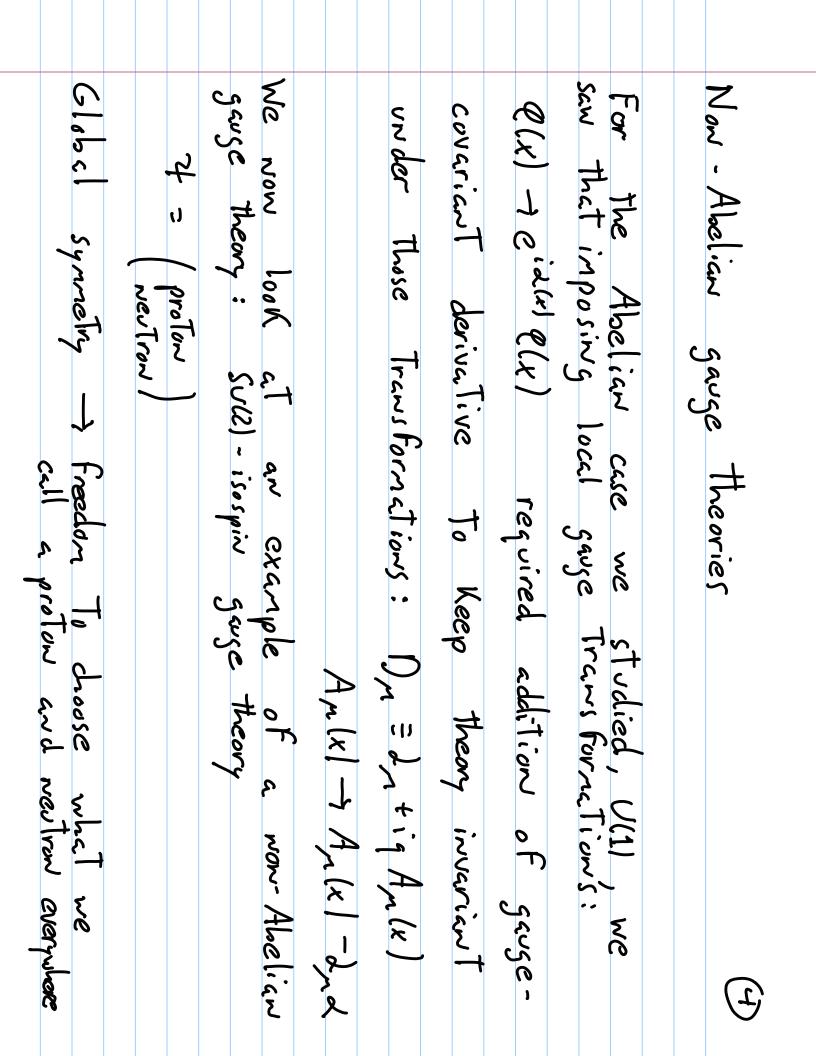
LECTURE 6: Spontaneous Symmetry Breaking (Part II) Overview: -Recap of Abelian case -Ginzburg-Laudau -Non-Abelian gauge theories (contruction) -Higgs Mechanism (non-Abelian case) (This lecture mostly follows Quigg Chapters 4-5)	

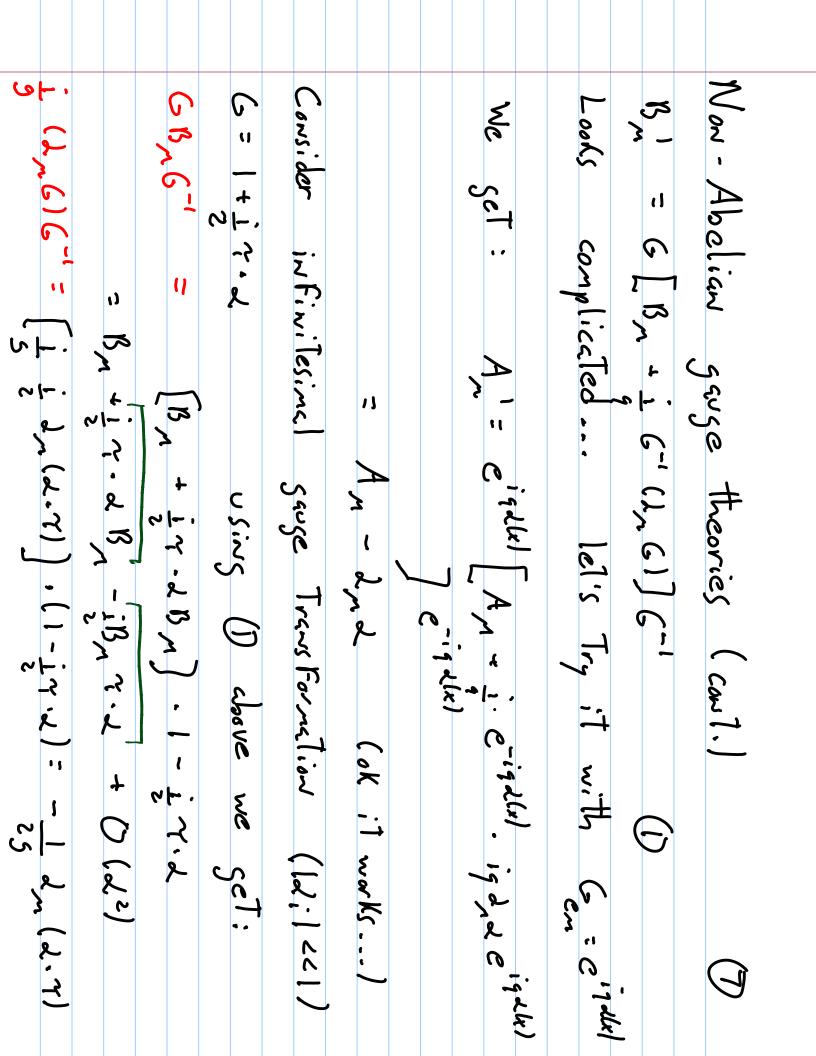
<u>କ</u>

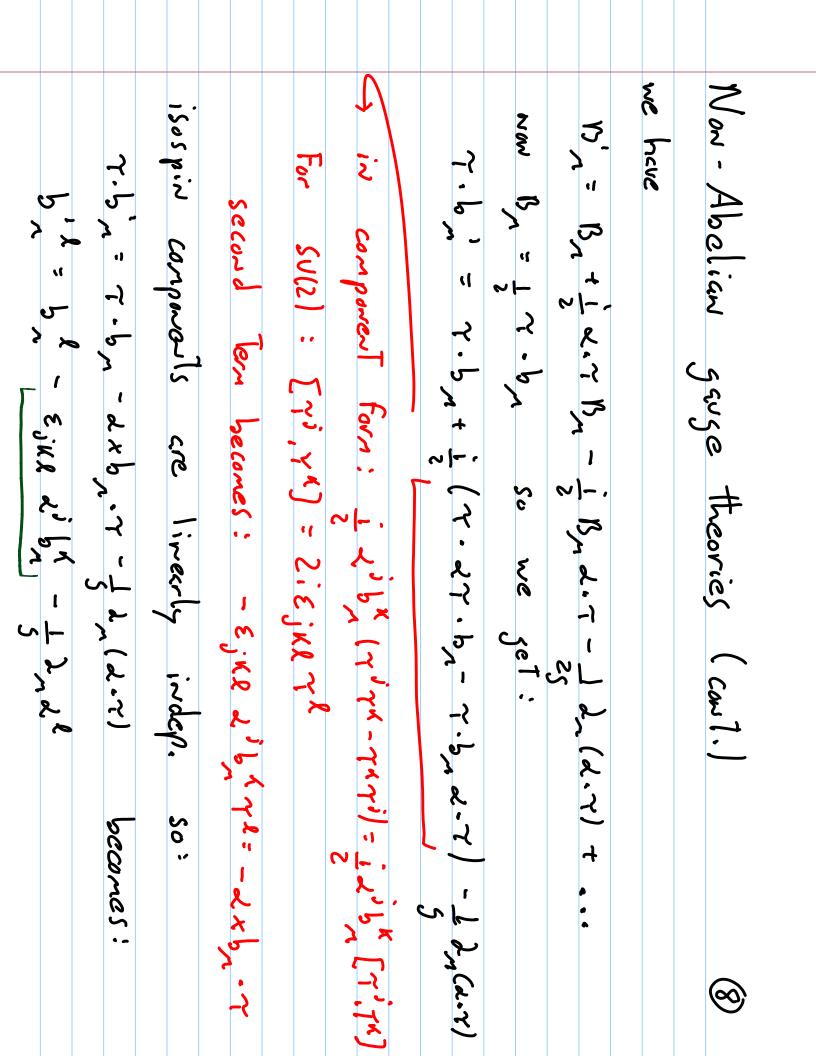
 Meisner Effect: Cooper pairs form BEC condensate below T_c ~ 10⁰-10² K. Condensate disturbed by EM field Short range force, attenuation length ~10⁻⁶cm equivalent to photon acquiring a mass Electroweak symmetry breaking: Higgs condenses below T_c ~10¹⁵K. Condensate disturbed by gauge bosons Short range force, attenuation length ~10⁻¹⁸cm W/Z bosons acquire mass 	Ginzburg Landau Superconductivity 24: marsopic wave