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Abstract 
Bayes’ theorem offers a natural way to unfold experimental distributions in order to get the best estimates of the true 

ones. The weak point of the Bayes approach, namely the need of the knowledge of the initial distribution, can be overcome 
by an iterative procedure. Since the method proposed here does not make use of continuous variables, but simply of cells in 
the spaces of the true and of the measured quantities, it can be applied in multidimensional problems. 

1. Introduction 

In any experiment, the distribution of the measured 
observables differs from that of the corresponding true 

physical quantities, due to physics and detector effects. For 
example, one may be interested in measuring in deep 
inelastic scattering (DIS) events the variables x and Q*. In 

such a case one is able to build statistical estimators which 
have in principle a physical meaning similar to the true 
quantities, but which have a non-vanishing variance and 
are also distorted, due to QED and QCD radiative correc- 

tions, parton fragmentation, particle decay and limited 
detector performances. The aim of the experimentalist is to 
unfold the observed distribution from all these distortions 

so as to extract the true distribution. This requires a 
satisfactory knowledge of the overall effect of the distor- 
sions on the true physical quantity. 

When dealing with only one physical variable the 

method mostly used to solve this problem is the so called 
bin-to-bin correction: one evaluates with a Monte Carlo 

simulation a generalized efficiency (it may even be larger 
than unity), calculating the ratio between the number of 
events falling in a certain bin of the reconstructed variable 
and the number of events in the same bin of the true 
variable. This efficiency is then used to estimate the 
number of true events from the number of events observed 

in that bin. Clearly this method requires the same subdivi- 
sion in bins of the true and the experimental variable and 
hence cannot take into account large migrations of events 
from a bin to the others. Moreover it neglects the unavoid- 
able correlations between adjacent bins. This approxima- 
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tion is valid only if the amount of migration is negligible 

and if the standard deviation of the smearing is smaller 
than the bin size. 

Still dealing with the one dimensional case, an attempt 

to solve the problem of the migrations is sometimes done 
building a matrix which connects the number of events 
generated in one bin with the number of events observed 
in the other bins. This matrix is then inverted and applied 

to the measured distribution. This immediately yields in- 

version problems if the matrix is singular, since there is no 
reason, from a probabilistic point of view, why the inverse 

matrix should exist, as can be easily seen by taking as an 
example two bins of the true quantities both of which have 
the same probability to be observed in each of the bins of 

the measured quantity. This suggests that this way of 
treating probability distributions like vectors in space is 
clearly not correct, even in principle. Moreover, even if the 
matrix can be inverted (having for example a very large 

number of events to estimate its elements and choosing the 
binning in such a way as to make the matrix not singular) 

the method is not able to handle large statistical fluctua- 
tions. The easiest way to see this is to think of the 
unavoidable negative terms of the inverse of the matrix 
which, in some extreme cases, may yield negative numbers 
of unfolded events. Beside these theoretical considerations, 
the experience of the users of this method is rather discour- 
aging, the results being strongly unstable. 

A method which has been proposed to overcome the 
troubles encountered with the matrix inversion method is 
the “regularized unfolding” [l]. This produces satisfactory 
results, but it has never been widely used, probably be- 
cause of certain technical complications. Unfortunately, 
since the true distribution is decomposed into orthogonal 
polynomials whose coefficients are estimated, this method 
only works in solving one dimensional problems. 
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This paper presents a different approach, based on 
Bayes’ theorem, recognized by statisticians as the most 
powerful tool for making statistical inferences. The main 
advantages with respect to other unfolding methods are: 

- it is theoretically well grounded; 
- it can be applied to multidimensional problems; 
- it can use cells of different sizes for the distribution 

of the true and the experimental values; 
- the domain of definition of the experimental values 

may differ from that of the true values; 
- it can take into account any kind of smearing and 

migration from the true values to the observed ones; 
- it gives the best results (in terms of its ability to 

reproduce the true distribution) if one makes a realistic 
guess about the distribution that the true values follow, 
but, in case of total ignorance, satisfactory results are 
obtained even starting from a uniform distribution; 

- it can take different sources of background into 
account; 

- it does not require matrix inversion; 
- it provides the correlation matrix of the results; 
- it can be implemented in a short, simple and fast 

program, which deals directly with distributions and not 
with individual events. 

