

SEARCH FOR SINGLE TOP

BERND STELZER

Outline of Presentation:

- 1. Motivation
- 2. Signal Event Selection
- 3. Background Composition and Modeling
- 4. Signal and Background Yield
- 5. A Priori Upper Limit on the Cross-Section
- 6. Outlook

• Electroweak top production at the Tevatron in Run II:

• Predicted cross sections at $\sqrt{s} = 1.96$ TeV:

Process	Name	σ_{theory}	Reference
$qg \rightarrow tbq'$	t-channel	$1.98 \pm 0.13 \text{ pb}$	Stelzer et al.
qq' ightarrow tb	s-channel	$0.88\pm0.05~\mathrm{pb}$	Smith et al.
$gb \rightarrow tW$	<i>tW</i> -production	$0.09\pm0.02~\mathrm{pb}$	Tait et al.

MOTIVATION:

- \diamond Cross section is proportional to V_{tb}^2
- ♦ Sensitive to non-Standard Model top quark interactions
- ♦ Allows top polerization studies (Run IIb)
- Related to light SM Higgs searches (same final state)
- ◊ In Run IIa we are sensitive to discover Single Top! How much Single Top will be detected by this summer?
 → Reminder of the talk will cover this

EVENT SELECTION:

Event Topology:

♦ Lepton, E_T , 2 Jets, b-tag

Event Veto:

♦ Veto Zs, dileptons, conversions

Kinematic Cut:

♦ Reconstructed top mass 140 GeV < M_{lvb} < 210 GeV

Tight electron:	Tight muon:
- Fiducial and CEM	- Fiducial CMUP or CMX
$-E_T \ge 20 \text{ GeV}$	- $P_T \ge 20 \text{ GeV/c}$
- $P_T \ge 10 \text{ GeV/c}$	$-E_{EM} < \max(2.2+0.0115^*(p-100))$
- $E/p(P_T \le 50 \text{ GeV/c})$	$-E_{HAD} < \max(6.6+0.0280*(p-100))$
- $E_{HAD}/E_{EM} \le 0.055{+}0.00045{*}\mathrm{E}$	- $ \Delta x _{CMU} < 3.0 \text{ cm}$
$-L_{s}hr < 0.2$	- $ \Delta x _{CMP} < 5.0 \text{ cm}$
$ \Delta z < 3 \text{ cm}$	- $ \Delta x _{CMX} < 6.0 \text{ cm}$
- $Q \times \Delta x >$ -1.5 and 3.0 cm	$ \Delta z_0 \geq 60 \text{ cm}$
$-\chi^2_{Strip} < 10$	- # axial, stereo segments ≥ 3
- $ \Delta z_0 < 60 ext{ cm}$	- Isolation < 0.1
- # axial, stereo segments ≥ 3	
- Isolation < 0.1	Tight Jets:
	$-E_T \ge 15 \text{ GeV}$
Missing E_T :	- η <2.8 GeV
- Muon corrected $E_T > 20 \text{ GeV}$	

EVENT SELECTION II:

t-channel light quark jet is quite forward

 \rightarrow Extending jet-eta (from 2.0) to $|\eta| < 2.8$ will increase acceptance in W+2jet bin

• Increased t-channel acceptance in W+2jet bin ($\sim 29.6\%$)

EVENT SELECTION III:

• Q: How do single top backgrounds behave?

Measure acceptance change in W+2jet bin:

	$\eta < 2.4$	$\eta < 2.8$	$\eta < 3.2$
<i>t</i> -channel	+15.6%	+29.7%	+29.7%
s-channel	+1.6%	+1.9%	+1.9%
$Wbar{b}$	+2.2%	+3.2%	+3.2%
Wc	+13.5%	+25.7%	+25.7%
$t\overline{t}$	-9.1%	-12.9%	-12.9%

- t-channel increase dominates
- We increases but $t\bar{t}$ decreases
- Numbers saturate at $\eta < 2.8$
- Always gain in terms of S/\sqrt{B}

- ♦ Serious data taking since March 2002
- \diamond Instantaneous Luminosity $\mathcal{L} = 2...4 \cdot 10^{31} \text{ cm}^{-2} \text{s}^{-1}$
- ♦ Data collected up to January shutdown 2003:

$$-\int \mathcal{L}dt^{CEM} = \int \mathcal{L}dt^{CMUP} = 57.5 \text{ pb}^{-1}$$
$$-\int \mathcal{L}dt^{CMX} = 47.3 \text{ pb}^{-1}$$

