PHY2405 Experimental High Energy Physics

R.S. Orr Office: Room 818A Course Overview:

.Magnets, RF Cavities, Beams, Accelerators;

- .Interaction of charged particles with matter;
- .Charged particle tracking detectors;

.Calorimeters;

.Particle Identification;

.Electronics, Triggering, and data acquisition;

.Experiment Design;

I concentrate on detector technology to enable one to:

- Build Detectors
- Operate Detectors
- Write Reconstruction Software

Analysis, statistics Needs another course

Texts:

No set text. There are many books that I have used. I'll refer to them as we go along.

Grades:

3 assignments worth 25% each of final mark

In the past I have tended to wait until most of the material of the problem set has been covered – this proved to be a mistake. This time I'll try to distribute problems every week or two.

I have in mind to reduce the amount of stuff on accelerators. I need your feedback on this.

- Accelerators Jan/Feb
- Particle Detectors Feb/Mar
- A simple Monte Carlo simulation –due mid April
 - I think this is really worthwhile it lets you understand how detector resolutions really work. But often falls off the end!

The remaining 25% based on a report

On an existing, planned, or influential past accelerator, experiment or. detector system. Discuss with me before starting.

The Report

It should cover:

- System design and physics reasons for technical design choices.
- Compromises between desired performance, and what could be realistically achieved. This is usually an interplay between desired resolution and available \$\$\$.
- New technology, or any innovation, which made a new area of physics accessible.
- Performance achieved, and how it affected the physics.
- I'd be really pleased if you discuss it with me while you are working on it.
- It should be around 20 pages with figures.
- If you prefer, you can do a 30 minute presentation, followed by 15 minutes of questions from me and the rest of the class.

Sources for Ideas on Report

For Current & planned Experiments Lo satelles Web Sites at (e.g.): PAMELA ASF ete

- Cern
- LEP Experiments
- Neutrino
- LHC ATLAS, CMS, LHC-b
- SLAC
 - BaBar, SLD
- Desy
 - ZEUS, H1, HERMES, HERA-b
- · Fermilab LONG BASELINE V
 - D0, KTeV, BTeV, MINOS, CDF
- Cornel
 - CESR-III
- KEK
- BELLE, TZK, KAMLAND
- SNO, SuperKamiokande, etc....CDMA

What is High Energy Physics?

High Energy - because looking at

- small distances
- fundamental constituents
- basic interactions

A theorist would be tempted to say

fundamental symmetries

But we infer these from constituents and interactions seen experimentally

Subatomic Physics & Engineering

- Civil Engineering
 - 30 km long tunnels
 - Superconducting magnets and RF mass production

Mechanical Engineering

- Detectors 6 stories high
- Precision alignment to microns

Electronic Engineering

- VLSI on 1000 mm²die S, GaAs, etc
- Digital and Analog @ > 50 MHz

Materials Science

- Exotic Detector materials
- Chemical Vapour Deposited Diamond

Computer Science

- Embedded Processing
- Software tools OO
- Pbytes of data 1015
- 1000 processor parallel farms
- Web developed by HEP international data sharing
- GRID computing & Data sharing

Subatomic Physics & Engineering

Aerospace Engineering

- Orbiting Anti-matter detector test flown on shuttle
- Final Detector on Space Station

Biomedical Engineering

- New Detectors to minimize dose
- Positron emission imaging
- New radiotherapy isotopes
- New forms of therapy hadrotherapy

Goodbye - SciNet

- General Purpose Cluster consists of 3,780 <u>IBM System x</u> iDataPlex dx360 M3 nodes, each with 2 quad-core <u>Intel Nehalem</u> (Xeon 5540) processor running at 2.53 GHz, totaling 30,240 cores in 45 racks
- All nodes are connected with <u>Gigabit Ethernet</u>, and DDR <u>InfiniBand</u> is used additionally in 864 nodes to provide high-speed and low-latency communication for message passing applications.^[4]

Lxplus.cern.ch

The Meyrin site currently provides some 45 petabytes of data storage on disk, and includes the majority of the 100,000 processing cores in the CERN DC.

- The WLCG is the world's largest computing grid.
- European Grid Infrastructure (link is external) in Europe
- Open Science Grid (link is external) in the US –
- Has many associated regional and national grids (such as TWGrid in Taiwan and EU-IndiaGrid and SciNet

High Energy Physics Experiments?

1. Collide Particles

2. Detect Final State

3. Understand connection of 1. And 2.

Generic Collider Experiment

Layers of detector systems around collision point

Generic Collider Experiment

A detector cross-section, showing particle paths

Generic Fixed Target Experiment

Accelerator

Particle Detection and Identification

shower of secondaries produced by primary particle.

