
Appendix

C
Introduction to group theory

Invariance groups
A group G is a set of elements {g, h, k, ...} for which a multiplication is defined
which assigns to every two elements g, h·G an element g · h which is again an
element of the group. In addition the following properties should hold:

(i) The multiplication is associative, which means that we have (g · h) · k =
g · (h · k) for all g, h, k·G. In the special case that the group multiplication is
commutative, g · h = h · g for all g, h·G, the group is called abelian.

(2) The set of elements of G contains the identity I, for which we have
I·g = g·I for all g·G, as well as the inverse elements g−1 for every g·G, i.e.
g−1 · g = g · g−1 =I. A subset H of elements contained in G is called a
subgroup of G if H itself is also a group according to the definition given
above.

Symmetry transformations always form a group. To see this consider for
instance a theory described in terms of an action S[φ] which is a functional
of fields generically denoted by φ. Under a set of symmetry transformations
{g, h, k, . . .} the fields φ change into φg , φh, φk , . . . which leave the action in-
variant, i.e.

S[φg ] = S[φh] = S[φk] = · · · = S[φ]. (C.1)

We assume that the set {g, h, k, . . .} is complete in the sense that it contains
all symmetry transformations of the action. The effect of a product of two
such transformations, say g · h, follows from successive application of g and h
to the fields, first h and then g. Clearly the action remains invariant under the
product transformation as well, which must therefore be one of the elements
of the set {g, h, k, ...}. Furthermore the identity transformation is contained
in this set, from which it follows that also the inverse transformations define
symmetries of the action, since

S[φ] = S[φI ] = S[φg·g−1 ] = S[φg−1 ] , (C.2)

where the last step follows from (C.l) after replacing φ by φg−1 , (we assume
here that all transformations φ → φg have an inverse). Consequently the
defining properties of a group are satisfied, so that the full set of symmetry
transformations constitutes a group.

One can make an obvious distinction between discrete and continuous trans-
formations. Discrete symmetries usually constitute a finite group, i.e. a group
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consisting of a finite number of elements. An example of a discrete symme-
try is a reflection; as the product of two reflections gives the identity the
corresponding group consists of precisely two elements, namely the identity
transformation and the reflection. Another example is the group of rotations
that leave a three-dimensional cube invariant. This group has 24 elements.
Continuous symmetries depend on one or more parameters in a continuous
fashion. Clearly a group of such transformations contains an infinite number
of elements. The dimension of a continuous group is defined as the number of
independent parameters on which the group elements depend. If the depen-
dence on these parameters is analytic then we are dealing with a so-called Lie
group. The three-dimensional rotations constitute a well-known example of a
Lie group; they depend on the three Euler angles. Consequently the dimension
of the rotation group is 3.

If there is a mapping from a group G to a set of matrices D(G) which
preserves the group multiplication then D(G) is called a representation of the
group G. In that case, to any element g·G there belongs a matrix D(g)·D(G)
such that to the product g · h of two elements g and h of G there belongs a
matrix D(g · h) such that

D(g · h) = D(g)D(h)·D(G) . (C.3)

The mapping between G and D(G) is called a homomorphism. If the mapping
is one-to-one then it is called an isomorphism and D(G) is a faithful represen-
tation. In case the mapping is not into a set of matrices but into some other
algebraic structure, it is called a realization. In general a group can have many
different representations.

As an example we recall the representations of the rotation group, which are
well-known from quantum mechanics. These representations are characterized
by an integer l(l = 0, 1, 2, ...) and consist of (2l + 1) × (2l + 1) matrices

acting on states with total angular momentum L2 = h̄2l(l + 1); the latter
are labelled by their value of angular momentum projected along a certain
axis (e.g. Lz = −h̄l,−h̄(l − 1), .., h̄l). For each rotation g (which is a 3 × 3
orthogonal matrix) there is a (2l+ 1) × (2l + 1) matrix D(g), which specifies
how the 2l+ 1 states transform among themselves as a result of the rotation.
The quantity 2l+ 1 is called the dimension of the representation.

