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A fundamental cosmological question
 The universe is now matter dominated:  how did this 

matter- antimatter imbalance arise?
o Anti-proton/proton ratio ~10-4 in cosmic rays; no evidence for 

annihilation photons from intergalactic clouds
 Cosmological generation of asymmetry:  Sakharov 

conditions (1 967)
o Baryon number violation, e.g., proton decay
o Thermal non-equilibrium
o Violation of charge conjugation C

and parity P discrete symmetries Broken Phase:
Massive quarks,

W, Z bosonsUnbroken Phase:
Massless quarks

Transition to broken electroweak 
symmetry provides these conditions
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Matter- Antimatter annihilation
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No longer possible 
after about 0.001s

Observed nB/nγ ~ 10-10

Implies 10-10 matter-antimatter asymmetry at 0.001s after big bang

EW symmetry 
breaking would 

predict nB/nγ ~ 10-20

Temperature too low to 
produce nucleon pairs
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Matter

Proper time

BABAR, 
summer 2002

( ) mesonsbd

7/27/2011 4D.MacFarlane at Notre Dame



Matter- Antimatter asymmetry!

Matter

Antimatter

Proper time

BABAR, 
summer 2002

( ) mesonsbd

( ) mesonsbd
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Brief review of Standard Model weak 
interactions for quarks and CP violation



Quark couplings:  CKM matrix
≠ ⇒Mass Eigenstates Weak Eigenstates Quark Mixing

Cabibbo-Kobayashi-Maskawa (CKM) Matrix
Unitary matrix described 

for 3 generations of quarks 
by 3 rotation angles and 

1 non-trivial phase

 
 =  
  

us ubud

csCKM cbcd

ts tbtd

V V V
V V V V

V V V

W− W−

c u

b b
gVcb gVub

Flavor changes 
through mixed 

couplings to quarks
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CKM matrix:  a source of CP violation

Wolfenstein parameterization:
Observed experimental hierarchy

( )

( )

λ λ λ ρ η

λ λ λ

λ ρ η λ

 − −
 

≈ − − 
 − − − 

2 3

2 2

3 2

1 /2
1 /2

1 1
CKM

A i
V A

A i A

 
 =  
  

us ubud

csCKM cbcd

ts tbtd

V V V
V V V V

V V V

Phase: changes
sign under CP

λ ~ 0.22
sinθC

Cabibbo angle

2 → 1
~λ

3 → 2
~λ2

3 → 1
~λ3

CKM elements & quark masses are 
fundamental constants emerging 
from EW symmetry breaking
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Important discrete symmetries
 Parity,  P

o Reflection a system through the origin, 
thereby converting right-handed into left-
handed coordinate systems

o Vectors (momentum) change sign but axial 
vectors (spin) remain unchanged

→ −
→ −

→

r r
p p
L L

+ −

γ γ

− +→
→

e e

→ −t t

 Charge Conjugation,  C
o Change all particles into anti-particles and 

vice versa

 Time Reversal,  T
o Reverse the arrow of time, reversing all 

time-dependent quantities, e.g. momentum
Good symmetries of strong and electromagnetic forces, 

but C & P are violated in the weak interaction
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Is CP a good symmetry of Nature?
Not Quite!

Is this the 
origin?

Difficult to interpret due to complications of hadronic physics

ε η ρ−   = + − ≠    

2
3 2 2CKM  Predicts:  3 10 1 (1 ) 0

94
t

K
mx B A A

0 0 0
1 1~L CP CPK K Kε=− =++

π π

π π π

+ −

+ −

→ = +

→ = −

0

0 0

1
1

S

L

K CP
K CP

Dominant decay modes for neutral kaons:

CP symmetry is violated at a tiny rate in the decays of neutral kaons!

