Slides from Mark Thomson (See also content in textbook)

The Z Resonance

\star Want to calculate the cross-section for $e^{+} e^{-} \rightarrow Z \rightarrow \mu^{+} \mu^{-}$
-Feynman rules for the diagram below give:

$$
\begin{aligned}
& \mathrm{e}^{+} \\
& \mathrm{e}^{+} \mathrm{e}^{-} \text {vertex: } \quad \bar{v}\left(p_{2}\right) \cdot-i g_{Z} \gamma^{\mu} \frac{1}{2}\left(c_{V}^{e}-c_{A}^{e} \gamma^{5}\right) \cdot u\left(p_{1}\right) \\
& \text { Z propagator: } \quad \frac{-i g_{\mu \nu}}{q^{2}-m_{Z}^{2}} \\
& \mu^{+} \mu^{-} \text {vertex: } \quad \bar{u}\left(p_{3}\right) \cdot-i g_{Z} \gamma^{\nu} \frac{1}{2}\left(c_{V}^{\mu}-c_{A}^{\mu} \gamma^{5}\right) \cdot v\left(p_{4}\right)
\end{aligned}
$$

$\Rightarrow \quad-i M_{f i}=\left[\bar{v}\left(p_{2}\right) \cdot-i g_{Z} \gamma^{\mu} \frac{1}{2}\left(c_{V}^{e}-c_{A}^{e} \gamma^{5}\right) \cdot u\left(p_{1}\right)\right] \cdot \frac{-i g_{\mu v}}{q^{2}-m_{Z}^{2}} \cdot\left[\bar{u}\left(p_{3}\right) \cdot-i g_{Z} \gamma^{\nu} \frac{1}{2}\left(c_{V}^{\mu}-c_{A}^{\mu} \gamma^{5}\right) \cdot v\left(p_{4}\right)\right]$
$\Rightarrow M_{f i}=-\frac{g_{Z}^{2}}{q^{2}-m_{Z}^{2}} g_{\mu \nu}\left[\bar{v}\left(p_{2}\right) \gamma^{\mu} \frac{1}{2}\left(c_{V}^{e}-c_{A}^{e} \gamma^{5}\right) \cdot u\left(p_{1}\right)\right] \cdot\left[\bar{u}\left(p_{3}\right) \gamma^{\nu} \frac{1}{2}\left(c_{V}^{\mu}-c_{A}^{\mu} \gamma^{5}\right) \cdot v\left(p_{4}\right)\right]$
\star Convenient to work in terms of helicity states by explicitly using the \mathbf{Z} coupling to LH and RH chiral states (ultra-relativistic limit so helicity = chirality)

$$
\frac{1}{2}\left(c_{V}-c_{A} \gamma^{5}\right)=c_{L} \frac{1}{2}\left(1-\gamma^{5}\right)+c_{R} \frac{1}{2}\left(1+\gamma^{5}\right)
$$

LH and RH projections operators
hence $c_{V}=\left(c_{L}+c_{R}\right), c_{A}=\left(c_{L}-c_{R}\right)$
and $\quad \frac{1}{2}\left(c_{V}-c_{A} \gamma^{5}\right)=\frac{1}{2}\left(c_{L}+c_{R}-\left(c_{L}-c_{R}\right) \gamma^{5}\right)$

$$
=c_{L} \frac{1}{2}\left(1-\gamma^{5}\right)+c_{R} \frac{1}{2}\left(1+\gamma^{5}\right)
$$

with $\quad c_{L}=\frac{1}{2}\left(c_{V}+c_{A}\right), c_{R}=\frac{1}{2}\left(c_{V}-c_{A}\right)$

