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Slides from Mark Thomson 
(See also content in textbook)
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The Z Resonance
! Want to calculate the cross-section for  
•Feynman rules for the diagram below give:

e– µ–

e+ µ+
Z

e+e- vertex:

µ+µ- vertex:

Z propagator:

! Convenient to work in terms of helicity states by explicitly using the Z coupling to
LH and RH chiral states   (ultra-relativistic limit so helicity = chirality) 

LH and RH projections operators
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hence 
and 

with 
! Rewriting the matrix element in terms of LH and RH couplings: 

! Apply projection operators remembering that in the ultra-relativistic limit 

! For a combination of V and A currents,                        etc, gives four orthogonal 
contributions   
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! Sum of 4 terms  

e– e+
µ+

µ–

µ–

e– e+
µ+

e– e+
µ+

µ–

e– e+
µ+

µ–

Remember: the L/R refer to the helicities of the initial/final state particles 
! Fortunately we have calculated these terms before when considering 

(pages 137-138)giving:
etc.
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! Applying the QED results to the Z exchange with   

-1 +1cosq

e–
e+

µ+

µ–MRR

gives:
where

! As before, the angular dependence of the matrix elements can be understood
in terms of the spins of the incoming and outgoing particles e.g.  
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The Breit-Wigner Resonance
! Need to consider carefully the propagator term                          which 

diverges when the C.o.M. energy is equal to the rest mass of the Z boson
! To do this need to account for the fact that the Z boson is an unstable particle
•For a stable particle at rest the time development of the wave-function is:

•For an unstable particle this must be modified to

so that the particle probability decays away exponentially 

•Equivalent to making the replacement 

!In the Z boson propagator make the substitution:

! Which gives:

where it has been assumed that 
! Which gives 

with
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! And the Matrix elements become 

etc.

! In the limit where initial and final state particle mass can be neglected:   

(page 31)
! Giving:  

-1 +1cosq

! Because                                                         , the 
differential cross section is asymmetric, i.e. parity
violation (although not maximal as was the case
for the W boson).

µ–

e+
e–

µ+
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Cross section with unpolarized beams
!To calculate the total cross section need to sum over all matrix elements and

average over the initial spin states.  Here, assuming unpolarized beams (i.e. both
e+ and both e- spin states equally likely) there a four combinations of 
initial electron/positron spins, so

!The part of the expression  {…} can be rearranged:

andand using 

(1)
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!Hence the complete expression for the unpolarized differential cross section is:

! Integrating over solid angle 

and

! Note: the total cross section is proportional to the sums of the squares of the
vector- and axial-vector couplings of the initial and final state fermions   
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Connection to the Breit-Wigner Formula
! Can write the total cross section 

in terms of the Z boson decay rates (partial widths) from page 473 (question 26)

! Writing the partial widths as                                         etc., the total cross section
can be written

(2)

where f is the final state fermion flavour: 

and

(The relation to the non-relativistic form of the part II course is given in the appendix)
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Forward-Backward Asymmetry

µ–

e+
e–

µ+

! On page 495 we obtained the expression for the differential cross section: 

! The differential cross sections is therefore of the form:

! Define the FORWARD and BACKWARD cross sections in terms of angle 
incoming electron and out-going particle 

-1 +1cosq

FB µ–

e+
e–

µ+

FB
e.g. “backward hemisphere”
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-1 +1cosq

FB
!The level of asymmetry about cosq=0 is expressed

in terms of the Forward-Backward Asymmetry

• Integrating equation (1):

! Which gives:

! This can be written as

with

! Observe a non-zero asymmetry because the couplings of the Z  to LH and RH 
particles are different. Contrast with QED where the couplings to LH and RH 
particles are the same (parity is conserved) and the interaction is FB symmetric

(4)
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Measured Forward-Backward Asymmetries
! Forward-backward asymmetries can only be measured for final states where

the charge of the fermion can be determined, e.g.   
OPAL Collaboration, 
Eur. Phys. J. C19 (2001) 587-651. Because sin2qw ≈ 0.25, the value of

AFB for leptons is almost zero

For data above and below the peak 
of the Z resonance interference with

leads to a 
larger asymmetry 

!LEP data combined:

!To relate these measurements to the couplings uses
! In all cases asymmetries depend on       
! To obtain         could use              (also see Appendix II for ALR)
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Determination of the Weak Mixing Angle
! From LEP : 
! From SLC : 

with

includes results from
other measurements

! Measured asymmetries give ratio of vector to axial-vector Z coupings. 
! In SM these are related to the weak mixing angle  

! Asymmetry measurements give precise determination of  

Putting everything
together