In 1964, Christenson et al. observed:

( )
( )

0
0 3

0 with 2.3 10L
L

S

K
K x

K
π π

π π
π π

+ −
+ − −

+ −

Γ →
→ =

Γ →

More recently, direct CP violation also observed
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Weak decays of B mesons

 
 =  
  

us ubud

csCKM cbcd

ts tbtd

V V V
V V V V

V V V

λ

3
ubV A

W−

q

b

q

u
νe

-e

Rare: B decays to 
non-charm

λ

2
cbV A

W−

q

b

q

c

-e

νe Dominant: B 
decays to charm

B meson discovered: 1983

1986: B meson long lived
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ARGUS at DESY,  1 987

+ − → ϒ → 0 0(4 )e e S B B

Produce matter-
antimatter pairs
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ARGUS at DESY,  1 987

→0 0 0 0
1 2B B B B

By the time of decay

+ − → ϒ → 0 0(4 )e e S B B

Produce matter-
antimatter pairs

Matter-Antimatter 
oscillations!
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Weak decays of B mesons

 
 =  
  

us ubud

csCKM cbcd

ts tbtd

V V V
V V V V

V V V

B Meson = 
(bu) or (bd) state

λ

3
ubV A

W−

q

b

q

u
νe

-e

Rare: B decays to 
non-charm

λ

2
cbV A

W−

q

b

q

c

-e

νe Dominant: B 
decays to charm

* 3
tb tdV V Aλ

W−W− W− W−

bd

b d
t

t

t

ts

b

s

d
Matter-Antimatter 

oscillations
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Weak interaction in Standard Model

( )
 Apex at 

,ρ η

( )0,1( )0,0 ρ

η

Unitarity Triangle as a summary 
of Standard Model b physics

 
 =
 
 

us ubud

cs cbcd

ts tbtd

V V V
V V V V

V V V
+ phases

0  0B - B  mixing

 ) B  and  ( b cτ νΓ → 

 ( ) b u νΓ → 

 Radiative penguin decays 

* * *Unitarity:  0ub cb tbud cd tdV V V V V V+ + =

Unitarity = probability 
preserving
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Existing constraints

ubV εK

∆ dm ∆ ∆/ sdm m
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Weak interaction in Standard Model

( )
 Apex at 

,ρ η

0  0B - B  mixing

 ) B  and  ( b cτ νΓ → 

 ( ) b u νΓ → 

( )0,1( )0,0 ρ

η

β φ= 1

α φ= 2

γ φ= 3

Unitarity Triangle as a summary 
of Standard Model b physics

 
 =
 
 

us ubud

cs cbcd

ts tbtd

V V V
V V V V

V V V
+ phases

 Radiative penguin decays 

CP violation

* * *Unitarity:  0ub cb tbud cd tdV V V V V V+ + =

Unitarity = probability 
preserving
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CP violation in the B system

ϕ δ
2

wk sti iAe e

1A
B f CPV through interference 

of decay amplitudes

ϕ δ
Γ → ≠ Γ →

≠ ≠stwk

( ) ( )
for 0 and 0

B f B f

Analogous to a two-slit quantum interference experiment!

2
1 2( ) wk sti iB f A A e eϕ δΓ → = +

stδ
1A

2A
wkϕ+

wkϕ−

2
1 2( ) wk sti iB f A A e eϕ δ−Γ → = +
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0B
ϕfi