* Rewriting the matrix element in terms of LH and RH couplings:

$$
\begin{array}{r}
M_{f i}=-\frac{g_{Z}^{2}}{q^{2}-m_{Z}^{2}} g_{\mu \nu}\left[c_{L}^{e} \bar{\nu}\left(p_{2}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) u\left(p_{1}\right)+c_{R}^{e} \bar{v}\left(p_{2}\right) \gamma^{\mu} \frac{1}{2}\left(1+\gamma^{5}\right) u\left(p_{1}\right)\right] \\
\times\left[c_{L}^{\mu} \bar{u}\left(p_{3}\right) \gamma^{\nu} \frac{1}{2}\left(1-\gamma^{\top}\right) v\left(p_{4}\right)+c_{R}^{\mu} \bar{u}\left(p_{3}\right) \gamma^{\nu} \frac{1}{2}\left(1+\gamma^{\top}\right) v\left(p_{4}\right)\right]
\end{array}
$$

\star Apply projection operators remembering that in the ultra-relativistic limit

$$
\begin{gathered}
\frac{1}{2}\left(1-\gamma^{5}\right) u=u_{\downarrow} ; \quad \frac{1}{2}\left(1+\gamma^{5}\right) u=u_{\uparrow}, \quad \frac{1}{2}\left(1-\gamma^{5}\right) v=v_{\uparrow}, \quad \frac{1}{2}\left(1+\gamma^{5}\right) v=v_{\downarrow} \\
\quad \Rightarrow \quad M_{f i}=-\frac{g_{Z}}{q^{2}-m_{Z}^{2}} g_{\mu v}\left[c_{L}^{e} \bar{\nu}\left(p_{2}\right) \gamma^{u} u_{\downarrow}\left(p_{1}\right)+c_{R}^{e} \bar{v}\left(p_{2}\right) \gamma^{\mu} u_{\uparrow}\left(p_{1}\right)\right] \\
\times\left[c_{L}^{\mu} \bar{u}\left(p_{3}\right) \gamma^{v} v_{\uparrow}\left(p_{4}\right)+c_{R}^{\mu} \bar{u}\left(p_{3}\right) \gamma^{v} v_{\downarrow}\left(p_{4}\right)\right]
\end{gathered}
$$

\star For a combination of \mathbf{V} and \mathbf{A} currents, $\bar{u} \uparrow \gamma^{\mu} \nu_{\uparrow}=0$ etc, gives four orthogonal contributions

$$
\Rightarrow \quad \begin{array}{r}
-\frac{g_{Z}^{2}}{q^{2}-m_{Z}^{2}} g_{\mu \nu}\left[c_{L}^{e} \bar{v}_{\uparrow}\left(p_{2}\right) \gamma^{\mu} u_{\downarrow}\left(p_{1}\right)+c_{R}^{e} \bar{v}_{\downarrow}\left(p_{2}\right) \gamma^{\mu} u_{\uparrow}\left(p_{1}\right)\right] \\
\times\left[c_{L}^{\mu} \bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{v} v_{\uparrow}\left(p_{4}\right)+c_{R}^{\mu} \bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{v} v_{\downarrow}\left(p_{4}\right)\right]
\end{array}
$$

\star Sum of 4 terms

$$
\begin{aligned}
& M_{R R}=-\frac{g_{Z}^{2}}{q^{2}-m_{Z}^{2}} c_{R}^{e} c_{R}^{\mu} g_{\mu \nu}\left[\bar{v}_{\downarrow}\left(p_{2}\right) \gamma^{\mu} u_{\uparrow}\left(p_{1}\right)\right]\left[\bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{\nu} v_{\downarrow}\left(p_{4}\right)\right] \\
& M_{R L}=-\frac{g_{Z}^{2}}{q^{2}-m_{Z}^{2}} c_{R}^{e} c_{L}^{\mu} g_{\mu \nu}\left[\bar{v}_{\downarrow}\left(p_{2}\right) \gamma^{\mu} u_{\uparrow}\left(p_{1}\right)\right]\left[\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\nu} v_{\uparrow}\left(p_{4}\right)\right] \\
& M_{L R}=-\frac{g_{Z}^{2}}{q^{2}-m_{Z}^{2}} c_{L}^{e} c_{R}^{\mu} g_{\mu \nu}\left[\bar{v}_{\uparrow}\left(p_{2}\right) \gamma^{\mu} u_{\downarrow}\left(p_{1}\right)\right]\left[\bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{\nu} v_{\downarrow}\left(p_{4}\right)\right]
\end{aligned}
$$

