Exploring Matter-Antimatter Asymmetries with B mesons

David B. MacFarlane SLAC National Accelerator Laboratory

A fundamental cosmological question

- The universe is now matter dominated: how did this matter-antimatter imbalance arise?
 - Anti-proton/proton ratio ~10⁻⁴ in cosmic rays; no evidence for annihilation photons from intergalactic clouds
- Cosmological generation of asymmetry: Sakharov conditions (1967)
 - Baryon number violation, e.g., proton decay
 - Thermal non-equilibrium

July 27, 2011

 Violation of charge conjugation C and parity P discrete symmetries

> Unbroken Phase: Massless quarks

Transition to broken electroweak symmetry provides these conditions

Broken Phase:

Massive guarks,

W, Z bosons

Matter-Antimatter annihilation

SLA

July 27, 2011

Implies 10⁻¹⁰ matter-antimatter asymmetry at 0.001s after big bang

D.MacFarlane at Notre Dame

Matter-Antimatter asymmetry!

Brief review of Standard Model weak interactions for guarks and *CP* violation

Quark couplings: CKM matrix

Mass Eigenstates \neq Weak Eigenstates \Rightarrow Quark Mixing

Cabibbo-Kobayashi-Maskawa (CKM) Matrix

$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

Flavor changes

through mixed

Unitary matrix described for 3 generations of quarks by 3 rotation angles and 1 non-trivial phase

CKM matrix: a source of CP violation

$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

CKM elements & quark masses are fundamental constants emerging from EW symmetry breaking

<u>Wolfenstein parameterization:</u> Observed experimental hierarchy

 $\lambda \sim 0.22$ sin θ_c Cabibbo angle

Important discrete symmetries

> Parity, P

- Reflection a system through the origin, thereby converting right-handed into lefthanded coordinate systems
- Vectors (momentum) change sign but axial vectors (spin) remain unchanged

> Charge Conjugation, C

 Change all particles into anti-particles and vice versa

> Time Reversal, T

 Reverse the arrow of time, reversing all time-dependent quantities, e.g. momentum

Good symmetries of strong and electromagnetic forces, but C & P are violated in the weak interaction $\mathbf{p} \rightarrow -\mathbf{p}$

 $L \rightarrow L$

 $t \rightarrow -t$

+

Not Quite!

July 27, 2011

Dominant decay modes for neutral kaons:

$$\begin{split} &\mathcal{K}_{\mathcal{S}}^{0} \to \pi^{+}\pi^{-} \qquad \mathcal{CP} = +1 \\ &\mathcal{K}_{\mathcal{L}}^{0} \to \pi^{+}\pi^{-}\pi^{0} \qquad \mathcal{CP} = -1 \qquad \left| \mathcal{K}_{\mathcal{L}}^{0} \right\rangle \thicksim \left| \mathcal{K}_{\mathcal{CP} = -1}^{0} \right\rangle + \varepsilon \left| \mathcal{K}_{\mathcal{CP} = +1}^{0} \right\rangle \end{split}$$

In 1964, Christenson et al. observed:

$$\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-}$$
 with $\frac{\Gamma(\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-})}{\Gamma(\mathcal{K}_{S}^{0} \rightarrow \pi^{+}\pi^{-})} = 2.3 \times 10^{-3}$

CP symmetry is violated at a tiny rate in the decays of neutral kaons!

More recently, direct CP violation also observed

CKM Predicts:
$$\varepsilon = 3 \times 10^{-3} B_{\kappa} A^2 \eta \left[1 + A^2 (1 - \rho) \left(\frac{m_4}{94} \right)^2 \right] \neq 0$$
 Is this the origin?

Difficult to interpret due to complications of hadronic physics

Weak decays of B mesons

Produce matterantimatter pairs

 $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^0 \overline{B^0}$

ARGUS at DESY, 1987

July 27, 2011

Weak decays of B mesons

Weak interaction in Standard Model

Existing constraints

Weak interaction in Standard Model

July 27, 2011

CP violation in the B system

July 27, 2011

Analogous to a two-slit quantum interference experiment!