CPA e
CPf

0B
2iq e

p
β−=

ϕ− fi
CPA e

CP violation in the B system
 CPV through interference 

between mixing and decay 
amplitudes

Directly related to CKM angles 
for single decay amplitude

2

2Im
1 | |

CP

CP
CP

f
f

f
S

λ
λ

=
+

2

2

1 | |
1 | |

CP

CP
CP

f
f

f
C

λ
λ

−
=

+
CP

CP
CP

f
f

f

Aqλ
p A

= ⋅

Time-dependent asymmetry
0 0

0 0

( ( ) ) ( ( ) )
( ) sin cos

( ( ) ) ( ( ) )CP CP CP

CP CPphys phys
f f d f d

CP CPphys phys

B t f B t f
A t S m t C m t

B t f B t f
Γ → − Γ →

= = ∆ − ∆
Γ → + Γ →
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0B
ϕfi

CPA e
CPf

0B
2iq e

p
β−=

ϕ− fi
CPA e

CP violation in the B system
 CPV through interference 

between mixing and decay 
amplitudes

Directly related to CKM angles 
for single decay amplitude

0=Im
CPfλ=

For simple case shown with single decay mechanism

2

2Im
1 | |

CP

CP
CP

f
f

f
S

λ
λ

=
+

2

2

1 | |
1 | |

CP

CP
CP

f
f

f
C

λ
λ

−
=

+
CP

CP
CP

f
f

f

Aqλ
p A

= ⋅

0 0

0 0

( ( ) ) ( ( ) )
( ) sin

( ( ) ) ( ( ) )CP CP

CP CPphys phys
f f d

CP CPphys phys

B t f B t f
A t S m t

B t f B t f
Γ → − Γ →

= = ∆
Γ → + Γ →

Time-dependent asymmetry
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But how big are the CP asymmetries?

W+ c

s

b c

d d

B0

→0 0
SK K

CP Eigenstate: 
ηCP = -1

0

0 0

0 0 /

( ( ) ) ( ( ) )
 ( ) sin

( ( ) ) ( ( ) )CP S

CP CPphys phys
f dJ K

CP CPphys phys

B t f B t f
A t S m t

B t f B t f ψ

Γ → − Γ →
= = ∆

Γ → + Γ →

Quark 
subprocess

B0

mixing
K0

mixing

0

* * **

* * */Im Im Im
CPS

cstbcs cb td cd td
fJ K

cs cscb tb td cd td

V V V V VV V
V V V V V V Vψ

λ η
 

= − × × = 
 

Amplitude of CP asymmetry

β= sin2

ψ/J

~0.7 instead 
of 2x10-3!
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Experimental approach to CP
violation in the B meson system



Some reality…
Cross Section: 1nb = 10-33cm-2

Reconstruct CP eigenstate 
with probability ~10-5

Was it a B0 or anti-B0? 
tagging probability ~30%

Luminosity target: 3 x 1033 cm-2s-1

1 year of data logging = 300 tagged 
and reconstructed CP events3 Hz of  eventsBB
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Complications from Quantum Mechanics

Initial state: prepared 
antisymmetric wave function1 0 0− − −→ +

0 0(4 )S B Bϒ →

0

0

 evolves independently
as a function of 

recB
t t t∆ = −

Consequence

= 0
0 0( )tagB B tIf

0
0 0( )recB B t=Then

0 ( )recB t∆

Unmeasurable 
distance!

30µm

View in e+e- center-
of-mass frame e +

e −

( )4Sϒ
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µ∆z ~ 260 m

−


−K

Exclusive 
B Meson & vertex 

reconstruction
−π

0
SK

+π
+µ/J ψ

−µ

Use asymmetric- energy collisions!

z

+e
-e

tagB

βγ ϒ =(4 ) 0.56S

( )ϒ 4S

recB

∆z

Start the clock

βγ
∆

∆ ≈
1zt
c

∆   t is a signed quantity
σ µ

τ µ
∆ ⇔

⇔

~ 1 ps 170 m
~ 1.6 ps 250 m
t

B Tagging performance: Q = 30.5%

B-flavor tag & tag 
vertex reconstruction

∆t measurement
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PEP- II B Factory at SLAC

Located at the SLAC National Accelerator Laboratory
Operated from 1999-2008

9 GeV  3.1 GeV 
(4 ) boost: 0.55
Head - on collisions

e e
S βγ

− +×
ϒ =
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KEKB Factory at KEK

11 mrad crossing angle

8 GeV  3.5 GeV 
(4 ) boost: 0.425

e e
S βγ

− +×
ϒ =

±
Located in the 3 km 
Tristan tunnel at KEK
Operated 1999-2010
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PEP- II Collider

KEKB Collider

Presenter
Presentation Notes
PEP-II ring



BABAR detector

DIRC (PID)
144 quartz bars

11000 PMs

1.5T
solenoid

EMC
6580 CsI(Tl) crystals

Drift Chamber
40 layers

Instrumented Flux Return
Iron / Resistive Plate 
Chambers or Limited 

Streamer Tubes  (muon / 
neutral hadrons)