♦ Hope to $add + 100 \text{ pb}^{-1}$ until summer 2003

Calculating the expected Single Top Yield:

$$\mathcal{N}_{W^*} = \varepsilon_{W^*}^{CEM} \int \mathcal{L}dt^{CEM} + \varepsilon_{W^*}^{CMUP} \int \mathcal{L}dt^{CMUP} + \varepsilon_{W^*}^{CMX} \int \mathcal{L}dt^{CMX}$$

with: $\varepsilon_{W^*} = \mathcal{A}_{W^*}^{MC} \cdot \varepsilon_{z0}^{data} \cdot \varepsilon_{trig}^{data} \cdot \frac{\varepsilon_{leptonID}^{data}}{\varepsilon_{leptonID}^{MC}} \cdot \frac{\varepsilon_{tag}^{data}}{\varepsilon_{tag}^{MC}}$

- Z Vertex Efficiency:
 - $\ \epsilon_{z0}^{data} = 0.951$
- Trigger Efficiency:
 - $\epsilon_{trig}^{CEM \ data} = 0.968$
 - $\epsilon_{trig}^{CMUP \ data} = 0.904$
 - $\epsilon_{trig}^{CEM \ data} = 0.901$
- Lepton ID and Muon Reconstruction Efficiency:
 - $\epsilon_{leptonID}^{CEM \ data} / \epsilon_{leptonID}^{CEM \ MC} = 0.989$
 - $\epsilon_{leptonID}^{CMUP \ data} / \epsilon_{leptonID}^{CMUP \ MC} = 0.937 \times 0.962$
 - $\epsilon_{leptonID}^{CMX \ data} / \epsilon_{leptonID}^{CMX \ MC} = 1.015 \times 0.978$
- B-tagging Efficiency:
 - $\epsilon_{tag}^{data}/\epsilon_{tag}^{MC} = 0.890$

S	-channel	yield for J	157.5 (14)	/.3) pb ⁻¹	
Bin	1 jet	2 jet	3 jet	4 jet	total
		Isolated	Lepton		
CEM	1.087	2.748	0.810	0.165	4.914
CMUP	0.546	1.371	0.393	0.087	2.446
CMX	0.291	0.679	0.200	0.038	1.234
Σ	1.925	4.797	1.403	0.290	8.595
	Isc	olated Lep	pton + Me	et	
CEM	0.976	2.448	0.717	0.144	4.383
CMUP	0.481	1.213	0.343	0.076	2.157
CMX	0.252	0.596	0.172	0.031	1.073
Σ	1.710	4.257	1.232	0.251	7.613
	Isolate	d Lepton	+ Met $+$	b-tag	
CEM	0.250	1.006	0.312	0.061	1.640
CMUP	0.127	0.502	0.141	0.032	0.808
CMX	0.062	0.253	0.074	0.013	0.403
Σ	0.438	1.760	0.527	0.106	2.851
	+ Vetos	s (Z, dilep	oton, conv	versions)	
CEM	0.248	0.995	0.306	0.059	1.621
CMUP	0.127	0.500	0.141	0.032	0.805
CMX	0.062	0.251	0.073	0.013	0.401
Σ	0.436	1.746	0.521	0.104	2.826
	•••	+ mass w	indow cu	t	
CEM	0.164	0.658	0.186	0.037	1.052
CMUP	0.084	0.321	0.087	0.020	0.516
CMX	0.040	0.171	0.049	0.008	0.270
Σ	0.288	1.151	0.322	0.066	1.838

110 1575(1472)-1 1 .

	t-channel	yield for 1	157.5 (14)	7.3) pb^{-1}	
Bin	1 jet	2 jet	3 jet	4 jet	total
		Isolated	Lepton		
CEM	3.229	6.893	1.290	0.162	11.849
CMUP	1.614	3.628	0.629	0.092	6.094
CMX	0.789	1.664	0.297	0.032	2.855
Σ	5.632	12.185	2.216	0.287	20.797
	Is	solated Lep	pton + Me	et	
CEM	2.871	6.130	1.129	0.145	10.526
CMUP	1.443	3.181	0.558	0.080	5.379
CMX	0.690	1.451	0.265	0.025	2.496
Σ	5.003	10.762	1.952	0.250	18.401
	Isola	ted Lepton	+ Met +	b-tag	
CEM	0.563	1.603	0.345	0.045	2.561
CMUP	0.274	0.859	0.161	0.022	1.318
CMX	0.138	0.369	0.074	0.010	0.592
Σ	0.975	2.831	0.581	0.076	4.471
	+ Vete	os (Z, dilep	oton, conv	versions)	
CEM	0.558	1.580	0.339	0.044	2.525
CMUP	0.274	0.854	0.159	0.021	1.311
CMX	0.137	0.367	0.074	0.010	0.589
Σ	0.969	2.801	0.573	0.075	4.424
	•	+ mass w	indow cu	t	
CEM	0.453	1.329	0.247	0.037	2.068
CMUP	0.226	0.702	0.117	0.015	1.061
CMX	0.111	0.313	0.054	0.008	0.488
Σ	0.790	2.344	0.418	0.060	3.617

