Breit-Wigner Partial Wave Analysis

The cross section for pure elastic scattering for the l^{th} partial wave is

$$\sigma_{el}^{l} = \frac{4\pi}{k^{2}} (2l+1) \sin^{2} \delta_{l} = \frac{4\pi}{k^{2}} (2l+1) \frac{1}{1+\cot^{2} \delta_{l}}$$

This a has maximum when $\delta_l = \pi/2$. For a spinless beam and target, the phase can only depend on the invariant mass of the system, *i.e.* $\delta_l = \delta_l(E)$, where $E = s^{1/2}$, so the maximum will occur at some energy M, and we can make an expansion

$$\sigma_{el}^{l} = \frac{4\pi}{k^{2}} (2l+1) \frac{1}{1 + \left[\cot \delta_{l}(M) + (E-M) \left[\frac{d \cot \delta_{l}(E)}{dE}\right]_{E=M} + \dots\right]^{2}}$$

In lowest order we have

$$\sigma_{el}^{l} = \frac{4\pi}{k^{2}} (2l+1) \frac{1}{1 + \left[\frac{2(E-M)}{\Gamma}\right]^{2}} \qquad \text{where } \frac{2}{\Gamma} = -\left[\frac{d\cot\delta_{l}(E)}{dE}\right]_{E=M}$$

which is the Breit-Wigner resonance formula for a particle with lifetime $\tau = 1/\Gamma$

$$\sigma_{el}^{l} = \frac{4\pi}{k^{2}} (2l+1) \frac{\Gamma^{2}/4}{(E-M)^{2} + \Gamma^{2}/4}$$

Fourier transform of exponential decay

A spinless particle with an infinite lifetime is a single plane wave with a single energy: $\psi = e^{i(\vec{p} \cdot \vec{x} - Et)}$

For an unstable particle, an imaginary term is added to the energy,

$$\psi = e^{i\left(\vec{p}\cdot\vec{x} - \left[E + i\gamma\Gamma/2\right]t\right)} = e^{i\left(\vec{p}\cdot\vec{x} - Et\right)}e^{-\gamma\Gamma t/2}$$

which gives the expected exponential decay law for the rate as a function of time $\psi^* \psi = e^{-\gamma \Gamma t}$

where $\gamma = E/M$ is the usual relativistic time dilation factor, *M* is the mass of the particle, and $\tau = \hbar/\Gamma$ is the mean lifetime of the particle.

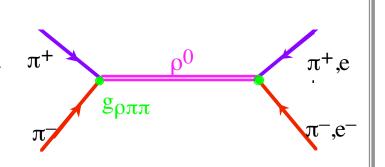
A particle with a finite lifetime can also be described as an infinite sum of plane waves with different energies. The correct sum is just the Fourier transform of the exponential decay law

$$\phi(E) = \int_0^\infty \psi(t) e^{iEt} dt = \int_0^\infty e^{i(\vec{p}\cdot\vec{x}-Et)} e^{-\gamma\Gamma t/2} e^{iEt} dt$$
$$= e^{i\vec{p}\cdot\vec{x}} \int_0^\infty e^{-\gamma\Gamma t/2} e^{i(E-\gamma M)t} dt$$
$$= \frac{e^{i\vec{p}\cdot\vec{x}}}{i(E-\gamma M) + \Gamma/2}$$
So the rate as a function of energy in the non-relativistic ($\gamma \approx 1$) limit is

$$|\phi(E)|^2 = \frac{1}{(E-M)^2 + \Gamma^2/4}$$

Resonances

Scattering particles can temporarily form a particle (in what is known as the "s-channel") if they have the correct quantum numbers, for example $\pi^+\pi^-$ scattering can be mediated by a ρ^0 . This will cause a resonant maximum in the scattering amplitude (*i.e.* $\delta_l = \pi/2$).



Pions are spinless particles, so they can only couple to particles with spin J=l, but in general the production cross section for a resonance, R, of total angular momentum J and mass M produced by two particles a & b (with spins $s_a \& s_b$)

$$\sigma_{ab \to R}(E) = \frac{4\pi \lambda^2 (2J+1)\Gamma_{ab}\Gamma/4}{(2s_a+1)(2s_b+1)\left[(E-M)^2 + \Gamma^2/4\right]}$$

where we have averaged over the possible incoming spin states (since only one such state will match each polarization state of the resonant particle) and

- Γ = total width of resonance (× Γ/Γ_{beam} if the beam energy spread Γ_{beam} is greater than the intrinsic width of the resonance).
- Γ_{ab} = partial width for decay into (or production from) the ith decay channel, *i.e.* $R \rightarrow ab$.