2. Bayes’ theorem 

To stay close to the application of interest, let us state 
Bayes’ theorem in terms of several independent causes 
(C;, i = 1,2,. . ., n,) which can produce one effect (El. 
Let us assume we know the initial probability of the 
causes P(C,) and the conditional probability of the ith 
cause to produce the effect P(E IC,). The Bayes formula 
is then 

P(EIC,)J’(C,) 
P(Ci IE) = np (1) . , r. P(ElC,)W,) 

I= 1 

This can be read as follows: if we observe a single event 
(effect), the probability that it has been due to the ith 
cause is proportional to the probability of the cause times 
the probability of the cause to produce the effect. 

For example, if we consider DIS events, the effect E 
can be the observation of an event in a cell of the 
measured quantities {AQ&,, Ax,,,}. The causes Ci are 
then all the possible cells of the true values 

{AQ&, AxtrJi. 
One immediately sees that the P(C, IE) depends on the 

initial probability of the causes. This gives a first impres- 
sion that this formula is sterile. In reality the Bayes 
formula has the power to increase the knowledge of P(C ;> 
with the increasing number of observations. If one has no a 
priori prejudice on P(C,) the process of inference can be 
started from a uniform distribution. 

The final distribution depends also on P(E I Ci). These 
probabilities must be calculated or estimated with Monte 
Carlo methods. One has to notice that, in contrast to 
P(C,), these probabilities are not updated by the observa- 
tions. So if there are ambiguities concerning the choice of 
P(E IC,) one has to try them all in order to evaluate their 
systematic effects on the results. 

3. Unfolding an experimental distribution 

If one observes n(E) events with effect E, the expected 
number of events assignable to each of the causes is 

ii = n(E)P(C, (E). (2) 

As the outcome of a measurement one has several possible 
effects E, (i = 1, 2; . ., n,) for a given cause Ci. For 
each of them the Bayes formula (1) holds, and P(C, JEj) 
can be evaluated. For simplicity we will refer to condi- 
tional probabilities P(C, JEj) as smearing matrix S, even 
if they describe cell-to-cell migration. Let us write Eq. (1) 
again in the case of nE possible effects ‘, indicating the 
initial probability of the causes with P,(C,): 

P(Ej Ici)pO(ci) 
P(C; IEj) = n, 

c P(E, ~c,)pow 
I=1 

(3) 

One has to note that: 
- X:2, P,,(C,) = 1, as usual. Notice that if the proba- 

bility of a cause is initially set to zero it can never change, 
i.e. if a cause does not exist it cannot be invented; 

- Zyz 1 P(C, IEj) = 1: this normalization condition, 
mathematically trivial since it comes directly from Eq. (3), 
tells that each effect must come from one or more of the 
causes under examination. This means that if the observ- 
ables contain also a non-negligible amount of background, 
this needs to be included among the causes; 

- 0 I l i = EYE, P(E, IC,) I 1: there is no need for 
each cause to produce at least one of the effects taken 
under consideration. l i gives the eficiency of detecting 
the cause Ci in any of the possible effects. 

After Nabs experimental observations one obtains a 
distribution of frequencies n(E) = ME,), 
n(E,), . . ., n(E_)}. The expected number of events to be 
assigned to each of the causes and only due to the ob- 

1 The broadening of the distribution due to the smearing sug- 

gests a choice of nE larger then n,. We would like to remark that 

there is no need to reject events where a measured quantity has a 

value outside the range allowed for the physical quantity. For 

example, for the case of DIS events, also cells with xmcas > 1 or 
QL < 0 give information about the true distribution. 
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served events can be calculated applying Eq. (2) to each 
effect: 

fi(ci) l&S = 2 n(Ej)P(C, IEj). 
j=l 

Taking into account the inefficiency ‘, the best estimate of 

the true number of events is then 

;I(Ci) = ; ,z n(Ej)P(Ci IEj) Ei # 0. (4) 
1 ]=I 

From these unfolded events we can estimate the true total 
number of events, the final probabilities of the causes and 
the overall efficiency: 