Remember: the L/R refer to the helicities of the initial/final state particles
\star Fortunately we have calculated these terms before when considering

$$
\begin{align*}
e^{+} e^{-} \rightarrow & \gamma \rightarrow \mu^{+} \mu^{-} \text {giving: } \tag{pages137-138}\\
& {\left[\bar{v}_{\downarrow}\left(p_{2}\right) \gamma^{\mu} u_{\uparrow}\left(p_{1}\right)\right]\left[\bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{v} v_{\downarrow}\left(p_{4}\right)\right]=s(1+\cos \theta) }
\end{align*}
$$

* Applying the QED results to the \mathbf{Z} exchange with gives:

$$
\begin{aligned}
\left|M_{R R}\right|^{2} & =s^{2}\left|\frac{g_{Z}^{2}}{s-m_{Z}^{2}}\right|^{2}\left(c_{R}^{e}\right)^{2}\left(c_{R}^{\mu}\right)^{2}(1+\cos \theta)^{2} \\
\left|M_{R L}\right|^{2} & =s^{2}\left|\frac{g_{Z}^{2}}{s-m_{Z}^{2}}\right|^{2}\left(c_{R}^{e}\right)^{2}\left(c_{L}^{\mu}\right)^{2}(1-\cos \theta)^{2} \\
\left|M_{L R}\right|^{2} & =s^{2}\left|\frac{g_{Z}^{2}}{s-m_{Z}^{2}}\right|^{2}\left(c_{L}^{e}\right)^{2}\left(c_{R}^{\mu}\right)^{2}(1-\cos \theta)^{2} \\
\left|M_{L R}\right|^{2} & =s^{2}\left|\frac{g_{Z}^{2}}{s-m_{Z}^{2}}\right|^{2}\left(c_{L}^{e}\right)^{2}\left(c_{L}^{\mu}\right)^{2}(1+\cos \theta)^{2}
\end{aligned}
$$

$\frac{e^{2}}{q^{2}} \rightarrow \frac{g_{Z}^{2}}{q^{2}-m_{Z}^{2}} c^{e} c^{\mu}$
where $q^{2}=s=4 E_{e}^{2}$

* As before, the angular dependence of the matrix elements can be understood in terms of the spins of the incoming and outgoing particles e.g.

The Breit-Wigner Resonance

\star Need to consider carefully the propagator term $1 /\left(s-m_{Z}^{2}\right)$ which diverges when the C.o.M. energy is equal to the rest mass of the \mathbf{Z} boson
\star To do this need to account for the fact that the Z boson is an unstable particle -For a stable particle at rest the time development of the wave-function is:

$$
\psi \sim e^{-i m t}
$$

-For an unstable particle this must be modified to

$$
\psi \sim e^{-i m t} e^{-\Gamma t / 2}
$$

so that the particle probability decays away exponentially

$$
\psi^{*} \psi \sim e^{-\Gamma t}=e^{-t / \tau} \quad \text { with } \quad \tau=\frac{1}{\Gamma_{Z}}
$$

-Equivalent to making the replacement

$$
m \rightarrow m-i \Gamma / 2
$$

\star In the \mathbf{Z} boson propagator make the substitution:
\star Which gives:

$$
m_{Z} \rightarrow m_{Z}-i \Gamma_{Z} / 2
$$

$$
\left(s-m_{Z}^{2}\right) \longrightarrow\left[s-\left(m_{Z}-i \Gamma_{Z} / 2\right)\right]=s-m_{Z}^{2}+i m_{Z} \Gamma_{Z}+\frac{1}{4} \Gamma_{Z}^{2} \approx s-m_{Z}^{2}+i m_{Z} \Gamma_{Z}
$$

where it has been assumed that $\Gamma_{Z} \ll m_{Z}$
\star Which gives

$$
\left|\frac{1}{s-m_{Z}^{2}}\right|^{2} \rightarrow\left|\frac{1}{s-m_{Z}^{2}+i m_{Z} \Gamma_{Z}}\right|^{2}=\frac{1}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}}
$$

