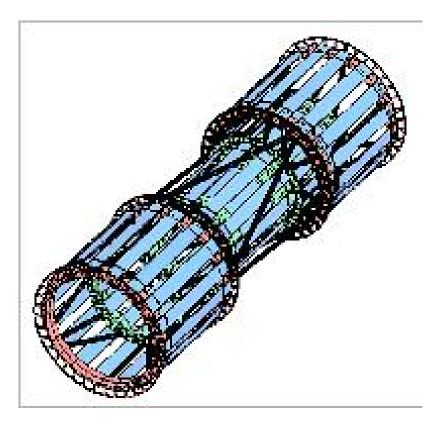
Canadian Contributions to SVX-IIb

- Run IIa contributions
 - SVX positioning feet
 - Inchworm supports
- The IIb silicon detector
- IIb silicon ladder alignment pins
 - The scheme
 - Prototyping the proposed solution
 - Canadian prototype pin positioning jig
- Room for further involvement

William Trischuk April 15, 2003 The Canadian hardware contributions to Ila

- Provided pieces of IIa silicon support mechanics
 - General theme was SVX-II barrel alignment
 - Ensuring parallelism (to beam) for SVT
 - 1. Micro-adjustable screws align three barrels
 - 2. Inchworms align tracker axis with beam
- Also participated in
 - Assembly and testing of SVX barrels
 - Survey of barrel positions
 - Installation of tracker in B0

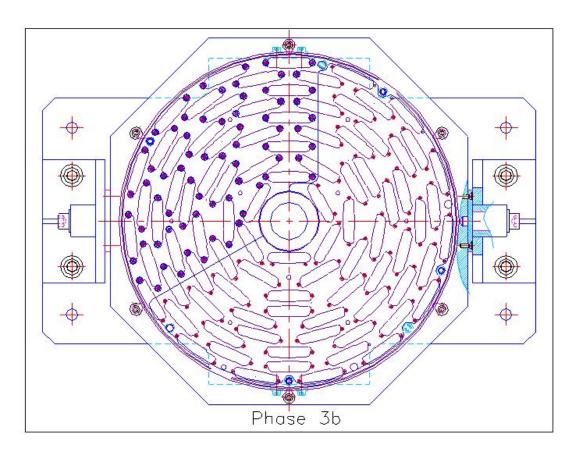
Experience with Ila Inchworms


- Ila silicon tracker was heavier than expected
 - Original inchworms designed to lift 65 kg
 - Re-designed during construction to lift 100 kg
 - * Silicon system ended up weighing 120 kg
 - * Motors are at their limit (supporting 40+ kg)
- Partly explains short-comings of current system
 - Working to protect against sparking observed
 - Mechanical replacement for IIb (Simon's talk)

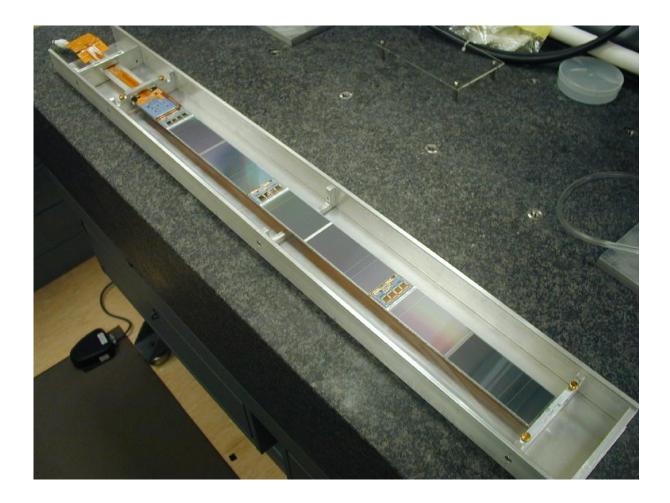
RASNIK Position Monitoring

- UCLA group introduced RASNIK system to CDF
 - A video camera based alignment monitoring
 - RASNIK = Relative Alignment System invented by NIKhef
 - Mounted in various places on silicon system
 - * Including on the inchworm brackets
 - Now orphaned, picked up by Pierre for IIb
- Extend to monitor calorimeter alignment
- Adapt to IIb silicon support structure (lan's talk)