ri(ci) 
r;(Ci) = P(C, I n(E)) = hi, 

true 

N 
i= _“b”, 

N true 

It is important to remark that Z may differ from the a 
priori overall efficiency .eu calculated from the recon- 

structed and generated Monte Carlo events 

If the initial distribution P,(C) is not consistent with 
the data, it will not agree with the final distribution p(C). 
The closer the initial distribution is to the true distribution, 
the better the agreement is. One can easily verify for 

simulated data (see e.g. the non-trivial cases shown in 
Section 6) that the distribution P(C) lies between P,(C) 

and the true one. This suggests to proceed iteratively. So 
the unfolding can be performed through the following 

steps: 
1) choose the initial distribution of P,(C) from the best 

knowledge of the process under study, and hence the initial 
expected number of events no(Ci) = P,(C,)N,,,; in case 
of complete ignorance, P,,(C) will be just a uniform distri- 
bution: P,(C,) = l/n,-; 

2) calculate ir(C) and i(C); 
3) make a x2 comparison between h(C) and no(C); 

4) replace P,(C) by P(C), and n,(C) by s(C), and 
start again; if, after the second iteration the value of x2 is 
“small enough”, stop the iteration; otherwise go to step 2. 
Some criteria about the optimum number of iterations will 
be discussed later. 

’ If l i = 0 then ii will be set to zero, since the experiment 

is not sensitive to the cause C,. 

4. Estimation of the uncertainties 

After the iterative procedure described above has con- 
verged, one obtains the unfolded distribution A(C). As far 
as the evaluation of the uncertainties is concerned, one 
cannot simply take the square root of these numbers. Even 

if the number of cells is large and the uncertainty on 

P(E, IC,) is negligible, the quantities which are distributed 
according to a Poisson distribution are the observed num- 

bers n(E) and not ir(C), since the latter get contributions 
from several n(Ej). Moreover, it is clear that the uncertain- 

ties on n(C,) have some degree of correlation, since the 
observed number of events n(Ej) is shared between all the 

causes from which the events can be originated. 
To see all the sources of uncertainties and of correla- 

tions on n(C) in detail, let us rewrite Eq. (41, making use 
of Eq. (31, as 

‘(Ci) = ~ Mijn(Ej), 
j= 1 

where 

Mji can be seen as the terms of the unfolding matrix M, 

which is clearly not the mathematical inverse of the 
smearing matrix S. Let us examine the various contribu- 

tions to the covariance matrix of i;(C,), denoted by V: 
- P,(C,): we consider the initial probabilities without 

statistical error since they affect the results in a systematic 

way, to be evaluated by studying how stable the results are 

for a variation of the starting hypothesis. The values of 
P,(C,) used in the calculations of the uncertainties will be 
those obtained in the last but one iteration. 

- n(Ej): the data sample is a realization of a multino- 
mial distribution of which the parameter n has to be 
identified with the true number of events, estimated by 

JL. The contribution to V due to n(E) is then 

h,( n(E)) = z MkjMjjn( Ej) 
j=l 

- z Mki"lj -2 . 

n(Ei)n(Ej> 
i,j= 1 N true 
i#j 

If the relative frequency in each cell is sufftciently small, 
due to the large number of bins or to low efficiency, the 
numbers in each of the cells can be approximated by an 
independent Poisson distribution. 

- P(Ej ICi): these terms are usually estimated by 
Monte Carlo. They are affected by statistical and system- 
atic errors. The latter come from the assumptions made in 
the simulation and have to be treated with appropriate 
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Fig. 1. (a) Visualization of the smearing matrix St (see text): in the abscissa and the ordinate are the true and the measured quantities, 
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methods. The statistical errors come instead from the the cause-cells Ci is shared between the effect-cells Ej and 
limited number of simulated events. Like the uncertainties their distribution is multinomial. If the migration effect is 
on n(Ej), they also induce correlations between the results. not very strong, i.e. a cell Ci is observed only in a small 
In fact, the total number of events generated for each of number of cells Ej, one cannot neglect the covariance 
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between the terms P(Ejl IC,) and P(Ej, (Cj). We can 
instead reasonably neglect the covariance between two 

