Top Mass Measurement

Introduction

- Importance of measuring the top quark mass
- Systematics, statistics and combinatoric issues
- Top mass reconstruction: the χ^2 method
- Taking the best χ^2
- Weighting the best χ^2
- Weighting by best χ^2 2nd best χ^2
- Weighting all χ^2 combinations
- Top mass reconstruction: maximum likelihood
- ullet Full $|M|^2$ integration over reduced phase space
- Conclusion

Introduction: the top quark in the Standard Model

- SU(2) isodoublet partner of the bottom quark
- Charge 2/3
- Spin 1/2
- Much heavier than other quarks
- ⇒ Decays to real W
- Short life time: no time to hadronize
- Small sample ⇒ experimental knowledge limited

Introduction: importance of measuring the top quark mass

- Mass close to the scale of electroweak symmetry breaking
- Yukawa coupling: $M_{top} = \frac{v}{\sqrt{2}}$ within 3%
- ⇒ Does the top quark play a role in ESB?
- A precise M_{top} measurement (along with a precise W mass corrections of the W propagator: measurement) can constrain the Higgs mass through radiative

 \Rightarrow Once (if) we have Higgs mass, M_{top} tests consistency of SM

- particle's properties. We can do better than has been done before (Run 1 uncertainty is $\sim 3\%$) to improve our knowledge of an important
- One of the SM's 19 arbitrary parameters
- Predicted parameter of other models

Introduction: $q\bar{q} \to t\bar{t} \to W^+bW^-b$

- Standard Model predicts dominant $q\bar{q}$ anihilation is dominant production process
- SM predicts branching fraction of $t \to Wb$ close to 100%
- W can decay as $qar{q}$ or $l\nu$
- \Rightarrow 2 leptons + \geq 2 j: \sim 5%
- $\Rightarrow \geq 6$ j: $\sim 44\%$
- ⇒ Lepton + ≥ 4j: ~ 30%
 Possible contribution

from hard ISR or FSR

- One or two b jets can be identified with two b-tagging methods:
- SVX: secondary vertex reconstruction
- Soft lepton tagging: semileptonic B meson decay

issues Introduction: Systematics, statistics and combinatoric

shape, etc. Could be reduced from $5.3 \, GeV/c^2$ to $3.1 \, GeV/c^2$ in Run Systematics: Jet energy corrections, ISR and FSR, background II. See Jean-François' talk!

Combinatorics issues Statistics: Could be reduced from $4.8 \, GeV/c^2$ to $1 \, GeV/c^2$ in Run II

- No b tag: 24 top reconstruction combinations
- One b tag: 12 top reconstruction combinations
- Two b tag: 4 top reconstruction combinations
- Uncertainty can be further decreased by improving how we deal with combinatorics

Top mass reconstruction: the χ^2 method

- We assume four highest E_T jets associated with 4 quarks
- ν reconstructed with E_T and by constraining $M_{l\nu}=M_W$
- The following χ^2 function is minimized for each of the 24 combination:

$$\chi^{2} = \sum_{l,jets} \frac{(\hat{P}_{T} - P_{T})^{2}}{\sigma_{P_{T}}^{2}} + \sum_{i=x,y} \frac{(\hat{U}'_{i} - U'_{i})^{2}}{\sigma_{U'_{i}}^{2}} + \frac{(M_{l\nu} - M_{W})^{2}}{\sigma_{M_{W}}^{2}} + \frac{(M_{l\nu} - M_{W})^{2}}{\sigma_{M_{t}}^{2}} + \frac{(M_{l\nu j} - M_{t})^{2}}{\sigma_{M_{t}}^{2}} + \frac{(M_{jjj} - M_{t})^{2}}{\sigma_{M_{t}}^{2}}$$

- M_t distributions compared to MC template for each input M_t
- Goal: Optimize the use of the information taken from the sample to improve the M_t measurement
- \Rightarrow 4 strategies are explored

1: Take best χ^2

cut if $\chi^2 > 10$ Only best χ^2 combination of each event is considered. Event

- 5th jet complicates problem:
- \Rightarrow Event cut if 5th jet $E_t > 15 GeV$
- \Rightarrow 5th jet ignored if $E_t < 15 GeV$
- The fitter choosed the right combinations: 23%
- The fitter failed to choose the right combination: 35%
- The fitter's entry requirement is not met: 42%

2: Weight each event according to best χ^2

- Consider only best χ^2 of each event
- Separate the sample in terms of best χ^2 bins
- Look if the generated input mass influences the mass distribution
- For a given best χ^2 in a given bin, the mass is adjusted according to the mean difference with the input mass (ΔM)
- The width of the distribution determines the uncertainty in a given bin (FWHM)