« And the Matrix elements become

$$
\begin{equation*}
\left|M_{R R}\right|^{2}=\frac{g_{Z}^{4} s^{2}}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}}\left(c_{R}^{e}\right)^{2}\left(c_{R}^{\mu}\right)^{2}(1+\cos \theta)^{2} \tag{etc.}
\end{equation*}
$$

* In the limit where initial and final state particle mass can be neglected:
\star Giving:

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{64 \pi^{2} s}\left|M_{f i}\right|^{2} \tag{page31}
\end{equation*}
$$

$$
\frac{\mathrm{d} \sigma_{R R}}{\mathrm{~d} \Omega}=\frac{1}{64 \pi^{2}} \frac{g_{Z}^{4} s}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}}\left(c_{R}^{e}\right)^{2}\left(c_{R}^{\mu}\right)^{2}(1+\cos \theta)^{2}
$$

$$
\frac{\mathrm{d} \sigma_{L L}}{\mathrm{~d} \Omega}=\frac{1}{64 \pi^{2}} \frac{g_{Z}^{4} s}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}}\left(c_{L}^{e}\right)^{2}\left(c_{L}^{\mu}\right)^{2}(1+\cos \theta)^{2}
$$

$$
\frac{\mathrm{d} \sigma_{L R}}{\mathrm{~d} \Omega}=\frac{1}{64 \pi^{2}} \frac{g_{Z}^{4} s}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}}\left(c_{L}^{e}\right)^{2}\left(c_{R}^{\mu}\right)^{2}(1-\cos \theta)^{2}
$$

\star Because $\left|M_{L L}\right|^{2}+\left|M_{R R}\right|^{2} \neq\left|M_{L R}\right|^{2}+\left|M_{R L}\right|^{2}$, the differential cross section is asymmetric, i.e. parity violation (although not maximal as was the case for the W boson).

$$
\frac{\mathrm{d} \sigma_{R L}}{\mathrm{~d} \Omega}=\frac{1}{64 \pi^{2}} \frac{g_{Z}^{4} s}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}}\left(c_{L}^{e}\right)^{2}\left(c_{R}^{\mu}\right)^{2}(1-\cos \theta)^{2}
$$

Cross section with unpolarized beams

\star To calculate the total cross section need to sum over all matrix elements and average over the initial spin states. Here, assuming unpolarized beams (i.e. both \mathbf{e}^{+}and both e^{-}spin states equally likely) there a four combinations of initial electron/positron spins, so

$$
\begin{aligned}
\left.\left.\langle | M_{f i}\right|^{2}\right\rangle= & \frac{1}{2} \cdot \frac{1}{2} \cdot\left(\left|M_{R R}\right|^{2}+\left|M_{L L}\right|^{2}+\left|M_{L R}\right|^{2}+\left|M_{R L}\right|^{2}\right) \\
= & \frac{1}{2} \cdot \frac{1}{2} \frac{g_{Z}^{4} s^{2}}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}} \times\left\{\left[\left(c_{R}^{e}\right)^{2}\left(c_{R}^{\mu}\right)^{2}+\left(c_{L}^{e}\right)^{2}\left(c_{L}^{2}\right)^{2}\right](1+\cos \theta)^{2}\right. \\
& \left.+\left[\left(c_{L}^{e}\right)^{2}\left(c_{R}^{\mu}\right)^{2}+\left(c_{R}^{e}\right)^{2}\left(c_{L}^{2}\right)^{2}\right](1-\cos \theta)^{2}\right\}
\end{aligned}
$$