terms related to different cause-cells. 
Under these hypotheses the contribution to V from the 

uncertainty of M is 

V,,(M) = z n(E,)n(Ej)Cov( Mki, Mrj) 9 

i,j= 1 

where: 

cov(&, M,,) = c ‘Mki aM,j 

x Cov[ P(Er IC,), P(Es Icu)] ; 
‘ku6ri ‘ku ‘ri”ui ‘u 

--- 

P(E,IC,) E, P(EiIC,) ’ 1 
Cov[ P(E, Ku), P(E,lC,)] 

~P(E,IC,)[l-P(E,IC,)1 (r=s) 
u 

= 

- ;P(E, lC,)P(EsICu) (r#s). 

In the last expression n, represents the number of events 

generated in the cell C, in order to evaluate the smearing 

function. 

The covariance matrix of ri(C) calculated by the pro- 
gram allows the user to redefine the cell sizes (which may 

be not all equal) a posteriori in order to reduce the 

correlation of the results. On the other end, the presence of 
common sources of uncertainty make it impossible to 

redefine the cells so as to have uncorrelated results. The 
full covariance matrix should be used to exploit at best the 

results in further analysis. 

The sum of the two contributions gives the elements of 

the covariance matrix of the unfolded numbers: 
6.2. Unfolding a distribution not affected by statistical 
fluctuations 

vk, = V,d’@)) +  ‘k,@). 
The ideal performances of the method have been stud- 

ied with samples equivalent to having infinite statistics. 

This was done calculating the expected number of events 
from the true distribution and the smearing matrix, namely 5. Treatment of background 

The unfolding based on Bayes’ theorem can take into 
account in a natural way the presence of background, 

simply adding it to the possible causes responsible for the 
observables. Even several sources of background can be 
treated. For example, in case of a single contribution, one 
adds to the physical cells an extra C++ r, with initial 

probability P(C,c + 1 ). The conditional probabilities 

P(Ej lCnc+ 1 ) will be just the unnormalized shape (in the 

sense that E_ + 1 may be smaller than unity) of the back- 

ground distributions, The result of the unfolding will then 
provide the number of events to be assigned to the back- 
ground. 

In principle this method could also be used to disentan- 

gle the true distributions of several physics processes 
contributing to the same distribution of the observable. The 
problem will not be further discussed in the rest of the 
paper, but this method is likely to work only in very 
simple cases, and other more sophisticated methods - 
like neural network algorithms - should yield better 
results. 

6. Results 

6.1. The program 

The above method has been implemented in a short 
self-contained Fortran code available on request from the 

author together with examples. 
The user can provide either the smearing matrix or, 

more directly, the number of MC events produced in a cell 

of the true quantities together with the number of events 
which fall in each cell of the measured quantities. Only in 
the latter case it is possible to take into account the 

uncertainties due to the limited MC statistics. It is interest- 
ing to remark that there is no need to generate the MC 
events according to a realistic physical distribution of the 
variable under study, and in fact it can be more efficient to 

have several runs in different regions and to merge the 
results at the end, or to use a uniform distribution in order 
to populate well all the kinematical regions. 

n(Ej) = CP(EjJCi)P,,“,(Ci)N,,“,, 
i 

or in a more compact way 

n(E) = S~&L~ 

Figs. la and 2a show the smearing matrices, called 

hereafter S, and Sz, respectively, used for the tests. The 
abscissa and the ordinate represent the true and measured 
quantities, respectively, and the box area is proportional to 
the probability P(cj !Ci>. In order to test the unfolding 
performances, nontrrvral smearing matrices have been cho- 
sen: in S, the causes have all different efficiencies; S, 
shows an unusual anticorrelation and also long range 
migrations; both are almost flat in some points; the do- 
mains of the true and measured value are different. The 
number of effect cells has been chosen larger than the 
number of causes, as the smearing makes the distributions 
usually broader. The true value distributions are shown 
with solid lines in Figs. If-li, repeated also in Fig. 2. We 
will refer to these test distributions with fr, fz, f3 and f4. 
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Monte Carlo samples of smeared distributions obtained 

from 10000 generated events (those without random fluc- 
In all cases the initial distribution of the true values has 

been assumed to be uniform. 
tuations do not look much different) are shown in Figs. 
lb-le and 2b-2e for the two smearing matrices. 

