Top Mass Measurement #### Introduction - Importance of measuring the top quark mass - Systematics, statistics and combinatoric issues - Top mass reconstruction: the χ^2 method - Taking the best χ^2 - Weighting the best χ^2 - Weighting by best χ^2 2nd best χ^2 - Weighting all χ^2 combinations - Top mass reconstruction: maximum likelihood - ullet Full $|M|^2$ integration over reduced phase space - Conclusion ## Introduction: the top quark in the Standard Model - SU(2) isodoublet partner of the bottom quark - Charge 2/3 - Spin 1/2 - Much heavier than other quarks - ⇒ Decays to real W - Short life time: no time to hadronize - Small sample ⇒ experimental knowledge limited # Introduction: importance of measuring the top quark mass - Mass close to the scale of electroweak symmetry breaking - Yukawa coupling: $M_{top} = \frac{v}{\sqrt{2}}$ within 3% - ⇒ Does the top quark play a role in ESB? - A precise M_{top} measurement (along with a precise W mass corrections of the W propagator: measurement) can constrain the Higgs mass through radiative \Rightarrow Once (if) we have Higgs mass, M_{top} tests consistency of SM - particle's properties. We can do better than has been done before (Run 1 uncertainty is $\sim 3\%$) to improve our knowledge of an important - One of the SM's 19 arbitrary parameters - Predicted parameter of other models ### Introduction: $q\bar{q} \to t\bar{t} \to W^+bW^-b$ - Standard Model predicts dominant $q\bar{q}$ anihilation is dominant production process - SM predicts branching fraction of $t \to Wb$ close to 100% - W can decay as $qar{q}$ or $l\nu$ - \Rightarrow 2 leptons + \geq 2 j: \sim 5% - $\Rightarrow \geq 6$ j: $\sim 44\%$ - ⇒ Lepton + ≥ 4j: ~ 30% Possible contribution from hard ISR or FSR - One or two b jets can be identified with two b-tagging methods: - SVX: secondary vertex reconstruction - Soft lepton tagging: semileptonic B meson decay issues Introduction: Systematics, statistics and combinatoric shape, etc. Could be reduced from $5.3 \, GeV/c^2$ to $3.1 \, GeV/c^2$ in Run Systematics: Jet energy corrections, ISR and FSR, background II. See Jean-François' talk! Combinatorics issues Statistics: Could be reduced from $4.8 \, GeV/c^2$ to $1 \, GeV/c^2$ in Run II - No b tag: 24 top reconstruction combinations - One b tag: 12 top reconstruction combinations - Two b tag: 4 top reconstruction combinations - Uncertainty can be further decreased by improving how we deal with combinatorics ### Top mass reconstruction: the χ^2 method - We assume four highest E_T jets associated with 4 quarks - ν reconstructed with E_T and by constraining $M_{l\nu}=M_W$ - The following χ^2 function is minimized for each of the 24 combination: $$\chi^{2} = \sum_{l,jets} \frac{(\hat{P}_{T} - P_{T})^{2}}{\sigma_{P_{T}}^{2}} + \sum_{i=x,y} \frac{(\hat{U}'_{i} - U'_{i})^{2}}{\sigma_{U'_{i}}^{2}} + \frac{(M_{l\nu} - M_{W})^{2}}{\sigma_{M_{W}}^{2}} + \frac{(M_{l\nu} - M_{W})^{2}}{\sigma_{M_{t}}^{2}} + \frac{(M_{l\nu j} - M_{t})^{2}}{\sigma_{M_{t}}^{2}} + \frac{(M_{jjj} - M_{t})^{2}}{\sigma_{M_{t}}^{2}}$$ - M_t distributions compared to MC template for each input M_t - Goal: Optimize the use of the information taken from the sample to improve the M_t measurement - \Rightarrow 4 strategies are explored #### 1: Take best χ^2 cut if $\chi^2 > 10$ Only best χ^2 combination of each event is considered. Event - 5th jet complicates problem: - \Rightarrow Event cut if 5th jet $E_t > 15 GeV$ - \Rightarrow 5th jet ignored if $E_t < 15 GeV$ - The fitter choosed the right combinations: 23% - The fitter failed to choose the right combination: 35% - The fitter's entry requirement is not met: 42% ### 2: Weight each event according to best χ^2 - Consider only best χ^2 of each event - Separate the sample in terms of best χ^2 bins - Look if the generated input mass influences the mass distribution - For a given best χ^2 in a given bin, the mass is adjusted according to the mean difference with the input mass (ΔM) - The width of the distribution determines the