Silicon Vertex Tracker
5 layers, double sided 

strips

e+ (3.1GeV)

e− (9GeV)

Collaboration founded in 1993
Detector commissioned in 1999
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The BABAR
Collaboration
10 Countries
78 Institutions
550 Physicists
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Belle Detector
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ψ→0 0/ SB J K

ψ/J

0
SK
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Recoil B

ν−→
Flavor tag:

eb ce

+ vertex separation 
= time difference
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Main Variables for B Reconstruction
For exclusive B reconstruction, two nearly uncorrelated* kinematic 
variables are used:

* *
B beamE E E∆ = −

( ) ( )2 2* *
BbeamESm E= − p

2 2 2 2

2
2 2 2 2

ES

beamE E E

m pbeam beam
B

p
m

σ σ σ σ

σ σ σ σ

∆ = +

 
= +  

 





* * *( , ),B B beamE Ep B candidate (energy, 3-momentum) and 
beam energy in ϒ(4S) frame

Signal at ∆E ~ 0

Signal at mES ~ mB

Resolutions
10 40 MeVEσ ∆ −

22.6 MeV/c
ESmσ 

“Energy-
substituted 

mass”

* If σE were zero, the variables would be fully correlated; however, σE is typically 
at least 5 times larger than σbeam and so dominates ∆E
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Example for Hadronic B Decays

mES

∆E

sidebands

signal 
region

B0 → J/ψKS

[ ], 3 ,0 3
ESB mES Em E m σ σ ∆ ∆ = ± ± 

 

Defined outside signal region in

Si

or

Si

de

gnal

r to

 Region :

 estimat

deb

e b

and Re

ackgro

gion :

unds

mES [GeV/c2]

∆
E

[M
eV

]
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Flavor Eigenstate Neutral B Sample

0 (*)
1( , , )B D h h aπ ρ− + + + + +→ = 0 *0/ ( )B J K Kψ π+ −→ →

Ntag = 23618
Purity = 84%

Ntag = 1757
Purity = 96%

* 0 0 0

0
, , , ,

,
S

S

D D D K K K K
D K K

π π ρ π π π π π
π π π

− − + − + − + + − − + −

− − + + −

→ →
→

Charm decay modes

B decay modes

BABAR
81.3 fb−1

mES [GeV/c2] mES [GeV/c2]

0( ) 28%BF D∑  ( ) 12%BF D −∑ 

0( ) 4.1%BF B∑ 

Self-Tagging
Modes
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Vertex and ∆z Reconstruction

Brec vertex
Brec daughters

z

1. Reconstruct Brec vertex from 
Brec daughters

Beam spot

Interaction Point

Brec direction

Btag direction

2.Reconstruct Btag direction from 
Brec vertex & momentum, beam 
spot, and ϒ(4S) momentum = 
pseudotrack

Btag Vertex

tag tracks, V0s

3.Reconstruct Btag vertex from 
pseudotrack plus consistent 
set of tag tracks

4.Convert from Δz to Δt, accounting for 
(small) B momentum in ϒ(4S) frame

Result: High efficiency (97%) and σ(Δz)rms ~ 180μm versus <|Δz|> ~ βγcτ = 260μm
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ν∗− +→ 

0B D

+→ →0 ,B DX D K X
π∗− + ∗− −→ →0 0, sB D X D D

Methods for B Flavor Tagging

0 *,B D D Kπ ν− + − + −→ → 

Many different physics processes can be used

−


Secondary lepton

K +

Kaon(s)

Soft pions from D* decays

,π ρ+ +
Fast charged tracks

Primary lepton

+


b c s
W + W −
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Tagging at BABAR 

Sub-taggers 9 Tagging 
Categories

4 Physics 
Categories

Electron-
K
Muon- K
Electrons
Muons 
Kaon- πsoft

Kaon 1  
πsoft

Kaon 2 
Other

Lepton

Kaon I

Kaon II

Inclusive

Figure of merit for tagging Q = εD2
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Some Inputs to NN Tagger

