	(This lecture mostly follows Quigg Chapters 4-5)		-Hinne Mechaniem (Abelian mee)	-SSB for continuous symmetry	-SSB for discrete symmetry		- Mation		Overview:	LECTORE 3. Spontaneous Symmetry Breaking (rart 1)		

Fur an en interaction we wa	current - current interaction	G (v~Y~ up) (veY~ve)	c J _M Am	from atom	beta decay in analogy to photon	Fermi proposes field theory for	V J DOY	to explain spectrum	~1930s: Pauli proposes the neutrino		not continuous	~1910s: observation that electron spectr	Motivation (some history)	
ould have: <u>c</u>) , J, ,		c. ve	z	()	emitted	r e eversy				counts		rum from beta decay is	3	

For nessless particles, H7 = (d-p+ \betan); sives decoupled equections: Ex = - or p x Ex = + or p x	$ \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$	In Weyl (chiral rep.): N Weyl (chiral rep.): N Neyl (chiral rep.): 10 m/ Yo = 10 T/ Y ⁵ = 1-T		Previous result Tells us how we would The write the week coment:	c open parenthesis
rfe		0	- -		Ŧ

Spontaneous Symmetry Breakdown	
Continuous symmetries of the Lagrangian lead to cons	conservation laws
Approximate concervation laws can arrive if Lagrandia	nnninn is imnørførtlv
symmetric	
Lagrangian can be exactly invariant under some symme	ymmetry but the
dynamics imply a vacuum that is not invariant under th	ler the symmetry
Examples include buckling needle, terromagnet etc.	tc.
Remember that explicit mass terms violate local gauge	gauge invariance of
the Lagrangian. We need a massive boson and we wan	e want to keep
local gauge invariance (renorm.).	

with M220 we have Two scalars of rass on and a racis less photon Consider the Lagrangian For charged scalars Hisss Mechanism (Abelian case) U~ der L = 1 pr e 2 - mile 2 - 1/1 exe - 1/5 m Fri where $Q = \frac{1}{\sqrt{2}} (Q_1 \pm i Q_2)$ Local gave Transformations: -> Frv = JvAn - In Av -+ complex scalar Field + Dr = dr + ig Ar ek1 + ek)' = eitalk) ek) Ankel - Ankel = Ankel - Indek હ

Answer to Gabe's question
we used suge transformation:
$$A_1 \rightarrow A_1' = A_1 + \frac{1}{1^{\nu}} \lambda_1 \int \frac{1}{\sqrt{1+1}} \int \frac$$