uncertainty in a given bin (FWHM) - 3: Weight each event according to difference between best χ^2 combination and other χ^2 combination - Consider how much better is the best χ^2 compared to other χ^2 in a each event - Look if best χ^2 2nd best χ^2 influences ΔM - Weight of each event would be computed according to how much better is the best χ^2 combined with the width of distribution of best χ^2 bin (method 1) ## 4: Weight each combination of each event according to χ^2 - Consider all combination of all events - Separate the sample in terms of all χ^2 bins of all combinations - Look if the generated input mass influences the mass distribution - For a given χ^2 in a given fwhm (all combinations) according to the mean mass (ΔM) difference with the input bin, the mass is adjusted - The width of the distribution determines the uncertainty in a given bin χ^2 bin number ## Top mass reconstruction: maximum likelihood Full $|M|^2$ integration over reduced phase space - N events measured in phase space $x_1, x_2, ... x_N$ - Likelihood $L(M_t)$ of measuring $x_1, ... x_N$ for each M_t hypothesis: $$-\log L(M_t) = -\sum_{i=1}^{N} \log P(x_i; M_t) + N \int Acc(x) P(x; M_t) dx$$ $P(x_i; M_t)$: probability of observing x_i if M_t Acc(x): detector acceptance (0 or 1) - Minimizing $-\log L(M_t)$ gives which M_t parameter is most likely to have produced $x_1, \ldots x_N$ - Probability function of signal and modeled background $$P(x; M_t) = c_1 P_{t\bar{t}}(x; M_t) + c_2 P_{background}(x)$$ $$P_{tar{t}}(x;M_t) = \int d^n \sigma dq_1 dq_2 f(q_1) f(q_2) W(y,x)$$ $f(q_1)f(q_2)$ PDF of initial parton momentum q_1 and q_2 W(y,x) transfer function Problem: numerical integration is way too long | | CDF | CDF detector | |-----------|-------------------------------------|---| | ID | $\sqrt{\eta^2 + \phi^2}$ resolution | E (or P) resolution | | Electrons | ~ 0.01 | $\delta P_t/P_t = \sim 0.001 GeV^{-1} P_t \text{ or } \sim \frac{13.5\%}{\sqrt{E}}$ | | Muons | ~ 0.01 | $\delta P_t/P_t = \sim 0.001 GeV^{-1}P_t$ | | Jets | ~ 0.05 | $\sim rac{130\%}{\sqrt{E}}$ | Solution: integrate over reduced phase space for each event $$W(y,x) = \delta^{3}(\vec{p_{l}} - \vec{p_{l}^{x}}) \prod_{\substack{4 \ jets}} \frac{1}{\sigma_{i}\sqrt{2\pi}} exp[-\frac{(p_{i} - p_{i}^{x})^{2}}{2\sigma_{i}^{2}}] \prod_{\substack{4 \ jets}} \delta^{2}(\Omega_{j} - \Omega_{j}^{x})$$ - 20 unknows: \vec{p} of l, ν , b, b, q, $\vec{q}\prime$ + p_z of 2 incoming partons - 15 constraints: \vec{p} of l (3) + Ω of b, \bar{b} , q, $\bar{q}\prime$ (8) + conservation of energy and momentum (4) - ⇒ Integration must be performed over 5 variables - ⇒ To save time in numerical integration, integrate over Breit-Wigner peaks: M_W^2 and M_t^2 $$\begin{split} P_{t\bar{t}}(x,M_t) &= \int dp_1 dM_{W_1}^2 dM_{W_2}^2 dM_{t_1}^2 dM_{t_2}^2 |M|^2 \frac{f(q_1)}{|q_1|} \frac{f(q_2)}{|q_2|} \Phi_6 \\ &\times \prod_{i=1}^4 \frac{1}{\sigma_i \sqrt{2\pi}} exp \left[-\frac{(p_i - p_i^x)^2}{2\sigma_i^2} \right] \end{split}$$ Can integration be performed with COMPHEP, MADGRAPH? # General advantages of integration over reduced phase space: - All measured quantities contribute to probability (except unclustered energy) - Increases computing power by focusing on simulation of low resolution measurements (jet energies) - MC template modeled for each measured data event configuration ## General disadvantages of integration over reduced phase - Does not account for non neglectable contribution from initial state and final state radiation - \Rightarrow Must reject all events with high E_T 5th jet - \Rightarrow Effect of low E_T 5th jet unclear #### Conclusion - There is little room for improvement with the χ^2 method - In general, likelihood method more powerfull than χ^2 method $3.6\,GeV/c^2$) (D0 reduced statistical uncertainty from $5.6\,GeV/c^2$ to - Must investigate effect of soft ISR and FSR on full $|M|^2$ integration - Will look into simpler weighting likelihood method that don't involve full $|M|^2$ integration (Dalitz-Goldstein)