Highlights of the IIb Silicon Tracker Design


- Plan to retain as much of IIa tracker as possible
 - This means ISL + support frame
 - Must replace L00 and first layers of SVX
 - * In practice replace L00 + SVX-IIa

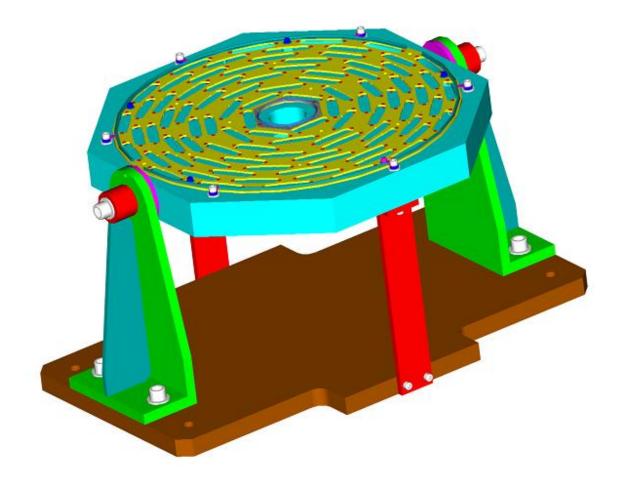
- Have IIb inner silicon ready to install
 - By summer $2005 \Rightarrow 6$ month shutdown


Lessons Learned from IIa construction

- Learned several lessons from IIa construction
 - Abandon purely projective wedges
 - * (multiplies jigs, fixtures, hybrids, spares)

- Use copper readout
 - * Optical readout not reliable enough
 - * Save mass (cables/power for optical drivers)

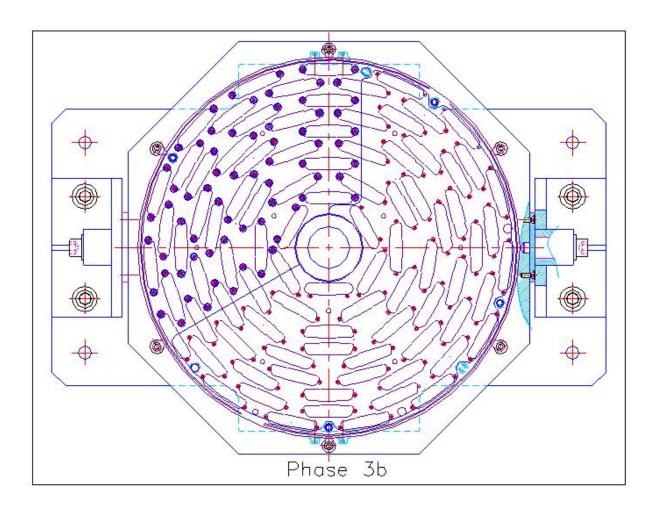
- Build two barrels instead of three
 - * Staves incorporate 3 readout units
 - $* \approx 65 \text{ cm long}$

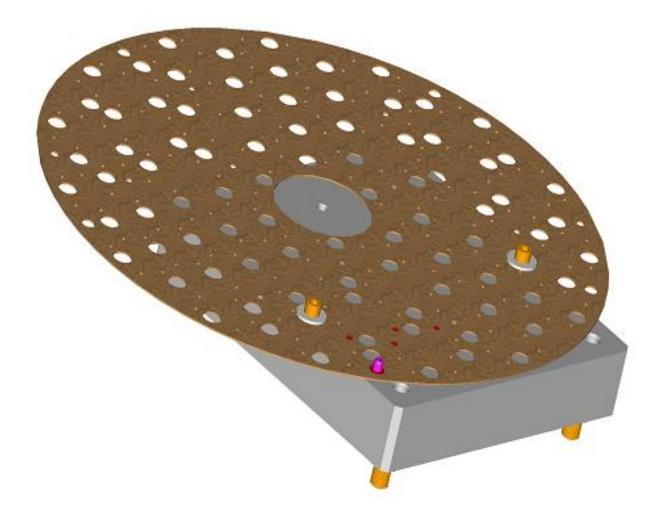

- Add cooling (a la L00) for radiation tolerance
- Make bulkheads out of Carbon fibre