- Constrain M_{lv} to $m_W = 80.22$ GeV to get p_{vz}
- In double tagged sample, we take b-jet with highest $+\eta$ $(-\eta)$ for $t(\bar{t})$ -decay
- All generic jet corrections are applied

INTRODUCTION TO H_T :

• H_T after all analysis cuts:

- H_T includes all jets with $E_T \ge 8$ GeV and $|\eta| < 2.8$
- Shapes of both signal channels are almost identical
 → Motivation for combined search for s and t-channel

s-channel:

- 512K Pythia MC events
- All W decay channels
- Realistic silicon and beam-offset

t-channel:

- 512K Pythia MC events
- All W decay channels
- Realistic silicon and beam-offset

- 240K Herwig MC events
- All W decay channels
- Realistic silicon and beam-offset

$Wb\bar{b}$ (non top background):

- 230K Alpgen/Herwig MC events
- W $\rightarrow e\nu$ decay only
- Realistic silicon and beam-offset

• M_{lvb} window cut improves signal strength

Process:	s-channel	t-channel	tī	$Wbar{b}$
Cut efficiency: $\varepsilon_{M_{lvb}}$	65.7%	83.6%	44.2%	45.3%

• H_T after all analysis cuts:

- H_T for signal and background is well separated
 → Fit for signal and background content to include shape information
- Need to estimate relative contributions to set an a priori limit on cross-section

s-channel (σ_s =0.884 pb ⁻¹)	Я	${\cal N}$
Produced	-	138
Lepton	4.05%	4.80
Lepton+ E_T	3.59%	4.26
Lepton+ E_T +b-tag	1.67%	1.76
+Vetos (Z, dilepton)	1.66%	1.75
+ mass window cut	1.09%	1.15

Single Top Yield in W+2jet bin:

t-channel (σ_t =1.980 pb ⁻¹)	Я	${\cal N}$
Produced	-	311
Lepton	4.60%	12.19
Lepton+ E_T	4.06%	10.76
Lepton+ E_T +b-tag	1.20%	2.83
+Vetos (Z, dilepton)	1.19%	2.80
+ mass window cut	0.99%	2.34

Top Background Yield in W+2jet bin:

$t\bar{t}$ ($\sigma_{t\bar{t}}$ =6.7 pb ⁻¹)	Я	N
Produced	-	1055
Lepton	3.46%	31.03
Lepton+ E_T	3.16%	28.30
Lepton+ E_T +b-tag	1.43%	11.42
+Vetos (Z, dilepton)	0.85%	6.75
+ mass window cut	0.37%	2.98

Source	K
Mistags	7.94
Wbb	11.02
$Wc\bar{c}$	4.24
Wc	11.71
WW/WZ, Z ightarrow au au	2.19
non-W	6.57
extra $Z+b\bar{b}$	0.22
Total tagged events	43.89
After mass window cut $(\varepsilon_{M_{lvb}}^{Wb\bar{b}})$	19.90

Non-Top Background Yield in W+2jet bin:

Summary of S/B in W+2jet bin:

s-channel	1.15
t-channel	2.34
$t\overline{t}$	2.98
non-top	19.90
non-top Total	19.90 26.37

- Perform pseudo CDF experiments
 - \rightarrow Pick random H_{T} values from smoothed templates

 Use Pierre's fitter to fit for relative signal, top and non-top background content

 \rightarrow Allows to set upper limit on cross-section

♦ Frequentist upper limit at 95% C.L.
→ Need to find a value N₉₅ such that repeated pseudo-experiments result in a fitted signal content $N'_s > N_{expected}$ 95% of the time

- Plot shows 10 000 performed pseud-experiments where this condition is met
- \diamond Scale is in terms of relative signal content β
- ♦ $\beta_{95} \times \sigma_{st} = 3.67 \times \sigma_{st} \approx 10.5$ pb a priori limit at 95% C.L

- Extending jet-eta definition to $|\eta| < 2.8$ looks promising
- Need to perform a Method II background calculation for new selection criteria
- Still room for optimization
- Big improvements also possible in lepton acceptance (CMU muons, Plug electrons)
- Higher b-tagging efficiencies will boost analysis
- An improved cross-section limit compared to Run-I seems feasible by this summer