It is rather obvious that combining two representations of dimension 2l1 +1
and 2l2+1 leads to another representation of dimension 2(l1+l2+1). The latter
representations are called reducible as they can be reduced to smaller repre-
sentations. Evidently not much new is to be learnt from studying reducible
representations, so that one usually restricts oneself to irreducible representa-
tions. It can be shown that finite groups must have a finite number of irre-
ducible representations (we will exploit this fact in appendix E). Continuous
groups have infinitely many representations, which can fortunately be stud-
ied rather systemetically as one sees from the example of the rotation group.
Lie groups
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Consider a one-parameter Lie group with elements g(ξ). Because of the analyt-
icity of g(ξ) it is always possible to choose a so-called canonical parametriza-
tion, which satisfies

g(ξ1)g(ξ2) = g(ξ1 + ξ2) . (C.4)

Consequently

g(0) = I, (g(ξ)−1 = g(−ξ) . (C.5)

Using this parametrization and the fact that g(ξ) is analytic we can write an
element in a neighbourhood of the identity element as

g(ξ) = I + ξt+O(ξ2) , (C.6)

where t is an operator which generates the infinitesimal group transformation.
Using (C.4) we can formally construct finite elements g(ξ) by making an
infinite series of infinitesimally small steps away from the identity element:

g(ξ) = {g(ξ/n)}n = lim
n→∞

{

I +
ξ

n
t . . .

}n

= exp(ξt) , (C.7)

where the exponentiation is defined by its series expansion. The result (C.7)
can directly be extended to an n-parameter Lie group:

g(ξ1, . . . , ξn) = exp(ξata) , (C.8)

where we have adopted the summation convention. The quantities ta, which
characterize the infinitesimal transformations that are linearly independent,
are called the generators of the Lie group. For compact groups one can show
that every group element can be written in the form (C.8) (for compact groups
the (group-invariant) “volume” of the parameter space is finite).

To elucidate these notions let us discuss two examples. First consider the
set of all one-dimensional translations: g(ξ) is then the transformation that
changes the coordinate x into x+ ξ. Obviously, these transformations form a
group with a canonical parameter ξ. In the space of functions of one variable,
a representation of this group is given by the transformation that changes any
function f(x) according to:

f(x) → f(x+ ξ) . (C.10)

An infinitesimal transformation is then given by

f(x) → f(x+ ξ) = f(x) + ξ
d

dx
f(x) +O(ξ2) , (C.10)
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so that the generator of the translation group is

tf(x) =
d

dx
f(x) . (C.11)

Indeed,a finite transformation can be written as

f(x) → exp
(

ξ
d

dx

)

f(x) =

∞
∑

n=0

1

n!
ξn

dnf(x)

dxn
. (C.12)

which is simply f(x+ ξ) expanded as a Taylor series about x.
As a second example consider all two-dimensional rotations, which obviously

form a Lie group with the angle of rotation ξ as a natural canonical parameter.
Using polar coordinates with x = r cos θ, y = r sin θ a (clockwise) rotation g(ξ)
changes the value θ into θ − ξ. Infinitesimally one has

(

x
y

)

→
(

x
y

)

+ ξ

(

y
−x

)

+O(ξ2) . (C.13)

According to (C.13) the generator t can be written as a 2 × 2 matrix

t =

(

0 1
−1 0

)

. (C.13)

Using t2 = −I a finite rotation g(ξ) can be written as

g(ξ) = exp(ξt) =
∞
∑

n=0

1

n!
ξntn

=

∞
∑

n=0

{ 1

(2n)!
(−ξ2)nI +

1

(2n+ 1)!
(−1)nξ2n+1t

}

= cos ξI + sin ξt =

(

cos ξ sin ξ
− sin ξ cos ξ

)

(C.15)

which indeed constitutes a general two-dimensional rotation. The above group
is called SO(2). It is the group of all orthogonal 2×2 matrices with unit deter-
minant. This is a special case of the group O(N) which consists of all orthog-
onal N ×N matrices, and the group SO(N) for the subgroup of elements of
O(N) with unit determinant. Similarly, U(N) is the group of unitary N ×N
matrices, and SU(N) is the group of elements of U(N) with unit determinant.
Obviously, O(N) and SO(N) are subgroups of U(N) and SU(N), respectively.
Lie algebra
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Let us now return to a more general discussion of the group generators. Con-
sider an n-parameter Lie group G with elements g(ξ1, . . . , ξn) and generators
ta(a = 1, . . . , n). According to (C.8) we may write

g(ξ1, . . . , ξn) = exp(ξata) .