Notes on Production and Decays

- The total width is the sum of all the partial widths $(\Gamma = \sum_{i} \Gamma_{i})$.
- The branching ratio (more accurately but less commonly known as the branching fraction) is the probability of decay of a particle into a particular channel, with $B(R \rightarrow ab) = \Gamma_{ab}/\Gamma$.
- If a particle is produced in one channel (*i*) and observed in another channel (*j*), *e*.*g*.

$$\pi^{-}p \rightarrow \Delta^{0} \rightarrow \pi^{0}n$$

e^+e^- \rightarrow Z^{0} \rightarrow hadrons

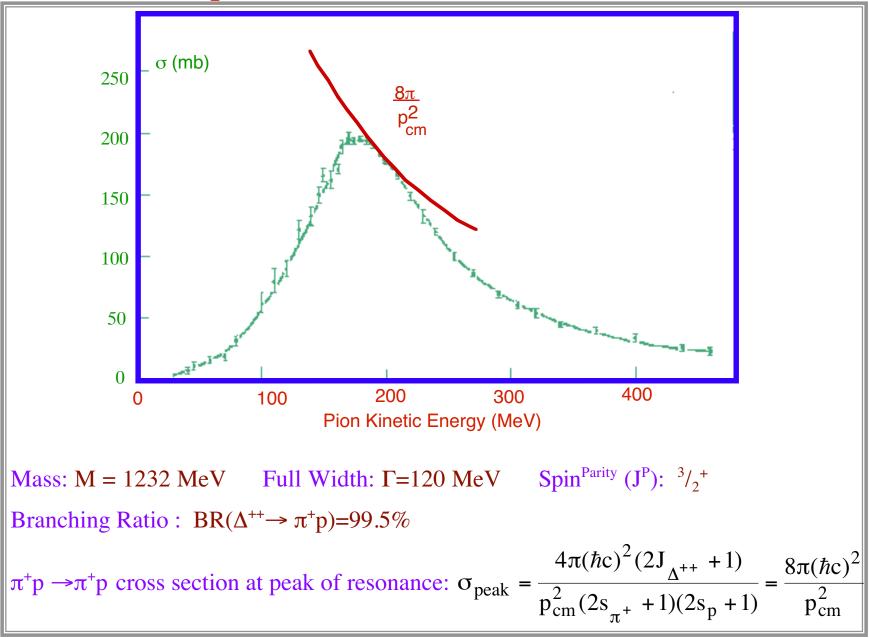
then the rate at which events are observed is

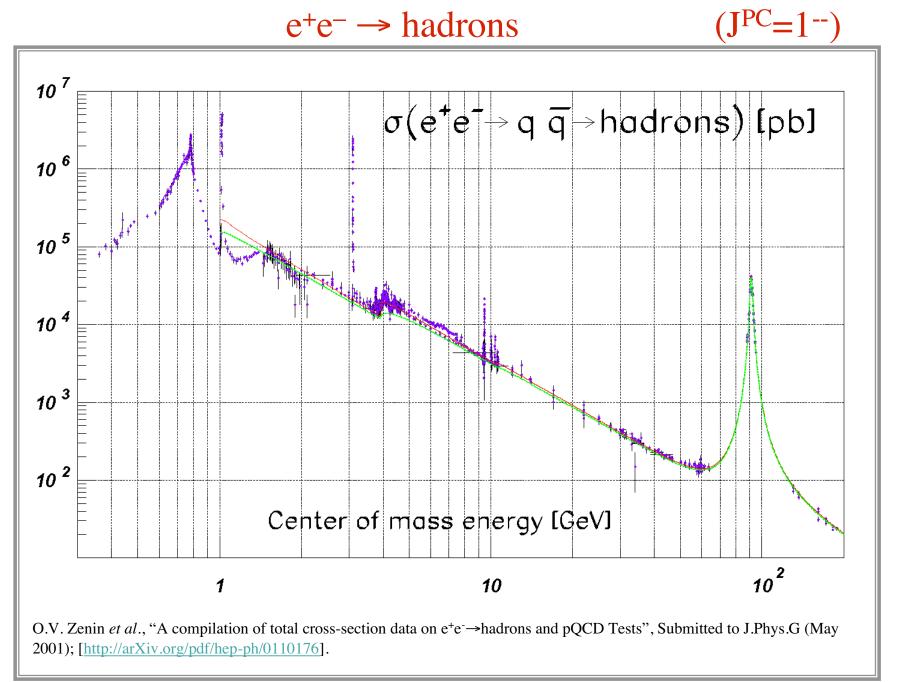
$$\mathbf{R} = L \cdot \sigma_i \cdot \mathbf{B}_j \propto \Gamma_i \mathbf{B}_j \propto \mathbf{B}_i \mathbf{B}_j \propto \Gamma_i \Gamma_j$$