Already after the first iteration the unfolded distribution 
is close to the true one (as shown in the case of limited 

events ---- 

SUmeored distribution 

Unfolded distribution - step 2 

0 
Unfolded distribution - step 3 Unfolded distribution - step 4 

Fig. 3. Example of a two dimensional unfolding: true distribution (a), smeared distribution (b) and results after the first 4 steps (c-f), 
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statistics with solid line of Figs. lj-lm and Figs. 2j-2m). 
The agreement increases constantly with the number of 

iterations and eventually, for all the test distribution and 
smearing matrices, the true distribution is recovered. This 

means that MS + 1. Obviously, this cannot be a rigorous 
result, since both matrices have all the elements defined 
not negative, and hence there must be a correct combina- 
tion of the zeros in the row of M with the zeros of the 
column of S in order to give the null off-diagonal elements 
of the product matrix. An easy case where this limit cannot 
hold is when two causes have the same probabilities to 
produce the effects, i.e. P(Ej 1 Ci) = P(E, 1 C,) Vj. In this 
case the result will be that A(C,) = ri(C,) independently of 
the true probabilities of Cj and C,. This is in fact the best 

result that the hypothesis allows. An extreme case is when 
the elements of the smearing matrix are all equal. One 
finds then that the final probabilities are equal to the initial 

ones, since under this condition the observations do not 

increase the knowledge at all. 

6.3. Simulation with limited statistics 

To make a more realistic evaluation of the perfor- 
mances of the method, the role of observed distributions 

has been played by Monte Carlo events simulated accord- 
ing to the true distribution and the smearing matrix. For 

each of the configurations 10000 events have been gener- 
ated. The observed distributions are shown in Figs. lb-le 
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and 2b-2e. As the smearing matrices are rather severe 
there is no similarity at all with the true distributions. 

After the experience gained with the sample having no 

statistical fluctuation, the first results are a bit surprising. 
After a few iterations the unfolded distribution becomes 
very close to the true one, but if one performs a very large 
number of iterations, it converges toward a distribution 

which shows strong fluctuations around the true one. The 
reason is simple. As stated before, an infinite iteration loop 
yields an unfolding matrix which is - in some sense - 

the inverse of the smearing matrix. So one gets exactly the 

same problems as discussed in the introduction about the 
matrix inversion method. The reason is that each of the 
bins in the true value distribution acts as a independent 

degree of freedom and after an infinite number of itera- 
tions one reaches a very fluctuating solution - a kind of 
amplification of the statistical fluctuations - similar to 

the result of a fit of a large number n of points with a 
polynomial of order n - 1. 

Figs. lm-lp and 2m-2p show the result after the 1st 

(solid line), 2nd (dotted line) and 3rd step (dashed line). 
The latter is compared to the true distribution (solid line) 
in Figs. li-le and 2i-2e. The agreement is qualitatively 
good also in the case of difficult situations, like f3 with 

Sa. An example of 2-D unfolding is shown in Fig. 3, 
where the true distribution, the smeared one, and the 

results of the first 4 steps are shown. 
In order to quantify the goodness of the results, Figs. 
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Fig. 7. Same as Fig. 5, but with a lC00-step unfolding. 

the uncertainty estimation. Only some cases show quantita- 
tively satisfactory results. Figs. 6 and 7 show what hap- 

pens after 1000 steps. Very large fluctuations appear around 
the true value, as discussed above. 

In order to avoid the problem of wild fluctuations with 
the increasing number of steps some possible ways out 

may be considered: 
- reduce the number of degrees of freedom putting some 
constraints between the probabilities of the true values, for 
example imposing that they follow a particular function. 