\star The part of the expression \{...\} can be rearranged:

$$
\begin{gather*}
\{\ldots\}=\left[\left(c_{R}^{e}\right)^{2}+\left(c_{L}^{e}\right)^{2}\right]\left[\left(c_{R}^{\mu}\right)^{2}+\left(c_{L}^{\mu}\right)^{2}\right]\left(1+\cos ^{2} \theta\right) \\
+2\left[\left(c_{R}^{e}\right)^{2}-\left(c_{L}^{e}\right)^{2}\right]\left[\left(c_{R}^{\mu}\right)^{2}-\left(c_{L}^{\mu}\right)^{2}\right] \cos \theta \tag{1}
\end{gather*}
$$

and using $c_{V}^{2}+c_{A}^{2}=2\left(c_{L}^{2}+c_{R}^{2}\right) \quad$ and $\quad c_{V} c_{A}=c_{L}^{2}+c_{R}^{2}$

$$
\{\ldots\}=\frac{1}{4}\left[\left(c_{V}^{e}\right)^{2}+\left(c_{A}^{e}\right)^{2}\right]\left[\left(c_{V}^{\mu}\right)^{2}+\left(c_{A}^{\mu}\right)^{2}\right]\left(1+\cos ^{2} \theta\right)+2 c_{V}^{e} c_{A}^{e} c_{V}^{\mu} c_{A}^{\mu} \cos \theta
$$

\star Hence the complete expression for the unpolarized differential cross section is:

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}= & \left.\left.\frac{1}{64 \pi^{2} s}\langle | M_{f i}\right|^{2}\right\rangle \\
= & \frac{1}{64 \pi^{2}} \cdot \frac{1}{4} \cdot \frac{g_{Z}^{4} s}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}} \times \\
& \left\{\frac{1}{4}\left[\left(c_{V}^{e}\right)^{2}+\left(c_{A}^{e}\right)^{2}\right]\left[\left(c_{V}^{\mu}\right)^{2}+\left(c_{A}^{\mu}\right)^{2}\right]\left(1+\cos ^{2} \theta\right)+2 c_{V}^{e} c_{A}^{e} c_{V}^{\mu} c_{A}^{\mu} \cos \theta\right\}
\end{aligned}
$$

\star Integrating over solid angle $\mathrm{d} \Omega=\mathrm{d} \phi \mathrm{d}(\cos \theta)=2 \pi \mathrm{~d}(\cos \theta)$

$$
\begin{aligned}
& \int_{-1}^{+1}\left(1+\cos ^{2} \theta\right) \mathrm{d}(\cos \theta)=\int_{-1}^{+1}\left(1+x^{2}\right) d x=\frac{8}{3} \text { and } \int_{-1}^{+1} \cos \theta \mathrm{~d}(\cos \theta)=0 \\
& \left.\sigma_{e^{+} e^{-} \rightarrow Z \rightarrow \mu^{+} \mu^{-}}=\frac{1}{192 \pi} \frac{g_{Z}^{4} s}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}}\left[\left(c_{V}^{e}\right)^{2}+\left(c_{A}^{e}\right)^{2}\right]\left[\left(c_{V}^{\mu}\right)^{2}+\left(c_{A}^{\mu}\right)^{2}\right]\right]
\end{aligned}
$$

* Note: the total cross section is proportional to the sums of the squares of the vector- and axial-vector couplings of the initial and final state fermions

$$
\left(c_{V}^{f}\right)^{2}+\left(c_{A}^{f}\right)^{2}
$$

Connection to the Breit-Wigner Formula

\star Can write the total cross section

$$
\left.\sigma_{e^{+} e^{-} \rightarrow Z \rightarrow \mu^{+} \mu^{-}}=\frac{1}{192 \pi} \frac{g_{Z}^{4} s}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}}\left[\left(c_{V}^{e}\right)^{2}+\left(c_{A}^{e}\right)^{2}\right]\left[\left(c_{V}^{\mu}\right)^{2}+\left(c_{A}^{\mu}\right)^{2}\right]\right]
$$

in terms of the \mathbf{Z} boson decay rates (partial widths) from page 473 (question 26)

