Beyond the Standard Model (in Many Directions) Chris Quigg quigg@fnal.gov

The Electroweak Theory

Much more detail in my Pylos Lectures http://lutece.fnal.gov/Talks/CQPylos.pdf

> 2nd Latin-American School of High-Energy Physics

Hacienda San Miguel Regla (Hidalgo) Mexico 2 – 14 June 2003

 $\mathsf{SYMMETRIES} \Longrightarrow \mathsf{INTERACTIONS}$

Phase Invariance (Symmetry) in Quantum Mechanics

QM STATE: COMPLEX SCHRÖDINGER WAVE FUNCTION $\psi(x)$

OBSERVABLES

 $\langle O \rangle = \int d^n x \psi^* O \psi$

ARE UNCHANGED

UNDER A GLOBAL PHASE ROTATION

$$\psi(x) \to e^{i\theta}\psi(x)$$

$$\psi^*(x) \to e^{-i\theta}\psi^*(x)$$

- Absolute phase of the wave function cannot be measured (is a matter of convention).
- Relative phases (interference experiments) are unaffected by a global phase rotation.

GLOBAL ROTATION — SAME EVERYWHERE

Might we choose one phase convention in SAN MIGUEL REGLA and another in GENEVA?

A DIFFERENT CONVENTION AT EACH POINT?

The Great Beyond · San Miguel Regla 2003

 $\rightarrow e^{iq\alpha(x)}\psi(x)$

 $\psi(x)$

THERE IS A PRICE.

Some variables (e.g., momentum) and the Schrödinger equation itself contain derivatives. Under the transformation

 $\psi(x) \to e^{iq\alpha(x)}\psi(x)$

the gradient of the wave function transforms as

$$\nabla \psi(x) \rightarrow e^{iq\alpha(x)} [\nabla \psi(x) + iq(\nabla \alpha(x))\psi(x)]$$

The $\nabla \alpha(x)$ term spoils local phase invariance.

TO RESTORE LOCAL PHASE INVARIANCE ...

Modify the equations of motion and observables.

Replace
$$\nabla$$
 by $\nabla + iq\vec{A}$

"Gauge-covariant derivative"

If the vector potential \vec{A} transforms under local phase rotations as

$$ec{A}(x)
ightarrow ec{A}'(x) \equiv ec{A}(x) -
abla lpha(x)$$
 ,

then $(\nabla + iq\vec{A})\psi \rightarrow e^{iq\alpha(x)}(\nabla + iq\vec{A})\psi$ and $\psi^*(\nabla + iq\vec{A})\psi$ is invariant under local rotations.

NOTE ...

- $\vec{A}(x) \rightarrow \vec{A'}(x) \equiv \vec{A}(x) \nabla \alpha(x)$ has the form of a gauge transformation in electrodynamics.
- The replacement $\nabla \to (\nabla + i q \vec{A})$ corresponds to $\vec{p} \to \vec{p} q \vec{A}$

FORM OF INTERACTION IS DEDUCED FROM LOCAL PHASE INVARIANCE

\implies MAXWELL'S EQUATIONS

DERIVED

FROM A SYMMETRY PRINCIPLE

QED is the gauge theory based on U(1) phase symmetry

Chris Quigg

The Great Beyond · San Miguel Regla 2003

EW:5

GENERAL PROCEDURE

- Recognize a symmetry of Nature.
- Build it into the laws of physics. (Connection with conservation laws)
- Impose symmetry in stricter (local) form.

 \implies INTERACTIONS

- Massless vector fields (gauge fields)
- Minimal coupling to the conserved current
- Interactions among the gauge fields, if symmetry is non-Abelian

Posed as a problem in mathematics, construction of a gauge theory is always possible (at the level of a classical \mathcal{L} ; consistent quantum theory may require additional vigilance).

Formalism is no guarantee that the gauge symmetry was chosen wisely.

Massive Photon? *Hiding Symmetry*

Recall 2 miracles of superconductivity:

 \triangleright No resistance

 \triangleright Meissner effect (exclusion of **B**)

Ginzburg–Landau Phenomenology (not a theory from first principles)

normal, resistive charge carriers ...