- The "partial lifetime" is defined to be $\tau_i = \frac{\hbar}{\Gamma_i}$.
- The "partial decay rate" is defined to be $R_i = n\Gamma_i = n_0 e^{-t/\tau}\Gamma_i$.
- The partial widths and branching ratios are determined by the underlying physics, *e.g.*

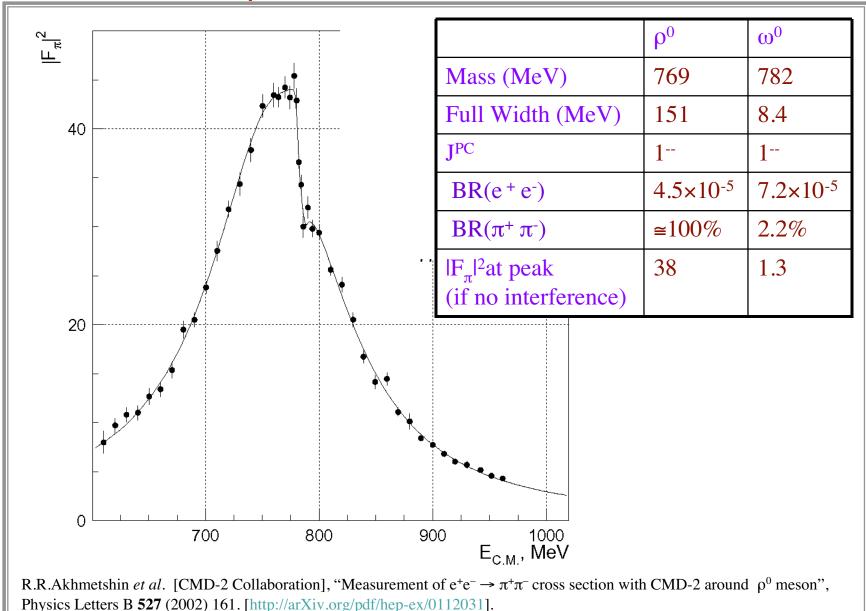
$\Gamma(\rho) = 150.2 \pm 0.8 \text{ MeV}$	(Λ_{QCD})
$\tau(\mu)=2.19703\pm0.00004\mu$ s	\tilde{G}_F
BR(K _L $\rightarrow \pi^{+}\pi^{-})=0.2056\pm0.033\%$	(δ_{CP})

 π^+ p total cross section: $\Delta^{++}(1236)$





 ρ^0 and ω in e⁺e⁻ $\rightarrow \pi^+\pi^-$



The non-resonant QED (Quantum Electrodynamic) cross section for the production of pions is

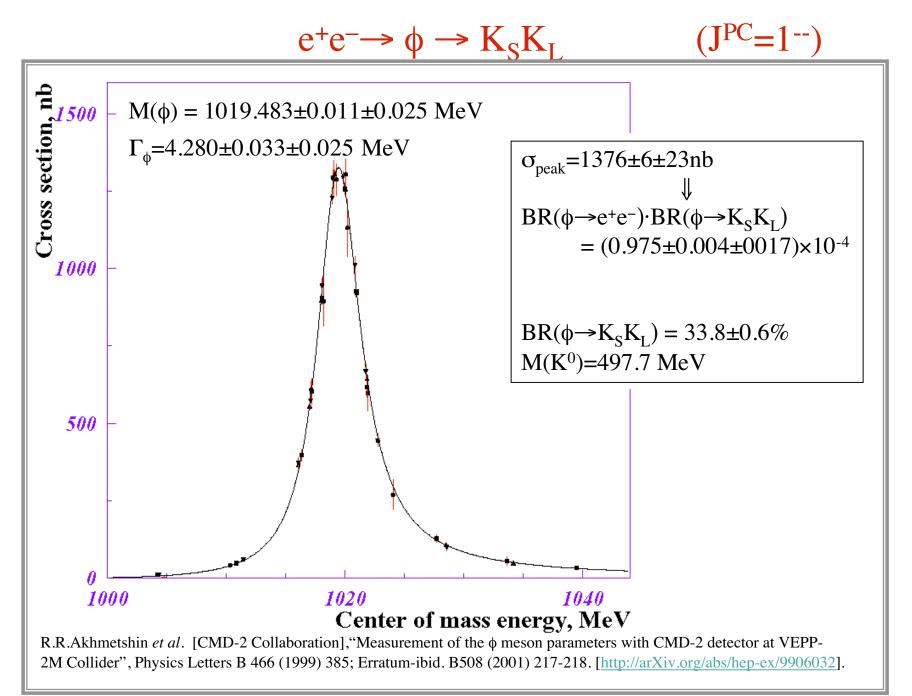
$$\sigma \left(e^+ e^- \rightarrow \pi^+ \pi^- \right) = F_\pi^2 \beta^3 \frac{\pi \alpha^2}{3s} (\hbar c)^2$$