functions describ Free energy of superconductor can be Grover (0) = Grown (0) + 132 + 2 1212 + 15121414 Grover (18) = Grover (0) + 132 + 2 1212 + 15121414 Grover (18) = Grover (0) + 132 + 2 1212 + 1512414 in meak field approx. Field equations derived using Grover (18) lead to massi
	conductivity (3) on describing condensate or can be written as: * + BI414 + BI414 + + BI414 + - :7 - exAl2 2 :ield equations to massive photon



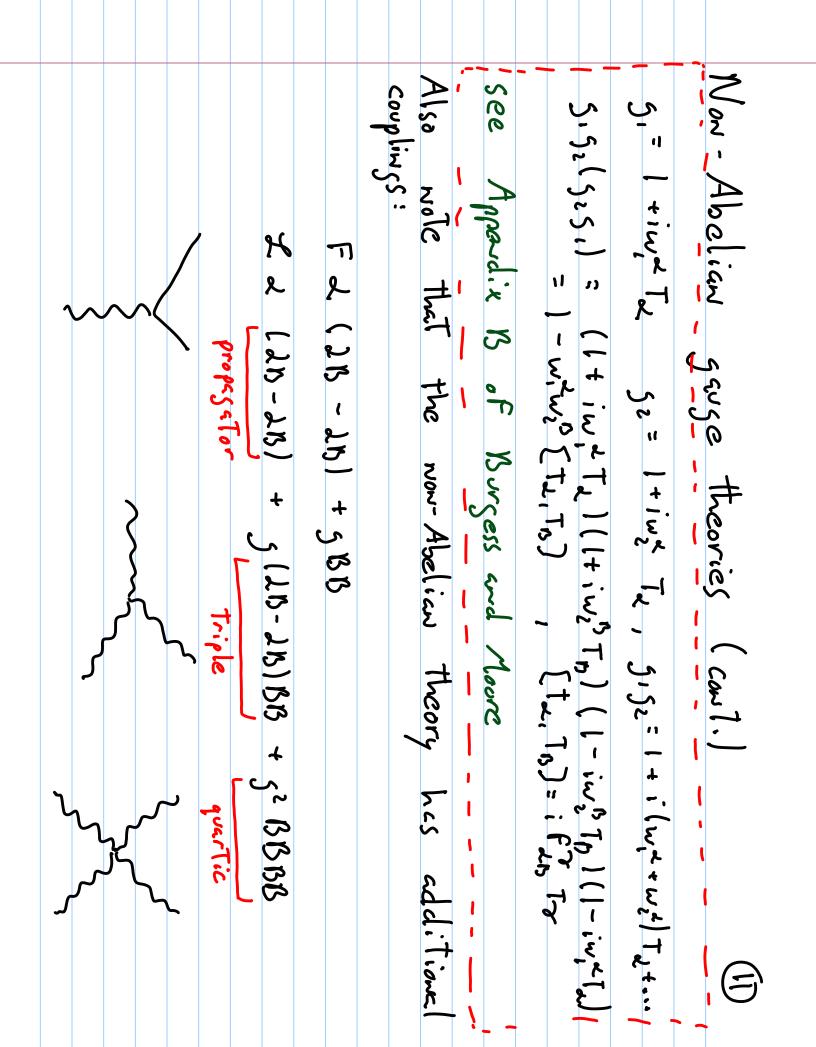
Now Abelian gauge theories (3)
Now Abelian gauge theories (5)
Consider a local gauge Transformation for the
Field that the local gauge Transformation for the
mith
$$G(x) = \exp(\frac{1}{2}x \cdot \omega(x))$$

T are the local matrices
 $d = d_1, d_2, d_3$
 $d_1 + for the local matrices
 $d_2 = d_1, d_2, d_3$