Canadian Contributions to IIb Tracker

- Moral equivalent of barrel alignment screws
 - Alignment pins glued into C-fibre bulkheads
 - Ladder ends placed with 15 μ m precision
 - * Results in 100 μ rad parallelism for SVT
 - Cannot machine C-fibre with this accuracy
 - * Solve by gluing alignment pins into C-fibre
 - * Use gluing jig with the required precision
- Design finalised in fall 2002
 - Prototype parts machines in Chicago
 - Second set of parts machined in Carleton STC

Pin Placement Jig


- Can't place ≈ 200 pins all at once
 - Develop a system that looks like


Precision pins held by insertion screws
* Can be disengaged once glue has set

Final Pin Placement Jig

- Full placement fixture will glue 1/3 of pins at once
 - Includes alignment screws + precision collar
 - Rotate bulkhead 120° to glue additional pins

- Prototype plate that glues 2 slots at once
 - Includes placement pins
 - Prototype collar mechanism
 - Can do outer (|z| = 60 cm) and
 - inner (|z| = 0 cm) bulkhead

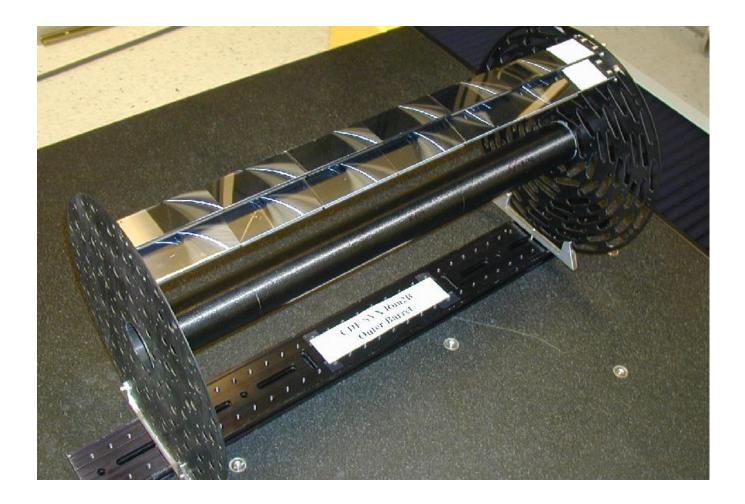
Prototype Parts machined in Canada

- Have machined a prototype plate at Carleton University Science and Technology Centre
 - Delivered from machine shop at end of March

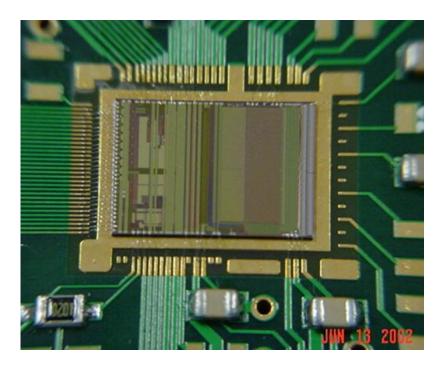
- Now at Fermilab being measured on
 - * Ensure pin placement meets tolerances
 - * Already have proof of principle (Chicago plate)
- Decide soon if full plate machined in Canada

Pin Insertion Screws

- Have also machined a series of
 - Pin placement/insertion screws



- These too are being tested at FNAL
 - Also plan to glue pins in a pair of bulkheads


Progress on Ilb Silicon

• Have built mechanical model of full barrel

- Improving flatness of C-fibre bulkheads
- Prototyping cooling connections
- Room for RASNIK light-sources?

• SVX4 chip now being produced

- In deep submicron technology (rad hard)
- Same readout protocol as current SVX3 chips
- Readout electronics significantly simplified

Upgrade Approvals

- First conceived in 2001
 - Extensively reviewed through 2002
 - Full DOE approval in September, 2002
 - FY2003 construction funds released (1/4)
- Remainder of funding contingent on
 - Further evidence that we will get $6 10 \text{ fb}^{-1}$
 - Next accelerator review this summer
- We (CDF-Canada) have funding to finish
 - Replacement inchworm mechanisms
 - Something like pin placement jig
- Scope for additional involvement
 - Both from perspective of FNAL/CDF
 - Funding of additional detector contributions
 - Prepare a proposal this fall