$$
\begin{gathered}
\Gamma\left(Z \rightarrow e^{+} e^{-}\right)=\frac{g_{Z}^{2} m_{Z}}{48 \pi}\left[\left(c_{V}^{e}\right)^{2}+\left(c_{A}^{e}\right)^{2}\right] \quad \text { and } \quad \Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right)=\frac{g_{Z}^{2} m_{Z}}{48 \pi}\left[\left(c_{V}^{\mu}\right)^{2}+\left(c_{A}^{\mu}\right)^{2}\right] \\
\Rightarrow \sigma
\end{gathered} \quad \begin{aligned}
& \Rightarrow \quad \frac{12 \pi}{m_{Z}^{2}} \frac{s}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}} \Gamma\left(Z \rightarrow e^{+} e^{-}\right) \Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right)
\end{aligned}
$$

\star Writing the partial widths as $\Gamma_{e e}=\Gamma\left(Z \rightarrow e^{+} e^{-}\right)$etc., the total cross section can be written

$$
\begin{equation*}
\sigma\left(e^{+} e^{-} \rightarrow Z \rightarrow f \bar{f}\right)=\frac{12 \pi}{m_{Z}^{2}} \frac{s}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}} \Gamma_{e e} \Gamma_{f f} \tag{2}
\end{equation*}
$$

where f is the final state fermion flavour:
(The relation to the non-relativistic form of the part II course is given in the appendix)

Forward-Backward Asymmetry

\star On page 495 we obtained the expression for the differential cross section:

$$
\langle | M_{f i}| \rangle^{2} \propto\left[\left(c_{L}^{e}\right)^{2}+\left(c_{R}^{e}\right)^{2}\right]\left[\left(c_{L}^{\mu}\right)^{2}+\left(c_{R}^{\mu}\right)^{2}\right]\left(1+\cos ^{2} \theta\right)+\left[\left(c_{L}^{e}\right)^{2}-\left(c_{R}^{e}\right)^{2}\right]\left[\left(c_{L}^{\mu}\right)^{2}-\left(c_{R}^{\mu}\right)^{2}\right] \cos \theta
$$

\star The differential cross sections is therefore of the form:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\kappa \times\left[A\left(1+\cos ^{2} \theta\right)+B \cos \theta\right] \quad\left\{\begin{array}{l}
A=\left[\left(c_{L}^{e}\right)^{2}+\left(c_{R}^{e}\right)^{2}\right]\left[\left(c_{L}^{\mu}\right)^{2}+\left(c_{R}^{\mu}\right)^{2}\right] \\
B=\left[\left(c_{L}^{e}\right)^{2}-\left(c_{R}^{e}\right)^{2}\right]\left[\left(c_{L}^{\mu}\right)^{2}-\left(c_{R}^{\mu}\right)^{2}\right]
\end{array}\right.
$$

\star Define the FORWARD and BACKWARD cross sections in terms of angle incoming electron and out-going particle

$$
\sigma_{F} \equiv \int_{0}^{1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta} \mathrm{~d} \cos \theta
$$

$$
\sigma_{B} \equiv \int_{-1}^{0} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta} \mathrm{~d} \cos \theta
$$

\star The level of asymmetry about $\cos \theta=0$ is expressed in terms of the Forward-Backward Asymmetry

$$
A_{\mathrm{FB}}=\frac{\sigma_{F}-\sigma_{B}}{\sigma_{F}+\sigma_{B}}
$$

- Integrating equation (1):

$$
\begin{aligned}
& \sigma_{F}=\kappa \int_{0}^{1}\left[A\left(1+\cos ^{2} \theta\right)+B \cos \theta\right] \mathrm{d} \cos \theta=\kappa \int_{0}^{1}\left[A\left(1+x^{2}\right)+B x\right] \mathrm{d} x=\kappa\left(\frac{4}{3} A+\frac{1}{2} B\right) \\
& \sigma_{B}=\kappa \int_{-1}^{0}\left[A\left(1+\cos ^{2} \theta\right)+B \cos \theta\right] \mathrm{d} \cos \theta=\kappa \int_{-1}^{0}\left[A\left(1+x^{2}\right)+B x\right] \mathrm{d} x=\kappa\left(\frac{4}{3} A-\frac{1}{2} B\right)
\end{aligned}
$$