CP violation in the B system

 CPV through interference between mixing and decay amplitudes

Directly related to CKM angles for single decay amplitude

Time-dependent asymmetry

July 27, 2011

$$\mathcal{A}_{f_{CP}}(t) = \frac{\Gamma(\bar{B}_{phys}^{0}(t) \to f_{CP}) - \Gamma(\bar{B}_{phys}^{0}(t) \to f_{CP})}{\Gamma(\bar{B}_{phys}^{0}(t) \to f_{CP}) + \Gamma(\bar{B}_{phys}^{0}(t) \to f_{CP})} = \mathcal{S}_{f_{CP}} \sin \Delta m_{d} t - \mathcal{C}_{f_{CP}} \cos \Delta m_{d} t$$
$$\mathcal{S}_{f_{CP}} = \frac{2 \operatorname{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^{2}} \qquad \qquad \mathcal{C}_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^{2}}{1 + |\lambda_{f_{CP}}|^{2}} \qquad \qquad \qquad \mathcal{A}_{f_{CP}} = \frac{q}{p} \cdot \frac{\bar{\mathcal{A}}_{\bar{f}_{CP}}}{\mathcal{A}_{f_{CP}}}$$

CP violation in the B system

 CPV through interference between mixing and decay amplitudes

Directly related to CKM angles for single decay amplitude

Time-dependent asymmetry

July 27, 2011

$$\mathcal{A}_{f_{CP}}(t) = \frac{\Gamma(\overline{B}_{phys}^{0}(t) \to f_{CP}) - \Gamma(B_{phys}^{0}(t) \to f_{CP})}{\Gamma(\overline{B}_{phys}^{0}(t) \to f_{CP}) + \Gamma(B_{phys}^{0}(t) \to f_{CP})} = S_{f_{CP}} \sin \Delta m_{d} t$$

$$S_{f_{CP}} = \frac{2 \operatorname{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2} = \operatorname{Im} \lambda_{f_{CP}} \qquad C_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2} = 0 \qquad \lambda_{f_{CP}} = \frac{q}{p} \cdot \frac{\overline{A_{f_{CP}}}}{A_{f_{CP}}}$$

For simple case shown with single decay mechanism

But how big are the CP asymmetries?

$$\mathcal{A}_{f_{CP}}(t) = \frac{\Gamma(\overline{B}_{phys}^{0}(t) \to f_{CP}) - \Gamma(B_{phys}^{0}(t) \to f_{CP})}{\Gamma(\overline{B}_{phys}^{0}(t) \to f_{CP}) + \Gamma(B_{phys}^{0}(t) \to f_{CP})} = S_{J/\psi K_{S}^{0}} \sin \Delta m_{d} t$$

Amplitude of CP asymmetry

July 27, 2011

SLA

$$\operatorname{Im} \lambda_{J/\psi K_{S}^{0}} = -\eta_{f_{CP}} \operatorname{Im} \left\{ \frac{V_{cs} V_{cb}^{*}}{V_{cs}^{*} V_{cb}} \times \frac{V_{tb} V_{td}^{*}}{V_{tb}^{*} V_{td}} \times \frac{V_{cs} V_{cd}^{*}}{V_{cs}^{*} V_{cd}} \right\} = \operatorname{Im} \frac{V_{td}^{*}}{V_{td}} = \operatorname{sin} 2\beta$$

Quark subprocess

mixing mixing

К

B

~0.7 instead

of 2x10⁻³!

Experimental approach to CP violation in the B meson system

Some reality...

SIA

July 27, 2011

Cross Section: $1nb = 10^{-33}cm^{-2}$

Reconstruct *CP* eigenstate with probability ~10⁻⁵

Was it a B⁰ or anti-B⁰? tagging probability ~30%

Luminosity target: 3×10^{33} cm⁻²s⁻¹

3 Hz of $B\overline{B}$ events

1 year of data logging = 300 tagged and reconstructed *CP* events

D.MacFarlane at SSI 2011

Complications from Quantum Mechanics

July 27, 2011

Use asymmetric-energy collisions!

PEP-II B Factory at SLAC

Located at the SLAC National Accelerator Laboratory Operated from 1999–2008

SIA

KEKB Factory at KEK

8 GeV $e^- \times$ 3.5 GeV e^+ Y(45) boost: $\beta \gamma = 0.425$ $\pm 11 \text{ mrad crossing angle}$

July 27, 2011

SLAC

BABAR detector

July 27, 2011

0

0

 \odot

0

•

0

0

A TO

 \sim

1.

1. 1. 6

Belle Detector

Main Variables for B Reconstruction

For exclusive *B* reconstruction, two nearly uncorrelated^{*} kinematic variables are used:

$$\Delta E = E_{B}^{*} - E_{beam}^{*}$$
Signal at $\Delta E \sim 0$

"Energy-
substituted
mass"
$$M_{ES} = \sqrt{(E_{beam}^{*})^{2} - (\mathbf{p}_{B}^{*})^{2}}$$
Signal at $m_{ES} \sim m_{B}$

$$(E_{B}^{*}, \mathbf{p}_{B}^{*}), E_{beam}^{*}$$
B candidate (energy, 3-momentum) and beam energy in $\Upsilon(4.5)$ frame