 $\mathbf{B}=0$:

 $G_{\text{super}}(0) = G_{\text{normal}}(0) + \alpha |\psi|^2 + \beta |\psi|^4$ $T > T_c: \quad \alpha > 0 \quad \langle |\psi|^2 \rangle_0 = 0$ $T < T_c: \quad \alpha < 0 \quad \langle |\psi|^2 \rangle_0 \neq 0$

NONZERO MAGNETIC FIELD

$$G_{\text{super}}(\mathbf{B}) = G_{\text{super}}(0) + \frac{\mathbf{B}^2}{8\pi} + \frac{1}{2m^*} \left| -i\hbar\nabla\psi - \frac{e^*}{c}\mathbf{A}\psi \right|^2$$
$$e^* = -2$$
$$m^* \qquad \text{for superconducting carriers}$$

Weak, slowly varying field

$$\psi \approx \psi_0 \neq 0$$
, $\nabla \psi \approx 0$

 ${\sf Variational\ analysis} \Longrightarrow$

$$\nabla^2 \mathbf{A} - \frac{4\pi e^*}{m^* c^2} \left|\psi_0\right|^2 \mathbf{A} = 0$$

wave equation of a *massive photon*

Photon— gauge boson — acquires mass within superconductor

origin of Meissner effect

Formulate electroweak theory

three crucial clues from experiment:

Left-handed weak-isospin doublets,

$$\left(\begin{array}{c}
\nu_e\\
e
\end{array}\right)_L \qquad \left(\begin{array}{c}
\nu_\mu\\
\mu
\end{array}\right)_L \qquad \left(\begin{array}{c}
\nu_\tau\\
\tau
\end{array}\right)_L$$

and

$$\left(\begin{array}{c} u\\ d'\end{array}\right)_{L} \qquad \left(\begin{array}{c} c\\ s'\end{array}\right)_{L} \qquad \left(\begin{array}{c} t\\ b'\end{array}\right)_{L};$$

- Universal strength of the (charged-current) weak interactions;
- ▷ Idealization that neutrinos are massless.

First two clues suggest $SU(2)_L$ gauge symmetry

A theory of leptons

$$\mathsf{L} = \left(\begin{array}{c} \nu_e \\ e \end{array} \right)_L \qquad \mathsf{R} \equiv e_R$$

weak hypercharges $Y_L = -1$, $Y_R = -2$ Gell-Mann–Nishijima connection, $Q = I_3 + \frac{1}{2}Y$

 $\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$ gauge group \Rightarrow gauge fields:

- \star weak isovector $ec{b}_{\mu}$, coupling g
- \star weak isoscalar \mathcal{A}_{μ} , coupling g'/2

Field-strength tensors

$$F^{\ell}_{\mu\nu} = \partial_{\nu}b^{\ell}_{\mu} - \partial_{\mu}b^{\ell}_{\nu} + g\varepsilon_{jk\ell}b^{j}_{\mu}b^{k}_{\nu} , SU(2)_{L}$$

and

$$f_{\mu\nu} = \partial_{\nu}\mathcal{A}_{\mu} - \partial_{\mu}\mathcal{A}_{\nu} , U(1)_{Y}$$

Chris Quigg

Interaction Lagrangian

$$\mathcal{L} = \mathcal{L}_{ ext{gauge}} + \mathcal{L}_{ ext{leptons}} \; ,$$

with

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} F^{\ell}_{\mu\nu} F^{\ell\mu\nu} - \frac{1}{4} f_{\mu\nu} f^{\mu\nu},$$

 $\quad \text{and} \quad$

$$\mathcal{L}_{\text{leptons}} = \overline{\mathsf{R}} \, i \gamma^{\mu} \left(\partial_{\mu} + i \frac{g'}{2} \mathcal{A}_{\mu} Y \right) \mathsf{R} + \overline{\mathsf{L}} \, i \gamma^{\mu} \left(\partial_{\mu} + i \frac{g'}{2} \mathcal{A}_{\mu} Y + i \frac{g}{2} \vec{\tau} \cdot \vec{b}_{\mu} \right) \mathsf{L}.$$

Electron mass term

$$\mathcal{L}_e = -m_e(\bar{e}_{\mathsf{R}}e_{\mathsf{L}} + \bar{e}_{\mathsf{L}}e_{\mathsf{R}}) = -m_e\bar{e}e$$

would violate local gauge invariance Theory has four massless gauge bosons

$$\mathcal{A}_{\mu} \quad b^1_{\mu} \quad b^2_{\mu} \quad b^3_{\mu}$$

Nature has but one (γ)

Hiding EW Symmetry

Higgs mechanism: relativistic generalization of Ginzburg-Landau superconducting phase transition