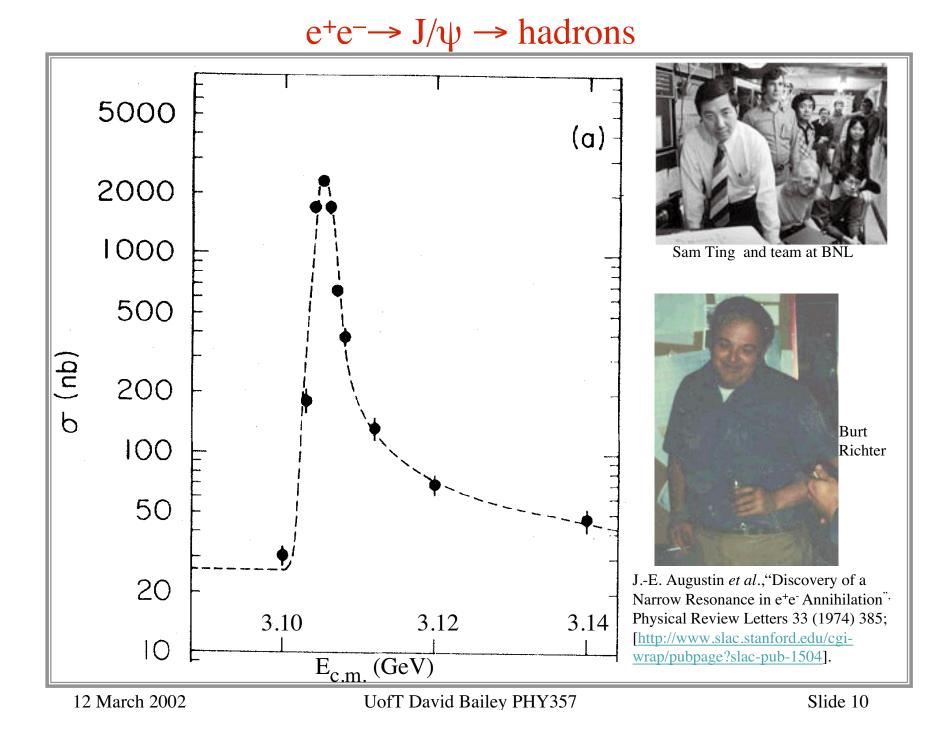
where $\frac{\pi}{3s}$ is the cross section for massless point pions, β^3 is the threshold dependence for massive pions (139.6 MeV/c²), and F_{π}^2 is the form factor for real composite pions.

The Breit-Wigner resonance formula is derived for $\Gamma << M$, but this is not always true, *e.g.* for the ρ meson or Δ baryon, and phase space changes over the width of the resonance will make it asymmetric.

The only other neutral, flavourless meson in this mass range is the η (547MeV). It is not observed in e⁺e⁻ because it is a pseudoscalar (J^{PC}=0⁻⁺) meson, *i.e.*

- it cannot mix with a single virtual photon to mediate a decay into an electronpositron pair. (The theoretical branching ratio for $\eta \rightarrow e^+e^-$ is about 10⁻¹⁰.)
- decay into $\pi^+\pi^-$ would violate CP symmetry, so it decays into $\pi^+\pi^-\pi^0$.





$e^+e^- \rightarrow J/\psi \rightarrow hadrons (cont'd)$

Mass: $M(J/\psi) = 3096.87 \pm 0.04 \text{ MeV}$ Full Width: $\Gamma=0.07 \text{ MeV}$ Branching Ratio : $BR(J/\psi \rightarrow e^+e^-)=5.93 \pm 0.10\%$, $BR(J/\psi \rightarrow hadrons)=87.7 \pm 0.5\%$ Cross section: $\sigma_{peak}=80\mu b$ $\sigma_{peak}=80\mu b$

But

- beam energy spread is greater than natural width \rightarrow observed peak cross section reduced by ~ $\Gamma_{\text{resonance}} / \Gamma_{\text{beam}}$
- radiative tail because of higher energy e^+e^- annihilations can radiate energy (probability $\sim \alpha$) to fall on resonance