 $d_1 + form the local matrices
 $d_3 + for take core of this torm, tel's introduce a
gauge covariant derivative: $D_A = Id_A + igB_A$
with $B_A = Ixb_A^2 = \frac{1}{2} \begin{pmatrix} b_3, b_1 - ib_2 \\ b_1 + ib_2 - b_3 \end{pmatrix}$
 $b_A = (b_1, b_2, b_3)$$$$





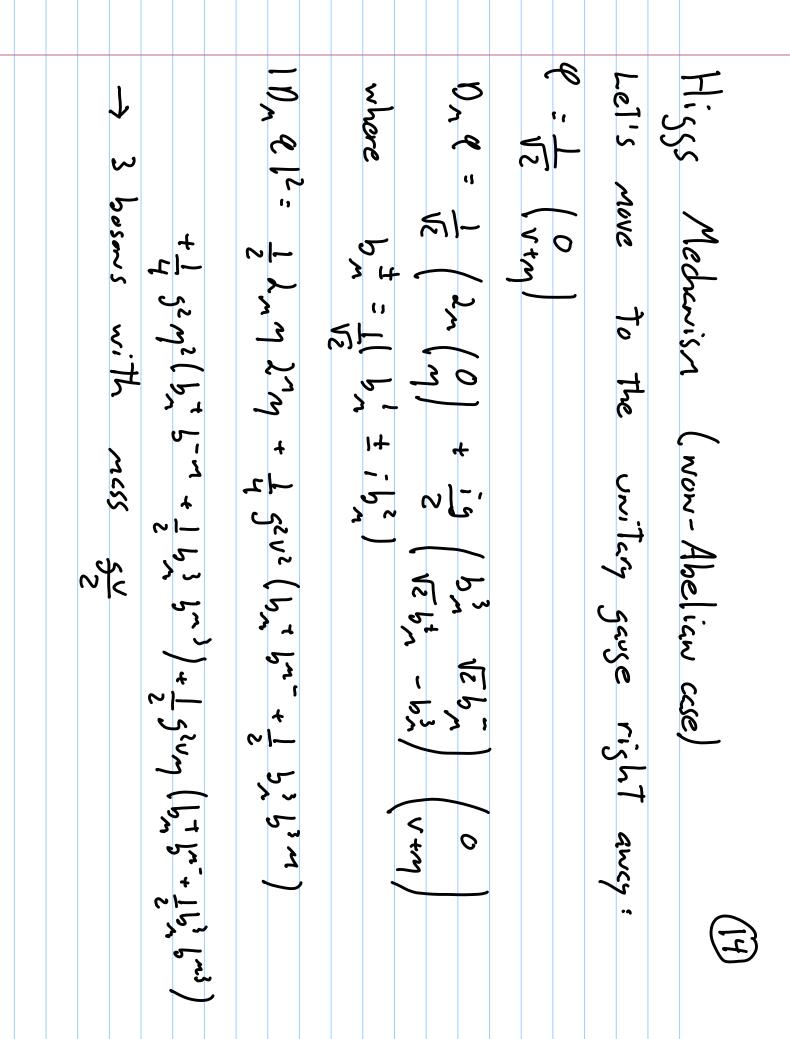
Now - Abelian gauge theories (cont.) (D)
if we Try
$$F_{nv} = \frac{1}{1} [Dv, D_n]$$
 for QED:
 $F_{nv} = \frac{1}{1} [(J_v + i_1 A_v), (J_n + i_1 A_n)]$
 $= J_v A_n - J_n A_v + i_1 [A_v, A_n]$
 $GF_{nv} = \frac{1}{12} [Dv, D_n] = J_v B_n - J_n B_v + i_2 [Dv, B_n]$
 $GF_{nv} G^{-1} = F_{nv}$
 $GF_{nv} G^{-1} = F_{nv}$
 $GF_{nv} G^{-1} = F_{nv}$
 $F_{nv} = J_n G_n = J_n B_n - J_n B_n + i_2 [Dv, B_n]$
 $F_{nv} = J_n f_{nv} = J_n B_n - J_n B_n + i_2 [Dv, B_n]$