Opening angle 
between input 

track and thrust 
axis of recoil B

0

0
,

s

B D X
D D π

∗− +

∗− −

→
→

Sum of energy 
within 90o of 
estimated W

direction

Opening angle 
between input 

track and missing 
momentum vector

CMS momentum of 
input track

ν∗− +→ 

0B D

ν∗− +→ 

0B D

ν∗− +→ 

0B D
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Flavor Tagging Performance in Data

Tagging 
category

Fraction of 
tagged events ε 

(%)

Wrong tag 
fraction w (%)

Mistag fraction 
difference ∆w 

(%)

Q = 
ε (1 - 2w)2 (%)

Lepton 9. 1  ± 0. 2 3. 3 ± 0. 6 - 0. 9 ± 0. 5 7. 9 ± 0. 3
Kaon I 1 6. 7 ± 0. 2 9. 9 ± 0. 7 - 0. 2 ± 0. 5 1 0. 7 ± 0. 4
Kaon II 1 9. 8 ± 0. 3 20. 9 ± 0. 8 - 2. 7 ± 0. 6 6. 7 ± 0. 4
Inclusive 20. 0 ± 0. 3 31 . 6 ± 0. 9 - 3. 2 ± 0. 6 0. 9 ± 0. 2
ALL 65. 6 ± 0. 5 28. 1  ± 0. 7

The large sample of fully reconstructed events provides the precise 
determination of the tagging parameters required in the CP fit

Error on sin2β and ∆md depend on 
the “quality factor” Q approx. as:

( ) 1sin 2σ β 

Q

Highest “efficiency” Smallest mistag fraction

BABAR
81.3 fb−1
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Decay Time Difference (reco-tag) (ps)

UnMixed
Mixed

0

10

20

30

40

50

60

-8 -6 -4 -2 0 2 4 6 8

( )
0

0 0 0 0

0 0 0unmixed

1

 mixed

cos
4

 

B

mixing, tag tagflav

| Δt| /τ

mixi

mixing, tag tagflav

ng, d
B

fl

fl v

a

a

v

"f "      (B B   or  B B )
"f "        

ef (Δt) Δm Δt
τ

(B B   or  B B )

−

−

±

+

 
= ±

⇔


 

⇔

( )( )
0 0 0

0 0 0

0

0

1 cos
4

1 2

unmixe

 mixed 

( )

d

B

mixing, tag tagflav

mixing, tag tagf

| Δt| /τ

mixin

lav fla

g, d
B

flav

v

"f "      (B B   or  B B )
"f "        (B

ω R Δef (Δt) Δm Δt

B   or  B B

τ
t

)
+

−

−

± −

⇔

 
= ± 

 

⇔

⊗

        is the flavor mistag probability
  is the time resolution function∆

ω
R( t)

B- Mixing Analysis:Time Distributions

Decay Time Difference (reco-tag) (ps)

UnMixed
Mixed

0

10

20

30

40

50

60

-8 -6 -4 -2 0 2 4 6 8

perfect
flavor tagging,
time resolution

realistic 
mistag probability,

finite time resolution
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1(0 516 0 016 0 010 ) ps−= ± ±d (stat) (syst)Δm . . . BABAR PRL 88, 221802 (2002)

Mixing with Hadronic Sample

BABAR
29.7 fb−1

Precision measurement consistent with world average

Signal: 
mES>5.27

Bgnd: 
mES<5.27
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( )
)

1 2 cos
d

mixing

B

A ( t
ω Δm Δt

∆ ≈
−

Mixing Asymmetry with Hadronic Sample
Unfolded raw asymmetry

∆t [ps]

dm/π~ ∆

ω− 21~

Folded raw asymmetry

|∆t| [ps]

BABAR
29.7 fb−1
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Realistic mistag probability & 
finite time resolution