A product of two such elements can be expressed by means of the Baker-
Campbell-Hausdorff formula

g(ξ1, . . . , ξn) · g(ζ1, . . . , ζn) = exp(ξata) · exp(ζbtb)

= exp{ξata + ζata + 1
2ξ
aζb[ta, tb] +

1
12 (ξaξbζc + ζaζbξc[ta, [tb, tc]]

+ higher− order commutators of the t′s} . (C.16)

Because G is a group, the product (C.16) must again be an exponential form
of the generators, so there must be coefficients η1, . . . , ηn such that

g(ξ1, . . . , ξn) · g(ζ1, . . . , ζn) = exp(ηata) . (C.17)

This is possible if and only if any commutator of generators can again be
written as a linear combination of generators. In other words, the generators
must close under commutation:

[ta, tb] = fab
ctc , (C.18)

where fab
c are constants, antisymmetric in their lower indices (since we as-

sume real parameters ξa, these constants are real). With this property the
generators ta form the basis of the so-called Lie algebra g associated with the
Lie group G. From (C.16) it follows that the fab

c determine the multiplica-
tion table of the Lie group. Therefore they are called the structure constants
of the group (observe that abelian groups have zero structure constants). Two
groups with the same structure constants are locally equivalent, in the sense
that there is a one-to-one correspondence between the elements of the two
groups in a neighbourhood of any group element. This does not necessarily
imply that there is a one-to-one correspondence between the two groups as
a whole, i.e. the groups need not be globally equivalent. To understand the
difference between the two equivalency relations, consider a circle and a line.
In a small neighbourhood of any point, the circle and the line admit a one-to-
one mapping of the points of one into those of the other. However, globally
there exists no such mapping because the (unit) circle is equivalent to a line of
which all elements modulo distances of 2π are considered as identical. Conse-
quently the circle is not simply connected because not all closed paths can be
deformed continuously to a point. As we shall see later a similar phenomenon
happens for groups.
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As an example consider the group SU(2), defined as the set of all unitary
2 × 2 matrices with unit determinant. Elements of this group can be written
as

gSU(2)(ξ) = exp(ξata) . (C.19)

The requirement that gSU(2)(ξ) is a unitary matrix with unit determinant
leads to the following two conditions for the generators:

ta = −t†a ,Tr(ta) = 0 . (C.20)

Therefore we can write the SU(2) generators in terms of the three Pauli ma-
trices:

ta = 1
2 iτa , with

τ1 =

(

0 1
1 0

)

, τ2 =

(

0 −i
i 0

)

, τ3 =

(

1 0
0 −1

)

. (C.21)

The structure constants follow directly from

[ta, tb] = − 1
4 [τa, τb] = − 1

4 (2iεabcτc) = −εabctc . (C.22)

Finite elements of SU(2) can again be found by exponentiation. From the
well-known identity

τaτb + τbτa = 2δabI , (C.23)

it follows that (ξaτa)
2 = ξ2I, where we use the definition

ξ =
√

(ξ1)2 + (ξ2)2 + (ξ3)2 , (C.24)

so that

gSU(2)(ξ) =

∞
∑

n=0

1

n!
(ξata)n

=
∞
∑

n=0

{ 1

(2n)!
( 1
2 iξ)2nI +

1

(2n+ 1)!
( 1
2 iξ)2n+1

(

ξa/ξ
)

τa

}

= cos 1
2ξI + i

sin 1
2ξ

ξ
ξata

=







cos 1
2ξ + i

sin
1
2 ξ

ξ ξ3 i
sin

1
2 ξ

ξ (ξ1 − iξ2)

i
sin

1
2 ξ

ξ (ξ1 + iξ2) cos 1
2ξ − i

sin
1
2 ξ

ξ ξ3






(C.25)