Introduce a complex doublet of scalar fields

$$\phi \equiv \left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array}\right) \quad Y_{\phi} = +1$$

 \triangleright Add to \mathcal{L} (gauge-invariant) terms for interaction and propagation of the scalars,

$$\mathcal{L}_{\text{scalar}} = (\mathcal{D}^{\mu}\phi)^{\dagger}(\mathcal{D}_{\mu}\phi) - V(\phi^{\dagger}\phi),$$

where $\mathcal{D}_{\mu} = \partial_{\mu} + i \frac{g'}{2} \mathcal{A}_{\mu} Y + i \frac{g}{2} \vec{\tau} \cdot \vec{b}_{\mu}$ and

$$V(\phi^{\dagger}\phi) = \mu^{2}(\phi^{\dagger}\phi) + |\lambda| \, (\phi^{\dagger}\phi)^{2}$$

▷ Add a Yukawa interaction

$$\mathcal{L}_{\text{Yukawa}} = -\zeta_e \left[\overline{\mathsf{R}}(\phi^{\dagger}\mathsf{L}) + (\overline{\mathsf{L}}\phi)\mathsf{R} \right]$$

 $\triangleright \mbox{ Arrange self-interactions so vacuum corresponds} \\ \mbox{ to a broken-symmetry solution: } \mu^2 < 0 \\ \mbox{ Choose minimum energy (vacuum) state for} \\ \mbox{ vacuum expectation value} \end{cases}$

$$\langle \phi \rangle_0 = \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix}, \quad v = \sqrt{-\mu^2/|\lambda|}$$

Hides (breaks) $SU(2)_L$ and $U(1)_Y$

but preserves $U(1)_{em}$ invariance

Invariance under \mathcal{G} means $e^{i\alpha\mathcal{G}}\langle\phi\rangle_0 = \langle\phi\rangle_0$, so $\mathcal{G}\langle\phi\rangle_0 = 0$

$$\begin{aligned} \tau_1 \langle \phi \rangle_0 &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix} &= \begin{pmatrix} v/\sqrt{2} \\ 0 \end{pmatrix} \neq 0 \text{ broken!} \\ \tau_2 \langle \phi \rangle_0 &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix} &= \begin{pmatrix} -iv/\sqrt{2} \\ 0 \end{pmatrix} \neq 0 \text{ broken!} \\ \tau_3 \langle \phi \rangle_0 &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix} &= \begin{pmatrix} 0 \\ -v/\sqrt{2} \end{pmatrix} \neq 0 \text{ broken!} \\ Y \langle \phi \rangle_0 &= Y_\phi \langle \phi \rangle_0 = +1 \langle \phi \rangle_0 = \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix} \neq 0 \text{ broken!} \end{aligned}$$

Chris Quigg

The Great Beyond · San Miguel Regla 2003

EW:14

Examine electric charge operator Q on the (electrically neutral) vacuum state

$$Q\langle\phi\rangle_{0} = \frac{1}{2}(\tau_{3}+Y)\langle\phi\rangle_{0}$$

$$= \frac{1}{2}\begin{pmatrix}Y_{\phi}+1 & 0\\ 0 & Y_{\phi}-1\end{pmatrix}\langle\phi\rangle_{0}$$

$$= \begin{pmatrix}1 & 0\\ 0 & 0\end{pmatrix}\begin{pmatrix}0\\ v/\sqrt{2}\end{pmatrix}$$

$$= \begin{pmatrix}0\\ 0\end{pmatrix} \text{ unbroken!}$$

Four original generators are broken

electric charge is not

- $\triangleright \operatorname{SU}(2)_L \otimes \operatorname{U}(1)_Y \to U(1)_{\operatorname{em}}$ (will verify)
- ▷ Expect massless photon
- ▷ Expect gauge bosons corresponding to

$$au_1, \ au_2, \ \frac{1}{2}(au_3 - Y) \equiv K$$

to acquire masses

Expand about the vacuum state

Let
$$\phi = \begin{pmatrix} 0 \\ (v+\eta)/\sqrt{2} \end{pmatrix}$$
; in *unitary gauge*

$$\mathcal{L}_{\text{scalar}} = \frac{1}{2} (\partial^{\mu} \eta) (\partial_{\mu} \eta) - \mu^{2} \eta^{2} + \frac{v^{2}}{8} [g^{2} |b_{1} - ib_{2}|^{2} + (g' \mathcal{A}_{\mu} - gb_{\mu}^{3})^{2}] + \text{ interaction terms}$$

