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OBSERVED BEHAVIOR OF HIGHLY INELASTIC ELECTRON-PROTON SCATTERING

M. Breidenbaeh, J. I Friedman, and H, W, Kendall
Department of Physics and Laboratory for Nuclear Science,*
Massachusetts Institute of Technology, Cambridge, Massachuselts 02139

and
E. D. Bloom, D. H. Coward, H, DeStaebler, J, Drees, L. W. Mo, and{R. E. Taylor|

_.—-——--

stanford Linear Acceleralor Gepter,T Stanford, California 9230
(Received 22 Awgust 196%)

Results of electron-proton inelastic scattering at §° and 10° are diseussed, and values
of the strueture function Wy are estimated. I the interaction is dominated by transverse
virtual photons, vW; can be expressed as a function of w=2Mp /g within experimental
arrors for g8 > 1 (GeV/e) and w >4, where v {5 the invariant energy transfer and ¢° is
the invariant momentum transfer of the electron, Varlous theoretical models and sum

rules are briefly discussed.

In a previous Letter,! we have reported experi-
mental results from a Stanford Linear Accelera-
tor Center -Massachusetts Institute of Technol-
ogy study of high-energy inelastic electron-pro-
ton scattering, Measurements of inelastic spec-
tra, in which only the scattered electrons were
detected, were made at scattering angles of i
and 10° and with incident energies between 7 and
17 GeV. In this communication, we discuss some
of the salient features of inelastic spectra in the
deep continuum region.

Ome of the interesting features of the measure-
ments is the weak momentum-transfer depen-
dence of the inelastic eross sections for excita-
tions well beyond the resonance region, This
weak dependence is illustrated in Flg. 1. Here
we have plotted the differential cross section di-
vided by the Mott cross section, (o /dQdE’)/
(do/d D) s, 25 2 function of the square of the
four-momentum transfer, ¢ =2EE'(1-cosf), for
constant values of the invariant mass of the re-
colling target system, W,where Weis ZM(E-E")
+M® =g, E is the energy of the incident electron,
E' 15 the energy of the {inal electron, and ¢ is
the seattering angle, all defined in the labora-
tory system; M is the mass of the proton, The
eross section is divided by the Mott cross sec-
tion

(%)
dil

kdant

- cos® 30

4EF gin*zd
in order to remove the major part of the well-
known four-momentum transfer dependence aris-
ing from the photon propagator. Results from
both 6° and 10° are included in the figure for each
value of W, As W increases, the ¢ dependence
appears to decrease. The striking difference

between the behavior of the inelastic and elastic
eross sections is also illustrated in Fig. 1, where
the elastic cross section, divided by the Mott
cross section for 8=10°, is included. The ¢* de-
pendence of the deep continuum is also consider-
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FIG. 1. (do/d0dE ) oyoy. in GeV©=l, vs ¢ for W
=2, 3, and 3.5 GeV. The lines drawn through the data
are meant to guide the eye. Also shown is the cross
gection for elastic ¢-p scattering divided by @uee
(do/d R Oygpeye caloulated for §=10°, using the dipole
form factor. The relatively slow variation with & of
the inelastic cross section compared with the elastic
cross section is elearly shown.
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Figure 8.12 (b} Mumentum distributions of quarks ({J) and antiquarks ({7} in the nucleon, at a
value of g° of order 10 GeV=, obtained from results on neutrino and antineutrino scattering in
experiments at CERN apd Fermilab. The neutrino and antineutrino differential cross-sections
measure the structure functions F, and F, in Eq. (8.17), and the difference and sum of these,
through Eq. (8.23), give the quark and antiquark populations weighted by the momentum
fraction x. The antiquarks ({J) are concentrated at small x, the region of the so-called quark-
antiquark “sea.” The “valence™ quarks of the Sl.:tt[l: guark model (Q — () are concentrated

toward x = 0.2
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