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Problem Set 1 Answers

1) What is the magnitude of theoretical Dirac magnetic moment of the tau lepton

a) in natural units? (i.e. in eVn, where n is some integer)
From M&S equations 1.14 or 2.9 we have
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where we get the tau lepton parameters from Chapter 2 and Appendix E.
b) in SI units?
Here we don’t use e c= = =h 1, but insert the SI values instead
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Note that eV=e×Volt so we could have used eV/e=V, but then I would have needed the SI
value for Panck’s constant which isn’t conveniently on the back cover of M&S.

2) Consider a positron beam
a) Draw all distinct (i.e. not related by time ordering) Feynman diagrams for the processes

i) e+e- →µ+µ-

From M&S section 1.3.3, and looking at the answers in Appendix F to M&S Problem 1.1, we
can see there is only one diagram for this process.
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ii) e+e- →µ+µ- γ
For this process there are 4 possibilities:
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Estimate the relative rate for process (ii) compared to process (i).
For the first process there are two photon-coupling vertices (each giving a factor α) and

one time ordering; for the second process there are thress photon-coupling vertices and 4 time
orderings. We thus expect process (ii) to have a relative rate of about 4α compared to process
(i).  (The factor of 4 is not clearly stated in M&S, and it is very approximate in any event, so
it is not necessary to include it in your answer.)

b) Consider a positron passing through iron and interacting with an atomic electron to
produce a µ+µ- pair by the process e+e- →µ+µ- ?
i) What is the minimum (i.e. threshold) momentum a positron must have for this process

to be possible?
The threshold centre-of-mass energy for this process is twice the muon rest mass, so using

M&S Equation 3.3 (or A.12), we have
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ii) Use M&S equation 6.3b to calculate the interaction length (i.e. the inverse of the
probablity per unit length) for this process if the positron momentum is 100 GeV.

This equation give the cross section for the process
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using various numbers from the inside back cover of M&S.
Looking at M&S equations 3.8, we see that the interaction length is
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where n is the density of scatterers (electrons in this case, nuclei for Equations 3.8).  One
could look up the density, atomic mass, and atomic number of iron,  but I just scaled the
nuclear collision length from M&S Table 3.3, i.e.
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c) If a 100 GeV positron enters an iron calorimeter, estimate how many positrons will be
produced in the shower.

Using the model of M&S Section 3.3.5(a) the number of particles at the peak of an
electromganetic shower is approximately given by M&S Equation 3.23
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This model is based on a simple geometric progression (1 particle –> 2 particles –> 4 particles
–> 8 particles -> …), so the total number of particles in the shower is just
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Looking at M&S Figure 3.11, it is obvious that  the shower has approximately equal numbers
of electrons, protons, and photons, so using the Critical Energy for iron from M&S Table
3.5, the number of positrons is
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3) Figure 1.2 of Martin and Shaw shows one of the discovery pictures of the positron.  The
magnetic field is perpendicular to the picture and you may assume the tracks are in the plane
of the picture.   Your answers must include an uncertainty (e.g. 7±1 MeV), so you may need
to look at your old First Year Physics Laboratory Manual or at
http://www.upscale.utoronto.ca/PVB/Harrison/ErrorAnalysis/All.html
a) What is the momentum (in MeV/c) of the charged particle before it enters the lead plate?

You may assume the particle has unit charge (i.e. q=e) and that it is relativisitic (i.e. β≈1).
We can use M&S equation 3.2 to determine the momentum, so we need the scale of the
picture and the radius of curvature of the track.

The thickness of the lead plate is given in the text to be 6mm, and in the picture I measure
it to be 4±1mm, so the picture is smaller than life size by a scale factor
of  0.67±0.17.

The radius of curvature of the track can be measured either directly
with a compass or by measuring the deviation from straightness and
using a bit of trigonometry. Using a chord of length L along the track
and the deviation from straightness x at the midpoint of the chord, the
radius of curvature is
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I measured L=21±1mm and x=1.5±0.5mm.  Assuming (probably incorrectly) that my L
and x uncertainties are uncorrelated, then
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I have done the full error calculation, but this is unecessary since the error on L can be
neglected compared to the error on x. If you used a compass, the uncertainty in r is just
whatever you judged it to be.  I get r=38±13mm, but we must correct by the scale factor in
order to get the true radius of curvature of the track:
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The magnetic field is 1.5 Tesla, so using M&S equation 3.2 we have
p B MeV= = ( ) ±( ) = ±0 3 0 3 1 5 0 057 0 024 26 11. . . . .ρ

b) How much energy would be lost by the charged particle in the lead plate if it were
i) a proton?
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A 26 MeV/c proton is non-relativistic and its kinetic energy is just
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From M&S  Figure 3.3 we can see that a 26 MeV/c proton is well up the 1/β2  ionization rise
(see the Bethe-Bloch formula M&S Equation 3.11a) and its ionization energy losses will be
many MeV/cm, so if this was a proton it would loses all its energy and stop in the lead plate.

ii) a positron?
A 26 MeV/c positron is relativistic, with β≈1 and γ=E/m~γ.  A pion with γ=50 would have a
momentum of about 7 GeV, so from M&S  Figure 3.3 we can see that the ionization energy
losses would be about 17MeV/cm in lead.  For particles of the same charge in the same
material, their ionization energy losses depend only on γ, so the positron will also lose about
17MeV/cm, or 10MeV for the 6mm thick plat in this case.

The positron is above the critical energy for lead (7 MeV from M&S Table 3.5), so we also
expect it to radiate
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So on average we expect the positron to radiate all its energy, but this is a random process
and it is not suprising to find some positrons passing through the lead with significant energy.

4) For each part of this question, write down a process (i.e. an interaction or a decay) in which
the initial state has strangeness S=–1 and which is:
a) allowed by the strong interaction

From M&S Section 2.2.4 we know that the K– and the Λ have strangeness S=-1.  From M&S
Chapter 2 and the solutions to the problems at the end of Chapter 2 we know that strangenss
must be conserved by the strong interaction, so some examples:of allowed strong processes
would be:

K–p ––> π0Λ
K–p ––>K–p

b) forbidden by the strong interaction but is allowed by the weak interaction
The weak interaction can violate strangeness conservation, so examples of allowed  processes
are

Λ––> π–p

K–p ––> π0n
c) forbidden by the strong, electromagnetic, and weak interactions, but is not forbidden by

energy-momentum conservation.
Here we want something that violates something like electric charge or baryon number or
lepton number conservation. For example,

Λ––> π–e–

K–––> π0e–

K–p ––> π0π+