Higgs boson η has acquired $({\rm mass})^2~M_H^2=-2\mu^2>0$

$$\frac{g^2 v^2}{8} (\left|W_{\mu}^{+}\right|^2 + \left|W_{\mu}^{-}\right|^2) \Longleftrightarrow M_{W^{\pm}} = gv/2$$

Now define othogonal combinations

 $Z_{\mu} = \frac{-g' \mathcal{A}_{\mu} + g b_{\mu}^{3}}{\sqrt{g^{2} + g'^{2}}} \qquad A_{\mu} = \frac{g \mathcal{A}_{\mu} + g' b_{\mu}^{3}}{\sqrt{g^{2} + g'^{2}}}$ $M_{Z^{0}} = \sqrt{g^{2} + g'^{2}} v/2 = M_{W} \sqrt{1 + g'^{2}/g^{2}}$ $\boxed{A_{\mu} \text{ remains massless}}$

$$\mathcal{L}_{\text{Yukawa}} = -\zeta_e \frac{(v+\eta)}{\sqrt{2}} (\bar{e}_{\text{R}} e_{\text{L}} + \bar{e}_{\text{L}} e_{\text{R}})$$
$$= -\frac{\zeta_e v}{\sqrt{2}} \bar{e} e - \frac{\zeta_e \eta}{\sqrt{2}} \bar{e} e$$

electron acquires $m_e = \zeta_e v / \sqrt{2}$

Higgs coupling to electrons: m_e/v (\propto mass)

Desired particle content ... + Higgs scalar

Values of couplings, electroweak scale v?

What about interactions?

Interactions ...

$$\mathcal{L}_{W-\ell} = -\frac{g}{2\sqrt{2}} [\bar{\nu}\gamma^{\mu}(1-\gamma_5)eW^+_{\mu} + \bar{e}\gamma^{\mu}(1-\gamma_5)\nu W^-_{\mu}]$$

+ similar terms for μ and τ

Feynman rule:

gauge-boson propagator:

W

$$\sum_{\mu \nu} = \frac{-i(g_{\mu\nu} - k_{\mu}k_{\nu}/M_W^2)}{k^2 - M_W^2}$$

The Great Beyond · San Miguel Regla 2003

•

Compute $\nu_{\mu}e \rightarrow \mu \nu_{e}$

$$\sigma(\nu_{\mu}e \to \mu\nu_{e}) = \frac{g^{4}m_{e}E_{\nu}}{16\pi M_{W}^{4}} \frac{[1 - (m_{\mu}^{2} - m_{e}^{2})/2m_{e}E_{\nu}]^{2}}{(1 + 2m_{e}E_{\nu}/M_{W}^{2})}$$

Reproduces 4-fermion result at low energies if

$$\frac{g^4}{16M_W^4} = 2G_F^2$$

$$\Rightarrow g^4 = 32(G_F M_W^2)^2 = 64\left(\frac{G_F M_W^2}{\sqrt{2}}\right)^2$$

$$\Rightarrow \frac{g}{2\sqrt{2}} = \left(\frac{G_F M_W^2}{\sqrt{2}}\right)^{\frac{1}{2}}$$

Using $M_W = gv/2$, determine

$$v = (G_F \sqrt{2})^{-\frac{1}{2}} \approx 246 \text{ GeV}$$

the electroweak scale

$$\Rightarrow \langle \phi^0 \rangle_0 = (G_F \sqrt{8})^{-\frac{1}{2}} \approx 174 \text{ GeV}$$

Interactions ...

$$\mathcal{L}_{A-\ell} = \frac{gg'}{\sqrt{g^2 + g'^2}} \bar{e}\gamma^{\mu} e A_{\mu}$$

...vector interaction; $\Rightarrow A_{\mu}$ as γ , provided

$$gg'/\sqrt{g^2 + g'^2} \equiv e$$

Define $g' = g \tan \theta_W$ θ_W : weak mixing angle $g = e/\sin \theta_W \ge e$ $g' = e/\cos \theta_W \ge e$ $Z_\mu = b_\mu^3 \cos \theta_W - \mathcal{A}_\mu \sin \theta_W$ $A_\mu = \mathcal{A}_\mu \cos \theta_W + b_\mu^3 \sin \theta_W$ $\mathcal{L}_{Z-\nu} = \frac{-g}{4\cos \theta_W} \bar{\nu} \gamma^\mu (1-\gamma_5) \nu Z_\mu$ $\mathcal{L}_{Z-e} = \frac{-g}{4\cos \theta_W} \bar{e} \left[L_e \gamma^\mu (1-\gamma_5) + R_e \gamma^\mu (1+\gamma_5) \right] e Z_\mu$