- 3: Weight each event according to difference between best χ^2 combination and other χ^2 combination
- Consider how much better is the best χ^2 compared to other χ^2 in a each event
- Look if best χ^2 2nd best χ^2 influences ΔM
- Weight of each event would be computed according to how much better is the best χ^2 combined with the width of distribution of best χ^2 bin (method 1)

4: Weight each combination of each event according to χ^2

- Consider all combination of all events
- Separate the sample in terms of all χ^2 bins of all combinations
- Look if the generated input mass influences the mass distribution
- For a given χ^2 in a given fwhm (all combinations) according to the mean mass (ΔM) difference with the input bin, the mass is adjusted
- The width of the distribution determines the uncertainty in a given bin

 χ^2 bin number

Top mass reconstruction: maximum likelihood

Full $|M|^2$ integration over reduced phase space

- N events measured in phase space $x_1, x_2, ... x_N$
- Likelihood $L(M_t)$ of measuring $x_1, ... x_N$ for each M_t hypothesis:

$$-\log L(M_t) = -\sum_{i=1}^{N} \log P(x_i; M_t) + N \int Acc(x) P(x; M_t) dx$$

 $P(x_i; M_t)$: probability of observing x_i if M_t

Acc(x): detector acceptance (0 or 1)

- Minimizing $-\log L(M_t)$ gives which M_t parameter is most likely to have produced $x_1, \ldots x_N$
- Probability function of signal and modeled background

$$P(x; M_t) = c_1 P_{t\bar{t}}(x; M_t) + c_2 P_{background}(x)$$

$$P_{tar{t}}(x;M_t) = \int d^n \sigma dq_1 dq_2 f(q_1) f(q_2) W(y,x)$$

 $f(q_1)f(q_2)$ PDF of initial parton momentum q_1 and q_2

W(y,x) transfer function

Problem: numerical integration is way too long

	CDF	CDF detector
ID	$\sqrt{\eta^2 + \phi^2}$ resolution	E (or P) resolution
Electrons	~ 0.01	$\delta P_t/P_t = \sim 0.001 GeV^{-1} P_t \text{ or } \sim \frac{13.5\%}{\sqrt{E}}$
Muons	~ 0.01	$\delta P_t/P_t = \sim 0.001 GeV^{-1}P_t$
Jets	~ 0.05	$\sim rac{130\%}{\sqrt{E}}$

Solution: integrate over reduced phase space for each event

$$W(y,x) = \delta^{3}(\vec{p_{l}} - \vec{p_{l}^{x}}) \prod_{\substack{4 \ jets}} \frac{1}{\sigma_{i}\sqrt{2\pi}} exp[-\frac{(p_{i} - p_{i}^{x})^{2}}{2\sigma_{i}^{2}}] \prod_{\substack{4 \ jets}} \delta^{2}(\Omega_{j} - \Omega_{j}^{x})$$

- 20 unknows: \vec{p} of l, ν , b, b, q, $\vec{q}\prime$ + p_z of 2 incoming partons
- 15 constraints: \vec{p} of l (3) + Ω of b, \bar{b} , q, $\bar{q}\prime$ (8) + conservation of energy and momentum (4)
- ⇒ Integration must be performed over 5 variables
- ⇒ To save time in numerical integration, integrate over Breit-Wigner peaks: M_W^2 and M_t^2

$$\begin{split} P_{t\bar{t}}(x,M_t) &= \int dp_1 dM_{W_1}^2 dM_{W_2}^2 dM_{t_1}^2 dM_{t_2}^2 |M|^2 \frac{f(q_1)}{|q_1|} \frac{f(q_2)}{|q_2|} \Phi_6 \\ &\times \prod_{i=1}^4 \frac{1}{\sigma_i \sqrt{2\pi}} exp \left[-\frac{(p_i - p_i^x)^2}{2\sigma_i^2} \right] \end{split}$$

Can integration be performed with COMPHEP, MADGRAPH?

General advantages of integration over reduced phase space:

- All measured quantities contribute to probability (except unclustered energy)
- Increases computing power by focusing on simulation of low resolution measurements (jet energies)
- MC template modeled for each measured data event configuration

General disadvantages of integration over reduced phase

- Does not account for non neglectable contribution from initial state and final state radiation
- \Rightarrow Must reject all events with high E_T 5th jet
- \Rightarrow Effect of low E_T 5th jet unclear

Conclusion

- There is little room for improvement with the χ^2 method
- In general, likelihood method more powerfull than χ^2 method $3.6\,GeV/c^2$) (D0 reduced statistical uncertainty from $5.6\,GeV/c^2$ to
- Must investigate effect of soft ISR and FSR on full $|M|^2$ integration
- Will look into simpler weighting likelihood method that don't involve full $|M|^2$ integration (Dalitz-Goldstein)