 $F_{nv} = J_n A_n + i_1 [A_n B_n - A_n B_n + i_2 [Dv, B_n]$
 $F_{nv} = J_n G_n = J_n A_n = J_n B_n + J_n$

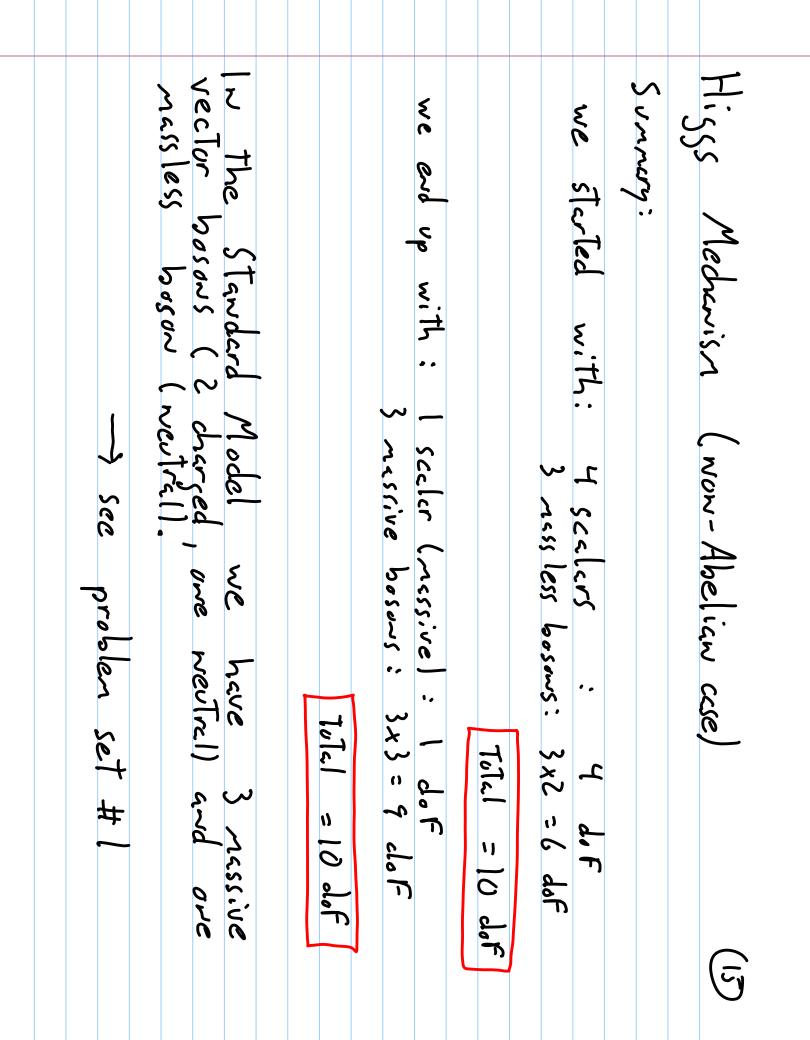


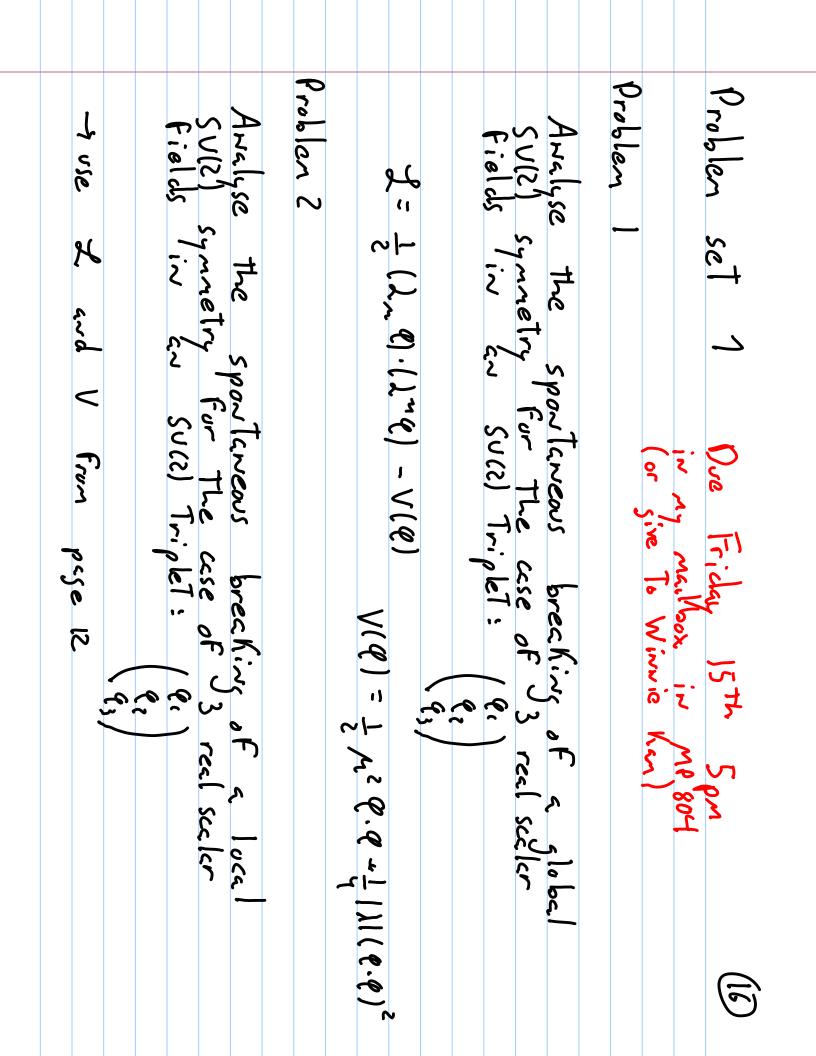
Hisss Medanish (non-Abelian case)
We will shady a SU(2) doubleT of complex scalar
fields:
$$Q = \sqrt{2} \left(\frac{Q_1 + iQ_2}{Q_3 + iQ_4} \right)$$

The Lagrangian is: $(2\pi Q)^{\dagger} (2\pi Q) - \mu^2 Q^{\dagger} Q - \lambda [Q_1 Q]^2$
The covariant derivative: $D_{\pi} = 2\pi + ig \frac{\pi}{2} R_{\pi}^{2}$
Under infinitesiant transformation: $Q(A) = ig \frac{\pi}{2} R_{\pi}^{2}$
Under infinitesiant transformation: $Q(A) = ig \frac{\pi}{2} R_{\pi}^{2}$
 $B_{\pi}^{\dagger} = B_{\pi} - \frac{1}{2} 2\pi R_{\pi}^{2} - a \times B_{\pi}$
Ne obtain