$$L_e = 2\sin^2 \theta_W - 1 = 2x_W + \tau_3$$
$$R_e = 2\sin^2 \theta_W = 2x_W$$

Chris Quigg

The Great Beyond · San Miguel Regla 2003

EW:20

Z-boson properties

Decay calculation analogous to W^\pm

$$\Gamma(Z \to \nu \bar{\nu}) = \frac{G_F M_Z^3}{12\pi\sqrt{2}}$$

$$\Gamma(Z \to e^+ e^-) = \Gamma(Z \to \nu \bar{\nu}) \left[L_e^2 + R_e^2 \right]$$

Neutral-current interactions

New νe reaction, not present in V-A

$$\begin{aligned} \sigma(\nu_{\mu}e \to \nu_{\mu}e) &= \frac{G_{F}^{2}m_{e}E_{\nu}}{2\pi} \left[L_{e}^{2} + R_{e}^{2}/3\right] \\ \sigma(\bar{\nu}_{\mu}e \to \bar{\nu}_{\mu}e) &= \frac{G_{F}^{2}m_{e}E_{\nu}}{2\pi} \left[L_{e}^{2}/3 + R_{e}^{2}\right] \\ \sigma(\nu_{e}e \to \nu_{e}e) &= \frac{G_{F}^{2}m_{e}E_{\nu}}{2\pi} \left[(L_{e} + 2)^{2} + R_{e}^{2}/3\right] \\ \sigma(\bar{\nu}_{e}e \to \bar{\nu}_{e}e) &= \frac{G_{F}^{2}m_{e}E_{\nu}}{2\pi} \left[(L_{e} + 2)^{2}/3 + R_{e}^{2}\right] \end{aligned}$$

Gargamelle $\nu_{\mu}e$ Event

Chris Quigg

The Great Beyond · San Miguel Regla 2003

EW:22

EW interactions of quarks

▷ Left-handed doublet

$$I_{3} \qquad Q \qquad Y = 2(Q - I_{3})$$
$$L_{q} = \begin{pmatrix} u \\ d \end{pmatrix}_{L} \qquad \frac{1}{2} \qquad +\frac{2}{3} \qquad \frac{1}{3}$$

▷ two right-handed singlets

$$I_{3} \qquad Q \qquad Y = 2(Q - I_{3})$$

$$\mathsf{R}_{u} = u_{R} \qquad 0 \qquad +\frac{2}{3} \qquad +\frac{4}{3}$$

$$\mathsf{R}_{d} = d_{R} \qquad 0 \qquad -\frac{1}{3} \qquad -\frac{2}{3}$$

▷ CC interaction

$$\mathcal{L}_{W-q} = \frac{-g}{2\sqrt{2}} \left[\bar{u}_e \gamma^\mu (1 - \gamma_5) d W^+_\mu + \bar{d}\gamma^\mu (1 - \gamma_5) u W^-_\mu \right]$$

identical in form to $\mathcal{L}_{W-\ell}$: universality \Leftrightarrow weak isospin

▷ NC interaction

$$\mathcal{L}_{Z-q} = \frac{-g}{4\cos\theta_W} \sum_{i=u,d} \bar{q}_i \gamma^{\mu} \left[L_i(1-\gamma_5) + R_i(1+\gamma_5) \right] q_i Z_{\mu}$$
$$L_i = \tau_3 - 2Q_i \sin^2\theta_W \quad R_i = -2Q_i \sin^2\theta_W$$
equivalent in form (not numbers) to $\mathcal{L}_{Z-\ell}$

Trouble in Paradise

Universal $u \leftrightarrow d$, $\nu_e \leftrightarrow e$ not quite right

Good:
$$\begin{pmatrix} u \\ d \end{pmatrix}_{L} \rightarrow$$
 Better: $\begin{pmatrix} u \\ d_{\theta} \end{pmatrix}_{L}$
 $d_{\theta} \equiv d \cos \theta_{C} + s \sin \theta_{C} \quad \cos \theta_{C} = 0.9736 \pm 0.0010$

