

CDF Canada Meeting April 15, 2003 Pierre Savard

Outline

Accelerator Performance

Detector Performance

2002-2003 Physics Highlights

Conclusions

Accelerator Performance

Peak Luminosity achieved: 4E31 *this is 2x Run 1 record *this is half Run 2a goal

Collider Run IIA Peak Luminosity

Detector and Offline Operations

Store # 2271 February 24-25, 2003

Trigger Table and Rates

- Complete physics trigger table
 - ~140 triggers (e, μ, τ, ν, γ, jets, displaced track, many multi-object paths)
 - L1 rate limitation at 12 kHz is being removed
 - Dynamically prescaling some hadronic B triggers of lower purity
- L1, L2, L3 trigger rates
 - > With luminosity of ~ $3 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$
 - L1 = 11.5 kHz
 - L2 = 250 Hz
 - L3 = 50 Hz

Total trigger deadtime < 1%

Offline data processing

Offline production: split into 35 datasets

- > 170 dual CPU's, 3-5 seconds/event, event size 200KBytes
- > 35 datasets split on L3 trigger bits
- Process 5 million events/day sustained, 10 million/day peak
- 🧔 Data analysis system
 - > 300 dual Athlon CPU's (1.4-1.7 MHz) with ~ 100 TBytes of disk
 - Robotic tape storage (StorageTeK) accessed over network
 - > Data handling via Enstore (tapes) and DCACHE (disk)
- Simulation Farms
 - > Alberta Thor Facility (running well)
 - > Toronto Big Mac (ready to go)
 - McGill (ready soon)

Detector Performance

- □ CDF subdetectors are in general working well:
 - COT in very good shape
 - Silicon now 90% integrated
 - Electron ID in plug calorimeter
 - ➢ In general, Run 1 detector performance equaled or surpassed

However:

- Calorimeter energy scale issues, gain drops in the plug
- Forward tracking still in development
- plug electrons still not used in most analyses
- IMU muons not used yet
- Trigger rate using silicon
- Silicon alignment
- High pt B tagging efficiency rather low

Physics Highlights

QCD Physics with Jets and Photons

- Jet structure
- High E_t probes with inclusive jets
- Particle searches with dijets

300 - 100 - 100 - 2 - 1 - 2

Cross Section (pb/GeV) **CDF** Preliminary Run 2, 75 pb⁻¹ ۰ □ Run 1, 106 pb⁻¹ 10⁻² 10⁻³ 10 F 200 400 1000 1200 1400 600 800 Dijet Mass (GeV)

Dijet studies

>500 GeV cross section larger by 3 Due to increased COM energy

Dijet Mass = 1146 GeV

Particle Searches with Di-jets

CDF Run II Preliminary

Electroweak Physics

- W and Z boson production
- e⁺ e⁻ forward-backward asymmetry
- Diboson production

W, Z production and $\Gamma(W)$

 $\sigma_{W}^{*} BR(W \rightarrow ev) = 2.64 \pm 0.01_{stat} \pm 0.09_{syst} \pm 0.16_{lum} nb$ $\sigma_{W}^{*} BR(W \rightarrow \mu v) = 2.64 \pm 0.02_{stat} \pm 0.12_{syst} \pm 0.16_{lum} nb$ $\sigma_{W}^{*} BR(W \rightarrow \tau v) = 2.62 \pm 0.07_{stat} \pm 0.21_{syst} \pm 0.16_{lum} nb$

NNLO Prediction 2.69 nb

$$\sigma_{Z}^{*} BR(Z \rightarrow ee) = 267 \pm 6_{stat} \pm 15_{syst} \pm 0.16_{lum} pb$$

$$\sigma_{Z}^{*} BR(Z \rightarrow \mu\mu) = 246 \pm 6_{stat} \pm 12_{syst} \pm 0.15_{lum} pb$$

$$\sigma_{Z}^{*} BR(Z \rightarrow \tau\tau) = in progress$$

NNLO Prediction 252 pb

Measure $R(e) = \sigma(W) * BR(W -> e \nu) / \sigma(Z) * BR(Z -> e e)$ and $R(\mu)$

$$\Gamma(W) = \frac{\sigma(p\bar{p} \to W)}{\sigma(p\bar{p} \to Z)} \frac{\Gamma(W \to e\nu)}{\Gamma(Z \to ee)} \frac{\Gamma(Z)}{R}$$

 $\Gamma(W) = 2.29 \pm 0.12 \text{ GeV}$ from R(e) $\Gamma(W) = 2.11 \pm 0.09 \text{ GeV}$ from R(μ) PDG value 2.11 <u>+</u> 0.04 GeV

Top Physics

- top pair production using ee+µµ+eµ
- top pair production using e, μ + jets
- first look at top mass in Run 2

 At least 2 jets with E_T > 10 GeV within η < 2.0 Missing Et > 25 GeV 				0 5(tt) Signal	σ(tt) acceptance = 0.52+0.05 Signal/background ~ 8	
 H_T (scalar s plus various 	sum of E _T , I background	eptons, jets d rejection	s) > 200 GeV cuts (Z vet	o, jets and l	eptons away from ₽⊤	
g	I	Events per 72 pl	p^{-1} after all cut	S		
	<i>ee</i>	$\mu\mu$				
	0.019 ± 0.012	0.022 ± 0.014	0.050 ± 0.025	0.091 ± 0.046		
Drell-Yan	0.05 ± 0.05	0.05 ± 0.05	-	0.10 ± 0.07		
$Z \rightarrow \tau \tau$	0.014 ± 0.008	0.021 ± 0.013	0.030 ± 0.018	0.065 ± 0.040	Data: 5 events	
Fake	0.02 ± 0.02	0	0.02 ± 0.02	0.04 ± 0.03	SM tt +backg.	
Total Background, B	0.103 ± 0.056	0.093 ± 0.054	0.100 ± 0.037	0.30 ± 0.12		
$tar{t} ightarrow dileptons$	0.47 ± 0.05	0.59 ± 0.07	1.44 ± 0.16	2.5 ± 0.3	- 2.0 <u>+</u> 0.3	
Total SM expectation	0.57 ± 0.08	0.68 ± 0.09	1.5 ± 0.2	2.8 ± 0.3		
Dere O Jata M	1	1	3	5	10	

Top studies from dileptons

- Measurement based on channels with $ee+\mu\mu+e\mu \rightarrow \sigma \sim 0.05*7 pb$
- Kinematic selection cuts:
 - \succ e and $\,\mu$ central and isolated with E_T > 20 GeV

Top studies from dileptons

Top studies from lepton plus jets

W events with b tagged jets from 57.5 pb⁻¹ of data

Use excess events in ≥ 3 jets bins to measure the top cross section

Data = 15 events Background =3.8 <u>+</u> 0.5

New Phenomena Searches Run II Results

- Z' and Randall Sundrum Graviton
- Leptoquarks in dielectrons + jets channel
- Doubly charged Higgs: H++

Z' and RS-Graviton Search

Run II 650 GeV/c^2 Run I 640 GeV/c^2

Lepto-quarks and H⁺⁺

Bottom and Charm Physics

Mass measurements

Conclusions

Accelerator performance has been disappointing

- •"no silver bullet" according to Beams Division
- •Summer shutdown should help fix many problems
- CDF II detector performing well
 - •Acceptance and efficiencies better or equal to Run I
 - •More work needed to exploit full potential of CDF II
 - Should greatly improve in the coming year
- Physics results equal or surpass Run I results