Resolutions

$$\sigma_{\Delta E}^{2} = \sigma_{beam}^{2} + \sigma_{E}^{2} \sim \sigma_{E}^{2} \qquad \sigma_{\Delta E} \sim 10 - 40 \text{ MeV}$$

$$\sigma_{m_{ES}}^{2} = \sigma_{beam}^{2} + \left[\frac{p}{m_{B}}\right]^{2} \sigma_{p}^{2} \sim \sigma_{beam}^{2} \qquad \sigma_{m_{ES}} \sim 2.6 \text{ MeV/c}^{2}$$

* If σ_E were zero, the variables would be fully correlated; however, σ_E is typically at least 5 times larger than σ_{beam} and so dominates ΔE

July 27, 2011

D.MacFarlane at SSI 2011
Example for Hadronic B Decays

SLAC

Vertex and Δz Reconstruction

Result: High efficiency (97%) and $\sigma(\Delta z)_{rms} \sim 180 \mu m$ versus $\langle \Delta z \rangle \sim \beta \gamma c\tau = 260 \mu m$

Methods for B Flavor Tagging

Many different physics processes can be used

Tagging at BABAR

Some Inputs to NN Tagger

Flavor Tagging Performance in Data

The large sample of fully reconstructed events provides the precise determination of the tagging parameters required in the *CP* fit

	Tagging f category tag		Fraction of ged events ε (%)	Wrong tag fraction w (%)	Mistag f differe (%	Fraction nce ∆w 5)	Q = ε(1-2w)² (%)			
	Lepton	pton 9.		3.3 ± 0.6	- 0. 9	± 0.5	7.9 ± 0.3			
	Kaon I		<i>6.7 ± 0.2</i>	<i>9.9 ± 0.7</i>	- 0. 2 :	± 0.5	<i>10.7 ± 0.4</i>			
	Kaon II	aon II 🔶		20.9 ± 0.8	-2.7:	± 0.6	6.7±0.4			
	Inclusive		20.0 ± 0.3	31.6 ± 0.9	- 3.2 :	± 0.6	0.9±0.2			
	ALL 65.6±0		65.6 ± 0.5				28.1 ± 0.7			
High	nest "efficienc	γ"	Error on si the "qualit o	n2 β and $\Delta m_{\rm d}$ deperturbed dependence of the second secon	end on ox. as:	Smalle	est mistag fractio BABAR 81.3 fb ⁻¹	n		
SLA(G July 27, 2011			43						

B-Mixing Analysis: Time Distributions

 ω is the flavor mistag probability $R(\Delta t)$ is the time resolution function

Mixing with Hadronic Sample

Mixing Asymmetry with Hadronic Sample

CP analysis: time distributions

July 27, 2011

and time-resolution function $R(\Delta t)$

D.MacFarlane at SSI 2011

Time-Dependent CP Asymmetries

Time-dependence of $B^{\circ}-\overline{B}^{\circ}$ mixing

$$\mathcal{A}_{mixing}(\Delta t) = \frac{N(unmixed) - N(mixed)}{N(unmixed) + N(mixed)} \approx (1 - 2w) \cos \Delta m_d \Delta t$$

Time-dependence of
CP-violating asymmetry in
 $\mathcal{B}_{CP}^0 \rightarrow J / \psi \mathcal{K}_{S}^0$

$$\mathcal{A}_{CP}(\Delta t) = \frac{N(\mathcal{B}_{tag} = \mathcal{B}^0) - N(\mathcal{B}_{tag} = \overline{\mathcal{B}}^0)}{N(\mathcal{B}_{tag} = \mathcal{B}^0) + N(\mathcal{B}_{tag} = \overline{\mathcal{B}}^0)} \approx (1 - 2w) \sin 2\beta \sin \Delta m_d \Delta t$$

Use the large statistics B_{flav} data sample to determine the **mistag probabilities** and the parameters of the **time-resolution function**

Now classic results for $sin 2\beta$

Pure Gold: Lepton Tags Alone

Check "null" Control Sample at BABAR

CPV in charmonium modes

CPV in charmless modes

Remarkably good progress on gamma!

Direct CP violation measurements

Summary of UT triangle constraints

Continuing the hunt for new sources of CP violation

UT from CP violation measurements alone

B Factory milestone: Comparable UT precision from CPV in B decays alone

July 27, 2011

Overconstrained: subsets of measurements can be used to test for new physics

CPV in Penguin Modes

SLA

Potential New Physics contributions

Is there New Physics in mixing?