"Cabibbo-rotated" doublet perfects CC interaction (up to small third-generation effects) but \Rightarrow serious trouble for NC

$$\mathcal{L}_{Z-q} = \frac{-g}{4\cos\theta_W} Z_\mu \left\{ \bar{u}\gamma^\mu \left[L_u(1-\gamma_5) + R_u(1+\gamma_5) \right] u \right. \\ \left. + \bar{d}\gamma^\mu \left[L_d(1-\gamma_5) + R_d(1+\gamma_5) \right] d \, \cos^2\theta_C \right. \\ \left. + \bar{s}\gamma^\mu \left[L_d(1-\gamma_5) + R_d(1+\gamma_5) \right] s \, \sin^2\theta_C \right. \\ \left. + \bar{d}\gamma^\mu \left[L_d(1-\gamma_5) + R_d(1+\gamma_5) \right] s \, \sin\theta_C \cos\theta_C \right. \\ \left. + \bar{s}\gamma^\mu \left[L_d(1-\gamma_5) + R_d(1+\gamma_5) \right] d \, \sin\theta_C \cos\theta_C \right\}$$

Strangeness-changing NC interactions highly suppressed!

Glashow-Iliopoulos-Maiani

two left-handed doublets

$$\begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_L \begin{pmatrix} u \\ d_\theta \end{pmatrix}_L \begin{pmatrix} c \\ s_\theta \end{pmatrix}_L$$
$$(s_\theta = s \cos \theta_C - d \sin \theta_C)$$

+ right-handed singlets, e_R , μ_R , u_R , d_R , c_R , s_R

Required new charmed quark, \boldsymbol{c}

Cross terms vanish in \mathcal{L}_{Z^-q} ,

$$L_i = \tau_3 - 2Q_i \sin^2 \theta_W \quad R_i = -2Q_i \sin^2 \theta_W$$

flavor-diagonal interaction!

Straightforward generalization to n quark doublets

$$\mathcal{L}_{W-q} = \frac{-g}{2\sqrt{2}} \left[\bar{\Psi} \gamma^{\mu} (1 - \gamma_5) \mathcal{O} \Psi W_{\mu}^{+} + \text{h.c.} \right]$$

$$\begin{pmatrix} u \\ c \\ \vdots \\ \vdots \\ \\ d \\ s \\ \vdots \end{pmatrix} \qquad \text{flavor structure } \mathcal{O} = \begin{pmatrix} 0 & U \\ 0 & 0 \end{pmatrix}$$

$$U: \text{ unitary quark mixing matrix}$$

Weak-isospin part:
$$\mathcal{L}_{Z-q}^{iso} = \frac{-g}{4\cos\theta_W} \bar{\Psi}\gamma^{\mu}(1-\gamma_5) \begin{bmatrix} \mathcal{O}, \mathcal{O}^{\dagger} \end{bmatrix} \Psi$$

Since $\begin{bmatrix} \mathcal{O}, \mathcal{O}^{\dagger} \end{bmatrix} = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \propto \tau_3$
 \Rightarrow NC interaction is flavor-diagonal

General $n \times n$ quark-mixing matrix U: n(n-1)/2 real \angle , (n-1)(n-2)/2 complex phases 3×3 (Cabibbo–Kobayashi-Maskawa): $3 \angle + 1$ phase \Rightarrow CP violation

Qualitative successes of $SU(2)_L \otimes U(1)_Y$ theory:

- ▷ neutral-current interactions
- \triangleright necessity of charm
- \triangleright existence and properties of W^{\pm} and Z^{0}

Decade of precision tests EW (one-per-mille)

M_Z	$91187.6\pm 2.1{ m MeV}/\!c^2$
Γ_Z	$2495.2\pm2.3\mathrm{MeV}$
$\sigma^0_{ m hadronic}$	$41.541\pm0.037~\rm{nb}$
$\Gamma_{hadronic}$	$1744.4\pm2.0~{\rm MeV}$
$\Gamma_{leptonic}$	$83.984\pm0.086\mathrm{MeV}$
$\Gamma_{invisible}$	$499.0 \pm 1.5 \mathrm{MeV}$

where $\Gamma_{\text{invisible}} \equiv \Gamma_Z - \Gamma_{\text{hadronic}} - 3\Gamma_{\text{leptonic}}$

light neutrinos $N_{\nu} = \Gamma_{\text{invisible}} / \Gamma^{\text{SM}}(Z \to \nu_i \bar{\nu}_i)$ Current value: $N_{\nu} = 2.994 \pm 0.012$... excellent agreement with ν_e , ν_{μ} , and ν_{τ}