0

0  tag
 tagB

B

CP analysis:  time distributions

ω
∆

same mistag probability     
and time-resolution function  ( )R t

Perfect flavor tagging  & 
time resolution

( )
0 0

0 0

1 sin2 sin
2

Bd

d
d

| Δt| /τ

BCP, f
B

tagCP,

tagCP,

ef (Δt) η β Δm Δt
τ

"f " B B
"f " B B

−

±

+

−

  =  
  

⇔ =

⇔ =

( )( )
0 0

0 0

1 sin1 2 ( )2 sin
2

Bd

d
d

| Δt| /τ

BCP, f
B

tagCP,

tagCP,

ef (Δt) η β Δm Δt
τ

"f " B B
"

ω Δt

B

R

f " B

−

±

+

−

  =  
  

⇔ =

⇔

⊗

=

−

0

0  tag
 tagB

B
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( )
0 0

0 0( ) 1 2 sin2 sintag tag
CP d

tag tag

N(B B ) N(B B )
A t ω β Δm Δt

N(B B ) N(B B )
= − =

∆ = ≈ −
= + =

( )( ) 1 2 cosmixing d
N(unmixed) N(mixed)A t ω Δm Δt
N(unmixed) N(mixed)

−
∆ = ≈ −

+

Time- Dependent CP Asymmetries

Use the large statistics Bflav data sample 
to determine the mistag probabilities and the 
parameters of the time-resolution function

0 0/ SCPB J Kψ→

Time-dependence of
CP-violating asymmetry in

0 0- mixingB B    
Time-dependence of

(Assuming no confusion 
of Brec state)

July 27, 2011 48D.MacFarlane at SSI 2011



Now classic results for sin2β
0( )  (  odd) modesScc K CP 0( )  (  even) modesLcc K CP

β = ± ±
= − = ± ±

sin2 0 710 0.034 0.019
0.070 0.028 0.018
.

C A

BABAR CONF-06/036

0

0
( ) +
( )

S

L

cc K
cc K

1316  on peak or 348   pairs
11496  events (tagged signal)

fb M BB
CP

−

β = ± ±
= − = − ± ±

sin2 0 642 0.031 0.017
0.018 0.021 0.014
.

C A
−1492  on peak or 532   pairs

13994  events (tagged signal)
fb M BB

CP

0

0
/ +

/  only
S

L

J K
J K

ψ
ψBELLE-CONF-0647
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Pure Gold:  Lepton Tags Alone

BABAR
81 fb−1

= ±sin2 0 79 0 11β . .

98% purity
3.3% mistag rate
20% better ∆t 

resolution

220 tagged 
ηf = -1 events
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Check “null” Control Sample at BABAR

Input Bflav sample to CP fit

No asymmetry expected

Sample “sin2β”
Bflav 0. 021 ±0. 022

B+ 0. 01 7±0. 025
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ψ→0 0/ SCPV  in B J K

Interference of b → c tree 
decay with mixing

CPV in charmonium modes

0- 0B B
mixingνΓ → ( )b u

ρ

η ( )ρ η,

τ νΓ →  )B  and  ( b c ( )0,1( )0,0

β φ= 1

α φ= 2

γ φ= 3

0B
b

db

d t
t WW 0B

0B
c

b

d

−W
ψ/J

d

c

s 0K
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ππ ρπ ρρ
→


0  
, , ,

CPV  in B

Interference of suppressed 
b → u tree decay with mixing

CPV in charmless modes

0- 0B B
mixing

νΓ → ( )b u

ρ

η ( )ρ η,

τ νΓ →  )B  and  ( b c ( )0,1( )0,0

β φ= 1

α φ= 2

γ φ= 3

0B
b

db

d t
t WW 0B

0B
ub

d

W

π +

d

u
d π −

3rd component: 
sizable Penguin 

diagram 

0B
u

b

d

W

π +

d

u
d

π −

g, ,u c t
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Remarkably good progress on gamma!