Introduction to group theory 407

Fig. C.1. Slice of the parameter space of the group SU(2) with ξ3 = 0.
The origin corresponds to the identity I. The boundary is a circle
with radius 2π, which corresponds to the SU(2) element g = −I.
Each element inside the inner circle, which has radius π has a cor-
responding element in the outer region which differs by an overall
minus sign according to (C.27). Three pairs of such points are indi-
cated. The solid curve connecting two opposite points on the inner
circle corresponds to a continuous set of SU(2) transformations with
endpoints corresponding to two transformations differing by an over-
all sign. The parameter space of SO(3) can be imbedded in the same
plot and covers only the inside of the circle with radius π. Two oppo-
site points on the inner circle correspond to identical SO(3) elements.
The SO(3) elements corresponding to the solid curve therefore de-
scribe a closed continuous set of SO(3) transformations.

Because of the periodic dependence of (C.25) on ξ the parameter space of
SU(2) can be restricted to the inside of a 2-dimensional sphere of radius 2π,
i.e.

(ξ1)2 + (ξ2)2 + (ξ3)2 6 (2π)2 . (C.26)

The parameter space of SU(2), a slice of which is shown in fig. C.l, can
be divided into two parts: an inside region where ξ 6 π and an outer shell
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with π < ξ 6 2π. To each point ξ in the first region one can assign a point
ξ′ in the second region, such that both are located on a straight line passing
through the origin and separated by a distance 2π (so that they are in opposite
directions); explicitly

ξ′ = −2π − ξ

ξ
ξ , 0 6 ξ 6 π , π 6 ξ′ 6 2π . (C.27)

The SU(2) elements corresponding to ξ and ξ′ are then related by

gSU(2)(ξ
′) = −gSU(2)(ξ) . (C.28)

All points on the boundary of parameter space (a 2-dimensional sphere with
radius 2π correspond to the same group element gSU(2) = −I [the boundary
and the origin are thus related according to (C.28)]. Therefore the SU(2)
group manifold has the topology of a 3-dimensional sphere (i.e. a sphere in
4-dimensional Euclidean space), in the same way as identifying the points
on the boundary of a 2-dimensional disc leads to a 2-dimensional sphere in
3-dimensional Euclidean space (see problem C.1).

To appreciate the differences let us also consider a comparable non-compact
group. Such a group is Sl(2, R), the group of 2 × 2 real matrices with unit
determinant. Using the relation

gSl(2,R)(ξ) = exp(ξata) , (C.29)

one finds that the three generators of this group are

t1 = 1
2

(

0 1
1 0

)

, t2 = 1
2

(

0 −1
1 0

)

, t3 = 1
2

(

1 0
0 −1

)

. (C.30)

The structure constants follow from the nonvanishing commutators

[t1, t2] = t3 , [t2, t3] = t1 , [t3, t1] = −t2 , (C.31)

which almost coincide with the commutators (C.22) of the SU(2) generators.
Finite elements can be constructed by using (C.29). The analogue of (C.23)
takes the form

tatb + tbta = 1
2ηabI , (C.32)

with ηab a 3 × 3 diagonal matrix with eigenvalues (+1,−1,+1). From this
relation it follows that (ξata)

2 = 1
4ξ

2I, where we now use the definition

ξ =
√

(ξ1)2 − (ξ2)2 + (ξ3)2 . (C.33)



Introduction to group theory 409

The exponentiation of ξata leads to

gSl(2,R)(ξ) =

∞
∑

n=0

1

n!
(ξata)

n

=

∞
∑

n=0

{ 1

(2n)!
( 1
2ξ)

2nI +
1

(2n+ 1)!
( 1
2ξ)

2n+1
(

2ξa/ξ
)

ta

}

= cosh 1
2ξI +

sinh 1
2ξ

ξ
ξata

=





cosh 1
2ξ +

sinh
1
2 ξ

ξ ξ3
sinh

1
2 ξ

ξ (ξ1 − ξ2)

sinh
1
2 ξ

ξ (ξ1 + ξ2) cosh 1
2ξ −

sinh
1
2 ξ

ξ ξ3



 (C.25)

