Conservation Laws

"Everything which is not forbidden is compulsory"

Lewis Carroll?
Richard Feynman?
Murray Gell-Mann?
Swiss Proverb?
T. H. White?

• • •

Why? or Why not?

Particle (mass)J ^{PC} ⇒decay	Mean Lifetime (τ)	Decay Width	Decay Fraction	Comments / Conservation Laws
ρ^0 (769)1	4 x 10 ⁻²⁴ s	151 MeV		
$\Rightarrow \pi^+\pi^-$		150 MeV	99%	
$\Rightarrow \pi^+\pi^-\gamma$		1.5 MeV	1%	~α
⇒ e ⁺ e ⁻		7 KeV	4.5x10 ⁻⁵	$\sim \alpha^2$ EM (electromagnetic)
$\Rightarrow \gamma$				momentum
$\Rightarrow \pi^0 \pi^0$				Bose-Einstein (BE) statistics
$\Rightarrow \gamma \gamma$				Landau-Yang theorem (BE, J)
π^0 (135)0 ⁻⁺	8 x 10 ⁻¹⁷ s	8 eV		lightest hadron
$\Rightarrow \gamma \gamma$		8 eV	98.8%	$\sim \alpha^2 EM$
$\Rightarrow e^+e^-\gamma$		9x10 ⁻² eV	1.2%	$\sim \alpha^3 EM$
\Rightarrow e ⁺ e ⁻ e ⁺ e ⁻		2x10 ⁻⁴ eV	3 x 10 ⁻⁵	$\sim \alpha^4 \text{ EM}$
⇒ e ⁺ e ⁻		6 x 10 ⁻⁷ eV	8 x 10 ⁻⁸	$\sim \alpha^4$ EM (See notes)
$\Rightarrow \gamma \gamma \gamma$			<3x10 ⁻⁸	~α ³ , Charge Conjugation (C)

Notes

All data from the **Review of Particle Properties** (http://pdg.lbl.gov/)

Decay Width: Because of the Heisenberg uncertainty principle, any particle with a finite lifetime has a mass distribution of non-zero width. The total decay width $(\Gamma = h/2\pi\tau)$ is the Full Width at Half Maximum of the mass distribution. Each decay channel contributes to the total width, and the partial decay width $(\Gamma_i = \Gamma \cdot BR)$ is the contribution to the total width due to a specific final state.

Decay Fraction: Decay branching fraction or branching ratio (BR) is the probability of a particle decaying into a specific final state. The sum of the branching ratios should add up to 100%. (Sometimes "branching ratio" refers to a ratio of branching fractions, but in particle physics "branching ratio" is usually synonymous with "branching fraction".)

 $\pi^0 \Rightarrow e^+e^-$: Mediated by 2 virtual photons, not 1, since the pion has spin-0. The decay is also suppressed by an helicity factor of $(m_e/m_\pi)^2$.

Helicity is the normalized projection of a particle's spin on to its momentum, i.e. $\mathbf{J} \cdot \mathbf{p}/\mathbf{J} \cdot \mathbf{p}$. Helicity is not a relativisticly invariant quantity since momentum is frame dependent, but helicity is conserved to the extent that the probability of the helicity remaining the same is typically $\beta = v/c$. (Note: This is true independent of whether parity is conserved.)

Energy, Angular Momentum, Baryon and Lepton Number

$\Delta^0(1232)^3/_2^+$	5 x 10 ⁻²⁴ s	120 MeV		
$\Rightarrow N\pi$ $(p\pi^{-} \text{ or } n\pi^{0})$		120 MeV	>99%	strong
$N^0(1440)^1/_2^+$	2 x 10 ⁻²⁴ s	350 MeV		
$\Rightarrow N\pi$		220 MeV	65%	strong
$\Rightarrow N\pi\pi$		120 MeV	35%	strong
$n (940)^{1}/_{2}^{+}$	887s	7 x 10 ⁻²⁵ eV		
$\Rightarrow p\pi^-$				strong, energy
⇒ pe⁻				J (angular momentum) & L
$\Rightarrow \pi^+ e^-$		<2 x 10 ⁻⁵⁵ eV		Baryon number (B) & lepton number (L)
\Rightarrow pe ⁻ $\overline{\nu}_{e}$		7 x 10 ⁻²⁵ eV	~100%	weak
$p (938)^{1}/_{2}^{+}$	$>10^{25}$ y	<10 ⁻⁵⁴ eV		lightest baryon
$\Rightarrow \pi^0 e^+$	$>10^{33}$ y	<10 ⁻⁶² eV		B & L (e.g. Super-Kamiokande)
$e^{-}(0.511)^{1}/_{2}$	$>10^{23}$ y			
$\Rightarrow \nu_{\rm e} \gamma$	$>10^{25}$ y			electric charge (Q)
d (np)1 ⁺	>10 ²⁶ y?			(D ₂ 0 in proton decay experiments)
$\Rightarrow \pi^0 \pi^+$	$>2x10^{30}y$			B (from Fe decays)
$\pi^- \Rightarrow \mu^- \nu_e$			<0.15%	L

Super-Kamiokande

Pictures from the ICRR (Institute for Cosmic Ray Research), The University of Tokyo. (http://www-sk.icrr.u-tokyo.ac.jp/doc/sk/index1.html)

See

http://www-sk.icrr.u-tokyo.ac.jp/doc/sk/photo/high.html

Super-Kamiokande accident:

http://www-sk.icrr.u-tokyo.ac.jp/doc/sk/photo/pmt-damage/index.html