Wave Optical Model for Scattering

Consider a beam of spinless particles travelling in the +z direction:
wl = gi(kZ'wU

(This wave has unit amplitude; k=2w/A=2np/h, A=deBroglie wavelength defined in
c.m frame.) For kr>>1 this plane wave can be expanded into a sum of spherical
waves (of angular momentum /):
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If the plane wave is incident on a spinless target particle it can scatter, but by causality
the scatterer cannot affect the incoming wave, only the outgoing wave, so
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where
e 2 §;is the phase change of the 1th component of the wave.
* 7n;is the amplitude (0 < 7, < 1) for elastic scattering (i.e. with no change in
kinetic energy).
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The Scattered Wave

The scattered wave, V), -V;, 1S
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The rate of scattering into a solid angle d€2 is

* 2) 2
df = Vout(Wscattwscatt)r ds2= Vout‘F (8)‘ de2
The rate of scattering into a solid angle dQ is also, by definition,
do

df = —dQ @iy, = deQ n v,
da 2
. d_Q n v, Om‘F(H)‘
The incident flux is
£
¢in = n vy, = wscattwscatt Vin
Since v;, =v,,,; for elastic scattering
do 2
ot F(0)
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Elastic Cross Section

Normalizing to one particle (n=1), we have the differential cross section
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Integrating over d€2, using the normalization property of Legendre Polynomials

fPl(cos 6)P(cos0)dQ = 4”—5”’,
A 21 +1

Normalizing to one particle (n=1), we have the differential cross section

2
do- ( 2161 1)
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4 el
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For no absorption, =1, we have pure elastic scattering

O, = k2 E 20 +1)sin 5[

=0 for 6, =
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Total Cross Section

Whatever scattering isn’t elastic must be inelastic:

Oscatt = Oel T Ojpel

and by conservation of probability

2 :
Oinel = f (\%n\z - %eit }2d§2= [ f T.Uinwmrde]— O,
where
Wi = 2Lkrl§0(21 +1)(-1)'e* P (cosh)
- Oier =02 (21 +1)(1 _ mz)
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Since probabilities must be between 0 and 1, i.e. 0<n;<1 (the Unitarity condition)

Oporal = 4787 Y (21 +1) = 16—”2(21 +1)

; 57

This 1s an absolute maximum cross-section. (i.e. In general, there is an upper limit of

47%° for each total angular momentum state.)
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Unitarity

The cross section for any distinguishable scattering process has a cross section less than
O, =4n/p..> =16m/s = (19.6 mb GeV?)/s  (in high energy limit)

Examples:
(1) e*e annihilation into point fermion-antifermion pair

ofete - if)= 2% o7
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No problem for muons (Q,=1) or quarks (Q,= Q.= Q=2/3, Q,= Q= Q,=1/3), but what if
a point fermion existed with charge Q=475?

Answer: Perturbation theory would break down, and the QED cross section would be
reduced below the unitarity bound.

(2) billiard balls (or neutron-proton scattering at high energies) have a essentially
constant total cross section
Obittiards = 4R’

This violates unitarity if p_,>2/R!

Answer:: In billiard ball scattering, the number of orbital angular momentum states is
proportional to s, so the constant cross section is maintained because the number of
scattering states increases at a rate which cancels out the reduction in the maximum
Cross section per scattering state.
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The universe never fails, but our theories do!

(3) neutrino-proton interactions

o(v,p) = 0.4x10*cm*/GeV? s = 0,,,, s*/(150 GeV)*

This cross section formula cannot be true for c.0.m. energies above 150 GeV'!
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http://pdg.Ibl.gov/2001/hadronicrpp_page6.pdf
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Unitarity =10G$

(3) neutrino-proton interactions (cont’d)
o(v,p) = 0.4x10cm*/GeV? = 0, s°/(150 GeV)*
This cross section formula cannot be true for c.0.m. energies above 150 GeV'!

A Yukawa force mediated by a massive particle
V(x) = (-g*/x) exp(-xM)
gives a cross section
o = 4ng*s/M,*

in the low energy limit. In the high energy limit (corresponding to x very small) this
potential is just a colomb-like potential and the cross section turns over and falls as 1/s
just like the e*e” annihilation cross-section. The boson must have a mass less than 150
GeV (Prediction!), so that the turn-over occurs before the unitarity violation would
occur.

(4) WW scattering violates unitarity at about 1.5 TeV
Theoretical solution: Higgs or supersymmetry or W substructure or ...

Experimental solution: Build the biggest accelerator you can convince your
government(s) to afford (SSC - nope, LHC yes), and see what happens.
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