There are obvious similarities between the results for SU(2) and Sl(2, R),
but there are also important differences. One difference is that the volume
of the parameter space of Sl(2, R) is infinite, which is a typical feature of
non-compact groups. If ξ2 = ξaηabξ

b is negative we must replace ξ by i|ξ|, so
that (C.32) becomes periodic in ξ. Therefore the parameters can be restricted
to

ξaηabξ
b = (ξ1)2 − (ξ2)2 + (ξ3)2 > −(2π)2 . (C.35)

The parameter space of Sl(2, R) is shown in fig. C.2, where we have indicated
the elements of the SO(2) subgroup that Sl(2, R) has in common with SU(2).
The boundary of the parameter space formed by the hyperboloid corresponds
to the same group element gSl(2,R) = −I.

A second aspect of noncompact groups is that exponentiation of the gener-
ators does not lead to all possible group elements. For instance, the matrix

g =

(

−eα 0
0 −e−α

)

(C.36)

is an element of Sl(2, R), although it cannot be written in the form (C.34).
However, all elements of Sl(2, R) can be obtained as a product of a finite
number of elements which can each be exponentiated. For instance, (C.36)
can be written as the product of two elements of type (C.34), i.e.

g = g(ξ1 = 0, ξ2 = 2π, ξ3 = 0) · g(ξ1 = 0, ξ2 = 0, ξ3 = 2α) . (C.37)

Representations
Suppose that one can find n matrices Ya with the same commutation relations
as the elements of some Lie algebra g:

[Ya, Yb] = fab
cYc , (C.38)
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Fig. C.2. The parameter space of the group Sl(2, R). The origin
corresponds to the identity I. The boundary is a hyperboloid which
corresponds to the Sl(2,R) element g = −I. Elements corresponding
to the line with ξ2 between −2π and 2π and ξ1, ξ3 = 0 constitute
the (compact) subgroup SO(2).

then, by definition, these matrices form the basis of a representation of this Lie
algebra. Exponentiation of linear combinations of Ya leads to a representation
of the corresponding Lie group G:

g(ξ1, . . . , ξn) → exp(ξaYa) , (C.39)

because the fab
c completely determine the multiplication table of the Lie

group. Thus, each representation of the Lie algebra induces a representation of
the corresponding group. Furthermore the quantities −Y †a also satisfy (C.38),
thus defining a second representation which may or may not be equivalent to
the first one.

For each Lie group there is a special representation called the adjoint rep-
resentation, which has the same dimension as the group itself. This follows
from the Jacobi identity which holds for any three matrices A, B and C:

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0. (C.40)

Choosing A = ta, B = tb, C = tc and using (C.18) one obtains the Jacobi
identity for the structure constants

fab
efec

d + fbc
efea

d + fca
efeb

d = 0 . (C.41)
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If we now regard the structure constants as elements of n × n matrices fa
according to

(fa)
c
b ≡ fab

c , (C.42)

we can rewrite (C.41 ) as a matrix identity

−(fc)
d
e(fa)

e
b + (fa)

d
e(fc)

e
b − fac

e(fe)
d
b = 0 . (C.43)

or, after relabeling of indices,

([fa, fb])
d
e = fab

c(fc)
d
e . (C.44)

Consequently the matrices fa generate a representation of the Lie algebra and
therefore of the Lie group; clearly, the adjoint representation has dimension n,
like the Lie group itself. Obviously an abelian group has vanishing structure
constants, so that its adjoint representation is trivial, i.e. it consists of the
identity element.

As an example consider again SU(2). As shown above this group has three
generators ta and structure constants fab

c equal to −εabc. Therefore the ad-
joint representation is 3-dimensional with generators Sa, given by

(Sa)
c
b = −εabc , (C.45)

or, explicitly:

S1 =





0 0 0
0 0 1
0 −1 0



 , S2 =





0 0 −1
0 0 0
1 0 0



 , S3 =





0 1 0
−1 0 1
0 0 0





(C.46)

which are just the generators of SO(3). Hence SU(2) and SO(3) have the same
structure constants and are therefore locally equivalent. This fact is of physical
importance because rotations of spatial coordinates are governed by SO(3),
while spin rotations are described by SU(2); hence spatial and spin rotations
form different representations of the same group.

