LONG PROBLEM SET 1, PROBLEM 2

Kinetic terms for gauge fields:

$$
\mathcal{L}_{G}=-\frac{1}{4} W_{\mu \nu}^{i} W^{\mu \nu i}-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}
$$

with

$$
\begin{aligned}
W_{\mu \nu}^{i} & \equiv \partial_{\mu} W_{\nu}^{i}-\partial_{\nu} W_{\mu}^{i}+g \epsilon_{i j k} W_{\mu}^{j} W_{\nu}^{k} \\
B_{\mu \nu} & \equiv \partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}
\end{aligned}
$$

After writing in terms of physical fields $\mathrm{W}^{+/-}, \mathrm{Z}$ and A one finds trilinear and quartic couplings: $\mathrm{W}^{+} \mathrm{W}^{-} \mathrm{Z}, \mathrm{W}^{+} \mathrm{W}^{-} \mathrm{A}$, $W^{+} W^{-} W^{+} W^{-}, W^{+} W^{-} Z Z, W^{+} W^{-} Z A, W^{+} W^{-} A A$.

Problem 2: show that these are the allowed trilinear and quartic couplings of the SM