This is exactly equivalent to making a maximum-likeli- 
hood fit to the data (it is in fact known that the maximum- 
likelihood principle can be derived from Bayes’ theorem). 
It implies we know the expression of the function a priori, 
and it is the best way to proceed if one is just interested in 

finding the parameters of a particular model; 
- find a criterion concerning the optimum number of 
iterations, which may depend on the kind of problem: 
playing with the distributions fi_4 one can realize that in 
most of the cases a good agreement is reached after a few 
iterations. Some particularly difficult cases for which this 
is not the case have to be attributed to the smearing 
matrices chosen; 
- smooth the results of the unfolding before feeding them 
into the next step as “initial probability”. 

The third possibility has been chosen, as it turns out to 
produce stable results and moreover to be consistent with 
the spirit of the Bayesian inference. We remind the reader 
that in this frame knowledge is achieved by making use of 
Bayes’ theorem, initial hypotheses and empirical observa- 

tions. The hypothesis that most of the physical distribu- 
tions of interest, in particular structure functions, are 
smooth is well proven by experience. For this reason using 

the result of the first iteration with all its fluctuations as 
initial probability for the second step is from the Bayesian 
point of view even wrong in principle, since one is “tell- 

ing” the unfolding that the physical distribution can be of 
that kind, with all those wild fluctuations. It is preferable 
instead to feed into the program, as the initial distribution 

of the next step, a continuous and smooth function, whose 
shape is already influenced by the observations. 

One has to notice that there is no reason to worry that 

the smoothing procedure produces biased results or hides 
strong peaks if they are significantly present in the data, 
since the smoothed distribution used as initial probability 
for the second iteration is nothing but an hypothesis more 
realistic that the first one and can only give better results 
than the uniform distribution. 

For the test distributions a rough smoothing has been 
performed for all of them by a polynomial fit of 3rd 
degree. 3 Superior results, with respect to the previous 

3 The smoothing has not been put inside the unfolding program 

and must be done by the user, who knows the topology of the 

cells in the space of the physics quantities. It is recommanded, 

whenever it is possible, to choose the smoothing function which 
reflects at best the physics case. This can be of particular rele- 

vance in multidimensional problems, and moreover it can provide 

a very effective procedure for a simultaneous unfolding and 

fitting. 
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Fig. 8. Same as Fig. 4, but with a 20-step unfolding and smoothing the probability distribution between the steps. 

case, are achieved after a few steps and the convergence is 
obtained between 3 steps (as in the case of fi and f4 with 
S,) and 15 steps (f2 with S,). Figs. 8 and 9 show the 

result of 100 data samples after a 20-step unfolding with 
intermediate smoothing. No oscillations are present and the 
results do not change with the increasing the number of 
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steps, indicating that the procedure has converged. More- 
over, the differences between the unfolded and the true 
numbers, normalized to the calculated standard deviations, 
show that the latter are well enough estimated. 

7. Conclusions 

The iterative use of Bayes’ theorem provides a promis- 

ing method to unfold multidimensional distributions. With 
the smoothing of the resulting distribution between the 

steps a fast convergence is reached, and, for normal appli- 
cations, the results are stable with respect to variations of 
the initial probabilities and of the smoothing procedures. 

The covariance matrix of the result, which can also take 
into account the uncertainties due to the limited Monte 

Carlo statistics used to evaluate the smearing matrix, is 
provided. A Monte Carlo study has shown that the esti- 

mated standard deviations turn out to be close to those 
calculated from the dispersion of the data around the mean 

values, and that the method does not bias the results. 
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Note added 

After the appearance of the preprint of this paper, I 
have received two claims of similar methods used in the 

analysis of high energy physics data: Stefan Kluth pointed 
out the use of formula (4) - although stated differently, 

not justified by the Bayes’ theorem and not taking into 
account the inefficiency - together with the iteration 

procedure in an OPAL publication [2]; Fraqois IX 
Diberder, in order to perform a 4-dimensional unfolding of 

ALEPH data [3], has used a method which seems identical 

to the one here proposed (unfortunately no detailed infor- 
mation is available in the paper) and which also makes use 

of the smoothing between the iterations. In both cases 
there was no attempt to calculate directly the uncertainties, 
and they were estimated from the dispersion of the results 
in subsamples of the data sets. 
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