γ → 

0 , ,CP DCS: CPV  in B D K D K

Interference of color-allowed and 
color-suppressed tree decays

0- 0B B
mixing

νΓ → ( )b u

ρ

η ( )ρ η,

τ νΓ →  )B  and  ( b c ( )0,1( )0,0

β φ= 1

α φ= 2

γ φ= 3

−B
cb

u

−W
(*)0D

u

u

s
−(*)K

−B
c

b

u

−W
(*)0D

u

u

s −(*)K

Effect depends on 
ratio of two diagrams

( ) decay to 
common final state

D D+

0 0, , SCP DCSD D D K π π+ −→
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Direct CP violation measurements

βsin2 α

γ βcos2
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Summary of UT triangle constraints
Paradigm change!

Now: looking for 
New Physics as 

correction to CKM
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Continuing the hunt for new 
sources of CP violation



UT from CP violation measurements alone
B Factory milestone: 

Comparable UT 
precision from CPV in 

B decays alone

Overconstrained: subsets 
of measurements can be 
used to test for new 

physics
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φ η′→ 

0 0 0 , ,  S SCPV  in B K K

Interference of suppressed 
b → s Penguin decay with mixing

CPV in Penguin Modes

0- 0B B
mixingνΓ → ( )b u

ρ

η ( )ρ η,

τ νΓ →  )B  and  ( b c ( )0,1( )0,0

β φ= 1

α φ= 2

γ φ= 3

0B
b

db

d t
t WW 0B

0B
s

b

d

W

0K
d

s
s

φ
g, ,u c t

Another implication of 
overconstrained: redundant 
approaches to same CKM 

parameter
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Potential New Physics contributions

0B

η′

b s
s

s
d

d

+W

g

, ,u c t

“Internal Penguin”

φ

0
SK

0B

η′

0
SK

φ→0 0  B K

η′→0 0  B K

φ

0
SK

0B

b
s

s

s
d d

η′

0
SK

0B

b
s

s

s
d d

SUSY contribution with 
new phases

New physics in loops?
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Is there New Physics in mixing?

2 2 ( )
2

2

SM SM NP
d d d

Bd
SMd d

i iSM NP
i d d

B iSM
d

A e A eC e
A e

ϕ ϕ ϕ
ϕ

ϕ

++
=

Model independentIntroduce new physics 
in b → d mixing diagram

For relative phases >90O

could easily have NP 
amplitudes at 40% times SM

( ) ( )
( ) ( )0/ sin2

d d d

d

SM
B B B

S BCP

M C M

A J Kψ β φ

∆ = ∆

= +

Mass scale being probed 
for unit coupling:

Λ(now) ~ 5 TeV
Λ(2008) ~ 10 TeV
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Further bounds on New Physics

2 2 ( )
2

2

SM SM NP
s s s

Bs
SMs s

i iSM NP
i s s

B iSM
s

A e A eC e
A e

ϕ ϕ ϕ
ϕ

ϕ

++
=

Model independent

Introduce new physics 
in b → s mixing diagram

Could easily have NP 
amplitudes up to 3 times SM
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Other windows on New Physics

τν→B ργ→B

b
W

t d

γ
W,H τ

ν

b

u

New independent
 measurement of  ubV

New independent
 measurement of /  tstdV V

Examples of rare decays with sensitivity to New Physics

July 27, 2011 63D.MacFarlane at SSI 2011



−
Γ122

i

12M
0B 0Boff-shell states f

on-shell 
states f

CP Violation in mixing diagram

 CPV through interference 
of decay amplitudes

 CPV through interference 
of mixing diagram

Expected to be very small

 CPV through interference 
between mixing and decay 
amplitudes

tanqq
Sl q

q

a
M

φ
∆Γ

=
∆

Resulting semileptonc charge asymmetry:

where ,q qM∆ ∆Γ are mass & width differences 
for propagation matrices of 
neutral eigenstates

qφ CP violating phase
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Asymmetry measurement from D0
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b bb bb
Sl

bb bb

N N
A

N N

++ −−

++ −−

−
=

+

Measurable: Like-sign 
dimuon charge asymmetry:

d s
d Sl s SlC a C a= +

Coefficients ,d sC C
depend on impact 
parameter

( 0.787 0.172( ) 0.093( ))%b
SlA stat syst= − ± ±

0.005
0.006( ) ( 0.028 )%b

SlA SM +
−= −

D0 observes:

versus Standard Model expectation:

(3.9σ difference)

V.M.Abazov, et al. (D0 Collab), 
FERMILAB-PUB-11-307-E



Implications for new physics in mixing
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A new era with Super B Factories



Physics case for new Flavor Factories

 Flavor physics sensitive to 
processes that are one- loop in SM 
but could be O(1 ) for NP

o FCNC, mixing, CPV
 Current experimental bound is 

O(1 0- 1 00 TeV) depending on NP 
coupling.  

o If the LHC finds NP at O(1 TeV) it must 
have a non-trivial flavor structure

 Even if no NP is discovered at the 
LHC,  current SM couplings provide 
sensitivity to NP at high mass 
scales 

July 27, 2011 68D.MacFarlane at SSI 2011



Physics opportunity with Super Flavor Factory

2007
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2020

x50-75 
sample 
size



Revealing new physics effects in the flavor sector

 CKM matrix measures the relative orientation 
of the u and d sector Yukawa couplings in the 
Standard Model

 In SUSY there are a new set of (model-
dependent) Yukawa couplings describing the 
squark and slepton sectors

 Minimal Flavor Violation (MFV),  for example,  is 
the assumption that the old and new Yukawa 
couplings are aligned

dL               dR                   sL sR bL bR

( ) ( )
2

Δ d
ijd AB

ij AB m
δ =



Mass insertion approximation 
allows us to set a model-

independent scale for effects

Flavor studies determine the
off-diagonal (mixing) elements
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Super Flavor Factory with 75 ab- 1

d
slA

β Δ dm

( )sCP B xA γ→

( )sB x γ→B

/4
131 TeV, ( ) 0.085d i

q g LLm m e πδ= = =
 

/4
231 TeV, ( ) 0.028d i

q g LRm m e πδ= = =
 

1-3 transitions 2-3 transitions

( )sB x + −→  B
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Complementary to discovery opportunity with the LHC



Unraveling the nature of New Physics
• Need to combine measurements to elucidate 

structure of new physics

More information on the golden matrix can be found in 
arXiv:1008.1541, arXiv:0909.1333, and arXiv:0810.1312.

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓= SuperB can measure these modes

July 27, 2011 72D.MacFarlane at SSI 2011



Next generation Super Factories
Strong physics case for a 1036 facility (x50): improve 

sensitivity by more than order of magnitude

New ideas:
o Ultra low-emittance, similar 

to ILC damping rings
o Scaled version ILC final focus
o Large crossing angle and 

crabbed waist

SuperB Factory

Features:
o Machine has significant 

technical overlap with ILC
o Possible to reach 1036

luminosity with beam currents 
comparable to present B
Factories allowing (re-)use of 
existing detectors and machine 
components

4x7 GeV low-emittance 
electron-positron rings in 
common 2-3 km tunnel

July 27, 2011 73D.MacFarlane at SSI 2011

-350

-300

-250

-200

-150

-100

-50

0

-200 -100 0 100 200
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-- RF cavities

-- solenoids

IP
66 mrad

1258m circumference

4.2 x 6.8 GeV collisions 
with 1036 luminosity

SuperB layout
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History of e+e- collider luminosity
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Tor Vergata University campus

Selected site

LNF

About 4.5 Km

SuperB at Tor Vergata,  Italy



Update on Flavor 
Physics Strategy
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SuperKEKB luminosity upgrade projection

Shutdown
for upgrade

In
te

gr
at

ed
 L

um
in

os
ity

(a
b-1

)
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ak
 L

um
in

os
ity

(c
m

-2
s-1

)

Goal of SuperKEKB

Year

9 month/year
20 days/month

Commissioning starts 
mid of 2014

We will reach 50 ab-1

around 2020.

We are here
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Origin of matter-antimatter asymmetry 
remains a fundamental mystery: 

New round of Super B Factories is 
essential for exploring this frontier
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