 $Z = (2\pi Q + ig \frac{\pi}{2} R_{\pi} Q)^{\dagger} (2^{\dagger} Q + ig \frac{\pi}{2} R_{\pi}^{2} Q) - V(Q) - \frac{1}{4} F_{\mu\nu}F^{\mu\nu}$
 $V(Q) = \mu^{2} [Q + 2\mu B_{\pi}^{2} - g + \lambda Q + Q)^{2}$
 $F_{\mu\nu} = 2\pi B_{\nu} - 2\mu B_{\pi}^{2} - 5 B_{\pi} \times B_{\nu}$

We parmetrize Fluctuations from the vacuum $e_0 = \frac{1}{12} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ in terms of 4 neal salar fields $\varepsilon_1, \varepsilon_2, \varepsilon_3, \eta$ $\varepsilon_0 = \frac{1}{12} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Hisss Meducian (non-Abelian case) minimum of potential at $Q^{\dagger}Q = \frac{1}{2} \left(e_{1}^{2} + e_{2}^{2} + e_{3}^{2} + e_{4}^{2} \right) = \frac{1}{2} \frac{1}{2}$ we chose We know all Torns From V will cancel save In2/m -> For small oscillations -> Ansive scalo expansion: $\left(\frac{\psi_{+,\Lambda}}{\Lambda} \right) \left(\frac{\psi_{+,\Lambda}}{\Lambda} \right) \left(\frac{\psi_{+,\Lambda}}{\Lambda} \right) = \frac{1}{\Lambda} \left(\frac{1}{\Lambda} \right) \left(\frac{1}{\Lambda} \right) = \frac{1}{\Lambda} \left(\frac{1}{\Lambda} \right) = \frac{1}{\Lambda} \left(\frac{1}{\Lambda} \right) = \frac{1}{\Lambda} \left(\frac{1}{\Lambda} \right) \left(\frac{1}{\Lambda} \right) = \frac{1}{\Lambda} \left(\frac{1}{\Lambda} \right) \left(\frac{1}{\Lambda} \right) = \frac{1}{\Lambda} \left(\frac{1}{\Lambda} \right) = \frac{1}{\Lambda} \left(\frac{1}{\Lambda} \right) \left(\frac{1}{\Lambda} \right) = \frac{1}{\Lambda} \left(\frac{1$ d $\frac{1}{\sqrt{2}} \left(\frac{2}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}\left(\begin{array}{c} \xi_{2} + i\xi_{1} \\ i\xi_{2} + i\xi_{3} \end{array}\right) \frac{2N}{1}$ Minimum around which To do our $Q_3^2 = -\frac{m^2}{3} \equiv V^2$ $Q_1 = Q_2 = Q_7 = 0$ = P+P 05 A massive scalar 3







Problem set # 1 (cant)
Problem 3:
We way Turn To the Following SURIXULI
Lagrangian:

$$\mathcal{I} = \begin{bmatrix} iJ_n - 5T \cdot W_n - 5t & B_n \end{bmatrix} e_n^2 - V(e)$$

We use the Following dashed of an oper
scalar Fields $e_i(e_i) = e_i(e_i) = e_i(e_i) e_i(e_i) | e_i$
Obtain the mass of the veder bosons using the relevent
Term: $\begin{bmatrix} -i5T \cdot W_n - i5t & B_n \end{bmatrix} e_i^2$
gov will set an off - diagonal term for W_n^3 and B_n
Express your result in Terms of physical fields that
dissonalize the mass nation:
you can use $5t = Tan Gu$