Three light neutrinos

Chris Quigg The Great Beyond · San Miguel Regla 2003

EW:28

Global fits ...

to precision EW measurements:

▷ precision improves with time

▷ calculations improve with time

11.94, LEPEWWG: $m_t = 178 \pm 11^{+18}_{-19} \text{ GeV}/c^2$

Direct measurements: $m_t = 174.3 \pm 5.1 \text{ GeV/}c^2$

Global fits ...

to precision EW measurements:

\triangleright precision improves with time

▷ calculations improve with time

11.94, LEPEWWG: $m_t = 178 \pm 11^{+18}_{-19} \text{ GeV}/c^2$

Direct measurements: $m_t = 174.3 \pm 5.1 \text{ GeV}/c^2$

Chris Quigg

Summer 2002

Gauge symmetry tested in $e^+e^- \rightarrow W^+W^-$: Each diagram grows unacceptably

but the sum is well-behaved

Chris Quigg

The Great Beyond · San Miguel Regla 2003

EW:30^{bis}

Gauge symmetry tested in $e^+e^- \rightarrow W^+W^-$: Each diagram grows unacceptably

but the sum is well-behaved

The vacuum energy problem

Higgs potential $V(\varphi^{\dagger}\varphi) = \mu^2(\varphi^{\dagger}\varphi) + |\lambda| (\varphi^{\dagger}\varphi)^2$

At the minimum,

$$V(\langle arphi^{\dagger}arphi
angle_0) = rac{\mu^2 v^2}{4} = -rac{|\lambda| \, v^4}{4} < 0.$$

Identify $M_H^2 = -2\mu^2$

contributes field-independent vacuum energy density

$$\varrho_H \equiv \frac{M_H^2 v^2}{8}$$

Adding vacuum energy density $\rho_{vac} \Leftrightarrow$ adding cosmological constant Λ to Einstein's equation

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G_N}{c^4}T_{\mu\nu} + \Lambda g_{\mu\nu}$$
$$\Lambda = \frac{8\pi G_N}{c^4}\varrho_{\rm vac}$$

Chris Quigg

The Great Beyond · San Miguel Regla 2003

EW:31

observed vacuum energy density $\rho_{\rm vac} \lesssim 10^{-46} {\rm GeV}^4$

Lewis & Bridle, astro-ph/0205436

But $M_H \gtrsim 114 \text{ GeV}/c^2 \Rightarrow$

 $\varrho_H \gtrsim 10^8 \ {\rm GeV}^4$

MISMATCH BY 54 ORDERS OR MAGNITUDE

Bounds on M_H

EW theory does not predict Higgs-boson mass Self-consistency \Rightarrow plausible lower and upper bounds

▷ Conditional *upper bound* from Unitarity

Compute amplitudes \mathcal{M} for gauge boson scattering at high energies, make a partial-wave decomposition

$$\mathcal{M}(s,t) = 16\pi \sum_{J} (2J+1)a_J(s)P_J(\cos\theta)$$

Most channels decouple—pw amplitudes are small at all energies (except very near the particle poles, or at exponentially large energies)—for any M_H .

Four interesting channels:

 $W^+_L W^-_L Z^0_L Z^0_L / \sqrt{2} HH / \sqrt{2} HZ^0_L$ L: longitudinal, $1/\sqrt{2}$ for identical particles

In HE limit,^a s-wave amplitudes $\propto G_F M_H^2$

$$\lim_{s \gg M_H^2} (a_0) \to \frac{-G_F M_H^2}{4\pi\sqrt{2}} \cdot \begin{bmatrix} 1 & 1/\sqrt{8} & 1/\sqrt{8} & 0\\ 1/\sqrt{8} & 3/4 & 1/4 & 0\\ 1/\sqrt{8} & 1/4 & 3/4 & 0\\ 0 & 0 & 0 & 1/2 \end{bmatrix}$$

Require that largest eigenvalue respect the partial-wave unitarity condition $|a_0| \leq 1$

$$\implies M_H \le \left(\frac{8\pi\sqrt{2}}{3G_F}\right)^{1/2} = 1 \text{ TeV/}c^2$$

condition for perturbative unitarity

^aConvenient to calculate using Goldstone-boson equivalence theorem, which reduces dynamics of longitudinally polarized gauge bosons to scalar field theory with interaction Lagrangian given by $\mathcal{L}_{int} = -\lambda v h (2w^+w^- + z^2 + h^2) - (\lambda/4)(2w^+w^- + z^2 + h^2)^2$, with $1/v^2 = G_F \sqrt{2}$ and $\lambda = G_F M_H^2/\sqrt{2}$. ▷ If the bound is respected

