Recent Advances in Diamond Detectors

- How Diamond detectors work
 - Growth, Signal, Characterisation, Progress
- Results from Prototypes
 - Tracker signals, irradiations
- Applications
 - Pixel Prototypes: ATLAS, CMS
 - Beam monitors: BaBar, Belle, CMS, ATLAS

William Trischuk on behalf of the RD42 Collaboration August 18, 2004

How CVD Diamond is Grown

• Microwave growth reactor

- Material copies substrate
- Dominant crystallites appear

 Edge view of pCVD sample (Courtesy of Element6)

• Diamond synthesized from plasma

Signals from Diamond Sensors

- Image charge signal
 - induced on surface electrodes

• Charge collected, Q

$$Q = rac{d}{t} Q_0$$

 $d \equiv (\mu_e au_e + \mu_h au_h) |ec{E}$

• *d* is the Charge Collection Distance

- Mobility saturates at $|\vec{E}| \approx 1V/\mu m$
- Operate typical sensor at 300-400 V

Examples of CVD Material

Surface image of pCVD sample (Courtesy Element6)

- pCVD diamond wafer
- Dots are on 1 cm grid
- High quality wafers grown 12 cm in diameter
- Best material from wafers grown up to 2 mm thick

Test Beam Studies of Diamond Strip Trackers

Two plane Diamond Tracker Station

Pulse height observed vs. strip

- Uses same readout electronics as silicon strip trackers
- Signal is uniform and well separated from pedestal on whole device
 - 99 % of hits have more than 2000 electrons signal
 - Most probable signal 6500 electrons

Irradiation of Diamond Trackers

Pulse height from testbeam MIPs

Signal from Irradiated Diamond Tracker

- S/N decreases but
- Position resolution improves
 - For fluences of $2 \times 10^{15} \text{ cm}^{-2}$
- Irradiations up to 10¹⁶ underway

Hit residuals

Single Crystal Diamond

- Improve material by
 - Removing grain boundaries, defects and charge traps
- Single Crystal CVD (scCVD) diamond exists

Isberg et al, Science 297 (2002), p1670

- Features of this material include
 - Full collection at 0.2 V/μm

- Collection distance \equiv thickness
- Charge collection more uniform
- Grain boundaries limit pCVD

Applications of Diamond Sensors

- Several exciting applications for pCVD diamond sensors
 - High Energy Physics
 - Heavy Ion beam diagnostics
 - Synchrotron light source beam monitoring
 - Neutron and α detection
- Here I will discuss
 - Pixel detector prototypes from ATLAS and CMS
 - Beam monitoring at
 - * SLAC/KEKb (BaBar and Belle)
 - * LHC (ATLAS and CMS)

Pixel Sensor Prototypes

ATLAS FE-I AI contacts

Prepared for Pb/Sn bumping at IZM

CMS Pixels Ti/W contacts

Prepared for *In* bumping at UCDavis

- Bump bonding yield now 100 % for both ATLAS and CMS solutions
- Prototype modules being prepared rad-hard electronics for both expts.

Recent ATLAS Pixel Assemblies

- Successful one-chip assembly
- Tested with sources and beam

- Pre-tested wafer for this sensor
- Now making final preparations
 - Diamond surface finish
 - Metalisation
 - Bump-bonding
- Testbeam scheduled for this fall

Diamond Pixel Source Tests

cd109.

Module "utc5"

 241 Am deposits 4600e

¹⁰⁹Cd deposits 1700 – 1800*e*

Diamond Pixel Source Tests

x residual, 50μ m pitch

y residual, 400µm pitch

CMS Pixel Testbeam Results

• Spatial resolution of 31 μ m for 125 μ m pitch

Beam Monitoring with CVD Diamond Sensors

- Radiation monitoring crucial to protect investment in Si trackers
- Abort beam in presence of large current spikes or prolonged dose
- Require stably calibrated device for reliable beam monitoring

DC current monitoring

- Slow readout
- Requires low leakage current
- Allows simple readout/measuring

Single particle counting

- Requires fast readout (GHz)
- Requires low noise
- Allows real-time correlations

BaBar, Belle, CMS

ATLAS

Examples of Beam Sensors from BaBar/Belle

Typical beam monitoring sensor

The BaBar installation

The Belle installation

Beam Monitoring Results

• Stable operation in BaBar for 18 months

• Beam aborts in Belle

Plans for Beam Monitoring at the LHC

- CMS similar to BaBar/Belle
- Testbeam with 10^{12} lost in 260 ns
- Simulation of this 'event' looks like:

• ATLAS plans to use time of flight to distinguish beam collisions from background

• Sensors suspended from Pixels

Summary

- High quality pCVD with collection distances of 300 μ m in large areas
- Have proven radiation tolerant up to 2×10^{15} particles per cm²
- scCVD have been grown and show great promise
- Diamond sensors are finding applications in a number areas
 - Pixel module prototypes for LHC trackers
 - High intensity beam monitors
- In the future:
 - Test radiation hardness out to 10^{16} particles per cm²
 - Full ATLAS pixel module coming soon
 - Further improve the uniformity of pCVD material
 - Working to increase the area of scCVD material