July 27, 2011

D.MacFarlane at SSI 2011

Further bounds on New Physics

Other windows on New Physics

SLAC

July 27, 2011

Examples of rare decays with sensitivity to New Physics

D.MacFarlane at SSI 2011

ρ

CP Violation in mixing diagram

- CPV through interference of decay amplitudes
- CPV through interference between mixing and decay amplitudes
- CPV through interference of mixing diagram

July 27, 2011

Resulting semileptonc charge asymmetry:

$$a_{Sl}^{q} = \frac{\Delta \Gamma_{q}}{\Delta M_{q}} \tan \phi_{q} \quad \text{where} \quad \Delta M_{q}, \Delta \Gamma_{q} \quad \text{are mass \& width differences} \\ \text{for propagation matrices of} \\ \text{neutral eigenstates} \\ \phi_{q} \quad \text{CP violating phase} \end{cases}$$

Asymmetry measurement from DO

Measurable: Like-sign dimuon charge asymmetry:

DO observes:

July 27, 2011

$$A_{Sl}^{b} = (-0.787 \pm 0.172(stat) \pm 0.093(syst))\%$$

versus Standard Model expectation: $A^b_{Sl}(SM) = (-0.028^{+0.005}_{-0.006})\%$ (3.9 σ difference) V.M.Abazov, et al. (D0 Collab), FERMILAB-PUB-11-307-E

Coefficients C_d, C_s depend on impact parameter <u>ج</u> 0.02 DØ, 9.0 fb⁻¹ A b IP .SM 0 -0.0268% and 95% C.L. regions are obtained from -0.04the measurements with **IP** selections -0.02-0.04 0 0.02

 a_{sl}^{d}

Implications for new physics in mixing

D.MacFarlane at SSI 2011

A new era with Super B Factories

Physics case for new Flavor Factories

- Flavor physics sensitive to processes that are one-loop in SM but could be O(1) for NP
 - FCNC, mixing, CPV
- Current experimental bound is O(10-100 TeV) depending on NP coupling.
 - If the LHC finds NP at O(1 TeV) it must have a non-trivial flavor structure
- Even if no NP is discovered at the LHC, current SM couplings provide sensitivity to NP at high mass scales

Physics opportunity with Super Flavor Factory

SLAC

Revealing new physics effects in the flavor sector

- CKM matrix measures the relative orientation of the u and d sector Yukawa couplings in the Standard Model
- In SUSY there are a new set of (modeldependent) Yukawa couplings describing the squark and slepton sectors

Mass insertion approximation allows us to set a modelindependent scale for effects

 $\left(\delta^{d}_{ij}
ight)_{\cdot \cdot}$

Super Flavor Factory with 75 ab⁻¹

Complementary to discovery opportunity with the LHC

SLAC

Unraveling the nature of New Physics

 Need to combine measurements to elucidate structure of new physics

	Observable/mode	H^+	MFV	non-MFV	NP	Right-handed	LTH	۱ ۲			SUSY		
		high $ aneta$			Z penguins	currents		AC	RVV2	AKM	δLL	FBMSSM	
<	$ au ightarrow \mu \gamma$							***	***	*	***	***	
<	$\tau \rightarrow \ell \ell \ell$						***						
1	$B ightarrow au u, \mu u$	$\star \star \star (CKM)$											
1	$B \to K^{(*)+} \nu \overline{\nu}$			*	***			*	*	*	*	*	
✓	$S \text{ in } B ightarrow K^0_S \pi^0 \gamma$					***							
<	S in other penguin modes			* * *(CKM)		* * *		***	**	*	***	***	
1	$A_{CP}(B ightarrow X_s \gamma)$			***		**		*	*	*	***	***	
 Image: A start of the start of	$BR(B ightarrow X_s \gamma)$		***	*		*							
	$BR(B o X_s \ell \ell)$			*	*	*							
<	$B \to K^{(*)} \ell \ell$ (FB Asym)							*	*	*	***	***	
	$B_s \to \mu \mu$							***	***	***	***	***	
	eta_s from $B_s o J/\psi \phi$							***	***	***	*	*	
<	a_{sl}						***						
<	Charm mixing							***	*	*	*	*	
✓	CPV in Charm	**									***		

✓ = SuperB can measure these modes

More information on the golden matrix can be found in arXiv:1008.1541, arXiv:0909.1333, and arXiv:0810.1312.

Next generation Super Factories

Strong physics case for a 10³⁶ facility (x50): improve sensitivity by more than order of magnitude

New ideas:

- O Ultra low-emittance, similar
 to ILC damping rings
- Scaled version ILC final focus
- Large crossing angle and crabbed waist

Features:

- Machine has significant technical overlap with ILC
- Possible to reach 10³⁶ luminosity with beam currents comparable to present B Factories allowing (re-)use of existing detectors and machine components

History of ete collider luminosity

SLAC

SuperB at Tor Vergata, Italy

Selected site

About 4.5 Km

© 2011 Tele Atlas

Image © 2011 DigitalGlobe

SuperKEKB luminosity upgrade projection

Origin of matter-antimatter asymmetry remains a fundamental mystery: New round of Super B Factories is essential for exploring this frontier