For higher-dimensional matrices it becomes more difficult to construct the
finite group elements by explicit cxponentiation, but for SO(3) this is still
feasible. We first calculate powers of ξaSa:

(ξaSa)
2 = −ξ2I + Ξ(ξ) ,

(ξaSa)
3 = −ξ2(ξaSa) , (C.47)

where ξ is defined by (C.24) and the symmetric 3 × 3 matrix Ξ(ξ) is defined
by

Ξ(ξ)ab = ξaξb . (C.48)
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Generalizing this to

(ξaSa)
2n = (−ξ2)n(I − ξ−2Ξ(ξ)) , (ξaSa)

2n+1 = (−ξ2)n(ξaSa) ,
(C.49)

we can straightforwardly exponentiate ξaSa:

gSO(3)(ξ) = exp(ξata)

=

∞
∑

n=0

{ 1

(2n)!
(−1)nξ2nI +

1

(2n+ 1)!
(−1)nξ2nξaSa

+
1

(2n+ 2)!
(−1)nξ2nΞ(ξ)

}

= cos ξI +
sin ξ

ξ
ξaSa +

1 − cos ξ

ξ2
Ξ(ξ) . (C.50)

Because of the periodicity of (C.50) in ξ, the parameter space can now be
restricted to the inside of a 2-dimensional sphere with radius π, i.e.

(ξ1)2 + (ξ2)2 + (ξ3)2 6 π2 . (C.51)

It is illuminating to compare the parameter space of SO(3) to that of SU(2)
(a slice of the latter is shown in fig. C.1 ). The parameter space of SU(2)
covers the group SO(3) twice, because two points ξ and ξ ′ satisfying (C.27)
correspond to the same element of SO(3). For this reason the parameter space
of SO(3) can be restricted to the inner region with ξ 6 π. Opposite points
on the 2-dimensional sphere with radius π that forms the boundary of this
region correspond to the same SO(3) element in contradistinction with the
corresponding SU(2) elements which differ by a sign (cf. C.28). This implies
that there are paths that are closed in the SO(3) group manifold (but not
closed in the SU(2) manifold), which cannot be continuously deformed to a
point. Hence the SO(3) manifold is not simply connected.

Finite transformations in the adjoint representation can be obtained by
exponentiation, just as in (C.50). Hence one has n×n transformation matrices
defined by

gadj(ξ) = exp(ξafa) . (C.52)

Quantities transforming in this representation are n-dimensional vectors φa.
A convenient way of dealing with such vectors is based on a matrix notation

Φ = φata , (C.53)

where ta are the group generators in some arbitrary representation. The trans-
formation

Φ → Φ′ = gΦg−1 , (C.54)



Introduction to group theory 413

with g in the same representation as ta [so that g = exp(ξata)], now induces
the same transformation on the φa as (C.52), i.e.

g(φata)g
−1 = φ′ata , (C.55a)

with

φ′a = (gadjφ)a . (C.55b)

An important feature of this result is that (C.55a) can still be decomposed
into the same matrices ta for g 6=I. This fact follows from the group axioms.
To see this choose group elements g and g1, and observe that the product

g2 = gg1g
−1 (C.56)

is also an element of the group. If we now assume that g1 is an infinitesimal
transformation, i.e.

g1 = I + φata +O(φ2) , (C.57)

and retain only terms of first order in φ on both sides of (C.56), then also g2

must take the form of an infinitesimal transformation

g2 = I + φ′ata +O(φ2) , (C.58)

with φ′a linearly proportional to φa. Substituting (C.57) and (C.58) into
(C.56) now gives (C.55a), so that it only remains to prove that the rela-
tion between φ′a and φa is given by (C.55b). This can easily be done for
finite transformations g (see problem C.2), but we will content ourselves with
infinitesimal transformations g. Hence we assume

g = I + ξata +O(ξ2) , g−1 = I − ξata +O(ξ2) ,

so that the left-hand side of (C.55a) reads

g(φata)g
−1 = φata + [ξbtb, φ

ctc] +O(ξ2)

= (φa + fbc
aξbφc)ta +O(ξ2) .

