

Searches for Extra Dimensions and New Electroweak Bosons at the Tevatron

Pierre Savard University of Toronto and TRIUMF International Conference on High Energy Physics Moscow July 29th 2006

Outline

Review of Extra Dimension Models
 New Heavy Gauge Bosons
 Latest Experimental Results with ~ 1 fb⁻¹
 CDF Monojet Analysis (ADD Gravitons)
 DØ and CDF Randall Sundrum Graviton Search
 CDF Z'
 DØ W'
 Conclusions

New Gauge Bosons: Motivation

- Many new physics models that address the shortcomings of the SM predict the existence of new massive gauge bosons:
 - Neutral Z', for example:
 - Superstring-inspired E6 model
 - Little, littlest Higgs
 - Charged W', for example:
 - Left-right symmetric models $(SU(2)_L \times SU(2)_R)$
 - Little Higgs

Extra Dimensions: Motivation

- Extra dimensions have been invoked in the context of quantum theories of gravity (String Theory)
- Large Extra Dimensions (LED) were proposed in the late 90's as a solution to the hierarchy problem
 - Electroweak energy scale ~ energy scale of gravity
- Since then, new extra dimension models have been developed and been used to solve other problems: Dark Matter, Dark Energy, SUSY Breaking, etc.
- Some of these models can be experimentally tested at high energy colliders

Gravity in Large Extra Dimensions

Gravitational Potential in 4 Dimensions (Newton)

$$V(r) = G_N \frac{m_1 m_2}{r} = \frac{1}{(M_{Pl})^2} \frac{m_1 m_2}{r}$$

n extra dimensions, compactified at radius R

$$<<\mathbf{R}$$
 $V(r) \sim \frac{1}{(M_D)^{n+2}} \frac{m_1 m_2}{r^{n+1}}$ \searrow $V(r) \sim \frac{1}{(M_D)^{n+2}} \frac{m_1 m_2}{R^n} \frac{1}{r}$ $r > \mathbf{R}$

At large distances, must return to original potential

 $(M_{PL})^2 \sim R^n (M_D)^{2+n}$

Extra Dimension Models

Arkani-Hamed, Dimopoulos, and Dvali (ADD)

- Phys.Lett. B429(1998), Nuc.Phys.B544(1999)
- n extra dimensions, compactified at radius R
- SM is confined to brane in a higher dimensional space
- Only gravity can access extra dimensions
- Signatures: Jet+Missing E_T, γ+Missing E_T, lepton pairs, γ pairs

Extra Dimension Models

Randall-Sundrum Model:

One warped extra dimension

(from J. Lykken)

- Two branes, gravity localized on one, SM localized on second
- Fundamental graviton coupling: $\Lambda_{\pi}^{-1} = M_{pl}^{-1} e^{kr\pi}$
- Kaluza-Klein spacing: $m_n = k\pi \Lambda_{\pi} / M_{pl}$,~0.01< k/ M_{pl} < 0.1
- Signature: narrow, high mass resonances

Monojet + missing Et Search

- Data sample of ~1.1 fb⁻¹ collected using a jet trigger with a threshold of 100 GeV $E_{\rm T}$
- Have enough data to be able to make data-driven estimates of the major backgrounds.
- The most important backgrounds are:
 - Electroweak (1-jet + $Z \rightarrow vv$ and $W \rightarrow \ell v$: ℓ not identified)
 - QCD (mismeasured jets) → small (~6% of total bkg), estimated using data

Monojet event selections

- The leading jet must have E_T(corr) > 150 GeV to ensure that the trigger is fully efficient;
- Large missing energy is expected from the escaping particle (missing transverse energy > 120 GeV);
- A 2^{nd} jet of lower energy (E_T(2) < 60 GeV) is tolerated to increase the acceptance (ISR/FSR)
- To remove the charged lepton of W + jets events, we require no isolated tracks with $P_T > 10 \text{ GeV/c}$ and an Em fraction < 0.9
- To reduce QCD bkg, the MET must not be in the same azimuthal direction (φ) as any jets.

Example of Signature (most energetic event)

Jet $E_T = 419$ GeV, Missing $E_T = 417$ GeV

Electroweak Background Calculation

- To make a data-driven estimate of $Z \rightarrow vv$, $W \rightarrow \ell v$:
 - 1-jet+W/Z ($Z \rightarrow \ell \ell$, $W \rightarrow \ell v$, $\ell = e$, µ) cross sections are measured with sample of identified leptons
 - W cross sections normalized to Z cross sections using theoretically robust ratio between $W \rightarrow w$ and $Z \rightarrow \ell \ell$ cross sections.
 - Correct using measured branching ratios
 - Use simulation to estimate acceptance of missed lepton in $W \rightarrow \ell v$ ($\ell = e, \mu, \tau$)

Monojet Results, ADD Limits

Background	Expected Events
Ζ→νν	398 ± 30
W→TV	192 ± 20
W→µv	9 ± 2
W→ev	58 ± 6
Z→ll	7 ± I
QCD	39 ± 14
Non-Collision	6 ± 6
Total Predicted	819 ± 71
Data Observed	779

n	M _D (TeV/c ²) (K=1.3)	R(mm)
2	> 1.33	< 0.27
3	> 1.09	$< 3.1 \text{ x } 10^{-6}$
4	> 0.99	$< 9.9 \text{ x } 10^{-9}$
5	> 0.92	$< 3.2 \times 10^{-10}$
6	> 0.88	$< 3.1 \text{ x } 10^{-11}$

RS Search in e^+e^- and $\gamma\gamma$ Channels

- Backgrounds to dielectron, diphotons signals come:
 - SM Drell-Yan ($Z^0/\gamma^* \rightarrow e^+e^-$)
 - Direct yy production
 - QCD and W+jets
 - Other Electroweak processes

RS Limits: Cross Section vs M_G

 Systematic uncertainties on limits include mass dependent efficiency and acceptance, Z cross section, backgrounds

RS Limits: k/M_{pl} vs M_{G}

CDF RS ZZ \rightarrow e⁺e⁻e⁺e⁻ Search

- Very clean signature (low backgrounds)
- low cross section X branching ratio
- Low acceptance X efficiency

CDF SM-like Z' Limit

- Re-interpret CDF
 results in terms of a
 limit on a Z' boson with
 SM-like couplings
- 95% CL lower limit on Z' mass: 850 GeV

DØ W' →ev Search

- Search uses 900 pb-1 of data
- Backgrounds to W' signal:
 - Main background: SM W*
 - QCD multijet background (calculated from data)
 - Drell-Yan (Z⁰/γ*→e⁺e⁻, one electron lost)
 - Other Electroweak
 processes (e.g. WW, ZZ, WZ)

$D \emptyset W' \rightarrow ev Mass Limits$

Limits assume:

- No mixing between gauge groups
- g' (new coupling to fermions) equal to SM
- CKM matrix equivalent (U') equal to SM CKM matrix
- New decay channels like
 WZ are suppressed
- W' width assumed to scale with its mass
- 95% CL lower limit on W' mass: 965 GeV

 \bigcirc

Conclusions

- We presented the latest Tevatron results on searches for extra dimensions and new gauge bosons using ~1 fb⁻¹ of data
- No significant excess above Standard Model expectations was observed in the following search channels:
 - Monojet + Missing Et
 - High mass resonance with dielectrons
 - High mass resonance with diphotons
 - G→ZZ
 - W'→ev
- Both Tevatron collaborations are looking at other search channels. Results available soon.

RS Limits: k/M_{pl} vs M_{G}