 \star weak interactions remain weak at all energies

- * perturbation theory is everywhere reliable
- \triangleright If the bound is violated
 - * perturbation theory breaks down
 - * weak interactions among W^{\pm} , Z, and H become strong on the 1-TeV scale

⇒ features of *strong* interactions at GeV energies will characterize *electroweak* gauge boson interactions at TeV energies

Threshold behavior of the pw amplitudes a_{IJ} follows from chiral symmetry

 $a_{00} \approx G_F s / 8\pi \sqrt{2}$ attractive $a_{11} \approx G_F s / 48\pi \sqrt{2}$ attractive $a_{20} \approx -G_F s / 16\pi \sqrt{2}$ repulsive

New phenomena are to be found in the EW interactions at energies not much larger than 1 TeV

The EW scale and beyond

EWSB scale, $v = (G_F \sqrt{2})^{-\frac{1}{2}} \approx 246$ GeV, sets

$$M_W^2 = g^2 v^2 / 2$$
 $M_Z^2 = M_W^2 / \cos^2 \theta_W$

But it is not the only scale of physical interest

quasi-certain: $M_{\text{Planck}} = 1.22 \times 10^{19} \text{ GeV}$

probable: $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ unification scale $\sim 10^{15-16} \text{ GeV}$

somewhere: flavor scale

How to keep the distant scales from mixing in the face of quantum corrections?

OR

How to stabilize the mass of the Higgs boson on the electroweak scale?

OR

Why is the electroweak scale small?

Higgs potential $V(\phi^{\dagger}\phi) = \mu^{2}(\phi^{\dagger}\phi) + |\lambda| (\phi^{\dagger}\phi)^{2}$ $\mu^{2} < 0: \operatorname{SU}(2)_{L} \otimes \operatorname{U}(1)_{Y} \to U(1)_{\text{em}}, \text{ as}$ $\langle \phi \rangle_{0} = \begin{pmatrix} 0 \\ \sqrt{-\mu^{2}/2|\lambda|} \end{pmatrix} \equiv \begin{pmatrix} 0 \\ (G_{F}\sqrt{8})^{-1/2} \\ (G_{F}\sqrt{8})^{-1/2} \end{pmatrix}$

Beyond classical approximation, quantum corrections to scalar mass parameters:

Loop integrals are potentially divergent.

$$m^{2}(p^{2}) = m^{2}(\Lambda^{2}) + Cg^{2} \int_{p^{2}}^{\Lambda^{2}} dk^{2} + \cdots$$

A: reference scale at which m^2 is known g: coupling constant of the theory C: coefficient calculable in specific theory

$$m^{2}(p^{2}) = m^{2}(\Lambda^{2}) + Cg^{2} \int_{p^{2}}^{\Lambda^{2}} dk^{2} + \cdots$$

For the mass shifts induced by radiative corrections to remain under control (not greatly exceed the value measured on the laboratory scale), *either*

- $\triangleright \Lambda$ must be small, or
- \triangleright new physics must intervene to cut off the integral BUT natural reference scale for Λ is

$$\begin{split} \Lambda \sim M_{\mathsf{Planck}} &= \left(\frac{\hbar c}{G_{\mathsf{Newton}}}\right)^{1/2} \approx 1.22 \times 10^{19} \; \mathsf{GeV} \\ & \quad \mathsf{for} \; \mathrm{SU}(3)_{\mathsf{c}} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{Y} \\ & \quad \mathsf{OR} \end{split}$$

$$\Lambda \sim M_U \approx 10^{15} \text{--} 10^{16} \text{ GeV}$$

for unified theory

Both
$$\gg v/\sqrt{2} \approx 175 \text{ GeV} \implies$$

New Physics at $E \leq 1$ TeV

Second Harvest of Questions

- 14. What contrives a Higgs potential that hides electroweak symmetry?
- 15. What separates EW scale from higher scales?
- 16. What *are* the distinct scales of physical interest?
- 17. Why is empty space so nearly weightless?
- 18. What determines the gauge symmetries?
- 19. What accounts for the range of fermion masses?
- 20. Why is (strong-interaction) isospin a good symmetry? What does it mean?