\star Which gives:

$$
A_{\mathrm{FB}}=\frac{\sigma_{F}-\sigma_{B}}{\sigma_{F}+\sigma_{B}}=\frac{B}{(8 / 3) A}=\frac{3}{4}\left[\frac{\left(c_{L}^{e}\right)^{2}-\left(c_{R}^{e}\right)^{2}}{\left(c_{L}^{e}\right)^{2}+\left(c_{R}^{e}\right)^{2}}\right] \cdot\left[\frac{\left(c_{L}^{\mu}\right)^{2}-\left(c_{R}^{\mu}\right)^{2}}{\left(c_{L}^{\mu}\right)^{2}+\left(c_{R}^{\mu}\right)^{2}}\right]
$$

\star This can be written as

$$
\begin{equation*}
A_{\mathrm{FB}}=\frac{3}{4} A_{e} A_{\mu} \quad \text { with } \quad A_{f} \equiv \frac{\left(c_{L}^{e}\right)^{2}-\left(c_{R}^{e}\right)^{2}}{\left(c_{L}^{e}\right)^{2}+\left(c_{R}^{e}\right)^{2}}=\frac{2 c_{V}^{f} c_{A}^{f}}{\left(c_{V}^{f}\right)^{2}+\left(c_{A}^{f}\right)^{2}} \tag{4}
\end{equation*}
$$

* Observe a non-zero asymmetry because the couplings of the \mathbf{Z} to LH and RH particles are different. Contrast with QED where the couplings to LH and RH particles are the same (parity is conserved) and the interaction is FB symmetric

Measured Forward-Backward Asymmetries

« Forward-backward asymmetries can only be measured for final states where the charge of the fermion can be determined, e.g. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow Z \rightarrow \mu^{+} \mu^{-}$

\star To relate these measurements to the couplings uses $A_{\mathrm{FB}}=\frac{3}{4} A_{e} A_{\mu}$
\star In all cases asymmetries depend on A_{e}
\star To obtain A_{e} could use $\quad A_{F B}^{0, \mathrm{e}}=\frac{3}{4} A_{e}^{2} \quad$ (also see Appendix II for A_{LR})

Determination of the Weak Mixing Angle

$\left.\begin{array}{l}\star \text { From LEP : } \quad A_{F B}^{0, f}=\frac{3}{4} A_{e} A_{f} \\ \star \text { From SLC : } \quad A_{L R}=A_{e}\end{array}\right\} \quad A_{e}, A_{\mu}, A_{\tau}, \ldots$

Putting everything
together \Rightarrow
:---
$A_{\mu}=0.1456 \pm 0.0091$
$A_{\tau}=0.1449 \pm 0.0040$

with $\quad A_{f} \equiv \frac{2 c_{V}^{f} c_{A}^{f}}{\left(c_{V}^{f}\right)^{2}+\left(c_{A}^{f}\right)^{2}}=2 \frac{c_{V} / c_{A}}{1+\left(c_{V} / c_{A}\right)^{2}}$

* Measured asymmetries give ratio of vector to axial-vector \mathbf{Z} coupings.
\star In SM these are related to the weak mixing angle

$$
\frac{c_{V}}{c_{A}}=\frac{I_{W}^{3}-2 Q \sin ^{2} \theta_{W}}{I_{W}^{3}}=1-\frac{2 Q}{I_{3}} \sin ^{2} \theta_{W}=1-4|Q| \sin ^{2} \theta_{W}
$$

\star Asymmetry measurements give precise determination of $\sin ^{2} \theta_{W}$

$$
\sin ^{2} \theta_{W}=0.23154 \pm 0.00016
$$