Consequently

φ′a = (δac + ξbfbc
a +O(ξ2))φc , (C.59)

which is just the result of an infinitesimal transformation acting on φa in the
adjoint representation, thus confirming (C.55b).
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One reason why the above matrix notation is so convenient is that one
can easily construct invariants. For instance the trace over products of Φ’s is
manifestly invariant. The simplest example of this is

Tr(Φ1Φ2) = gR
abφ

a
1φ

b
2 , (C.60)

where gR
ab is a group invariant “metric” tensor defined by

gR
ab = Tr(tatb) . (C.61)

The superscript R indicates that it depends on the representation adopted
for the ta. Invariance of gR

ab means that gR
abφ

aφb = gR
abφ
′aφ′b and follows from

(C.55) and (C.60); for infinitesimal transformations this yields

δgR
ab ∝ fca

dgR
db + fcb

dgR
ad = 0 . (C.62)

Semisimple groups
Lie groups (and their corresponding algebras) can be subdivided in three
main classes based on the presence or absence of invariant subgroups (or
correspondingly invariant subalgebras). An invariant subgroup H satisfies

g · h = h′ · g (C.63)

for any element g·G and h, h′·H . For the generators corresponding to G and h,
this implies that the only nonvanishing commutators involving the generators
of H are

[tg , th] = t′h , (C.64)

where tg is an arbitrary generator of G and th and t′h are linear combinations
of the generators of H . Groups that have no invariant subgroups are called
simple (obviously we exclude the two trivial invariant subgroups here: the
group itself, and the identity element).

A weaker restriction is that the group has no abelian invariant subgroups;
such groups are called semisimple (the group U(1) is an exception; although
it has no nontrivial subgroups it is called nonsemisimple). Semisimple groups
are thus allowed to have nonabelian invariant subgroups. However, in that
case one can show that the group factorizes, i.e. it can be written as a direct
product of simple groups

G = G1 ×G2 × · · · , (C.65)

where G1, G2, . . ., are simple (nonabelian) groups which are mutually com-
muting: elements gi·Gi, gj·Gj(i 6= j) commute:

gi · gj = gj · gi . (C.66)
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Correspondingly the Lie algebra of a semisimple group can be decomposed
into simple nonabelian algebras. A well-known example of a semisimple group
is SO(4), the group of 4-dimensional real rotations, which factorizes (locally)
according to

SO(4) = SO(3) × SO(3) . (C.67)

Finally, groups that contain abelian invariant subgroups are called nonsemisimple .
As we shall demonstrate shortly, such groups do not always factorize, i.e. they
cannot always be written as the direct product of an abelian group and a
semisimple group.

As an example consider the 3-parameter Lie groups SU(2), Sl(2, R) and E2

(the latter is the Euclidean group, consisting of rotations and translations in a
2-dimensional plane; tl and t2 will denote the generators of the two translations
and t3 the generator of the rotations). The non-vanishing structure constants
for these groups have been collected in table C.1. The first

Table C.1
Nonvanishing structure constants for SU(2), Sl(2, R) and E2.

Group f23
1 f31

2 f12
3

SU(2) −1 −1 −1

Sl(2,R) 1 −1 1

E2 −1 −1 0

two groups are clearly simple; although they have one-parameter (abelian)
subgroups, those are not invariant (to see this, write the generator of the sub-
group as αata and impose the condition (C.64) which requires that [αata, tb]
must be proportional to αata for all tb; this yields αa = 0). The group E2 has
an obvious two-parameter abelian subgroup consisting of translations in the
plane; under a rotation R a translation T is converted into another translation
T′, i.e.

RTR−1 = T′ .

This is just the condition (C.63) so that the translations constitute an invari-
ant abelian subgroup of E2. Consequently E2 is nonsemisimple .

An important quantity is the so-called Cartan-Killing metric, which is a
special case of (C.61) in the adjoint representation. It is defined by

gab = fad
cfbc

d . (C.68)
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As shown by Cartan the metric (C.68) is nonsingular (i.e. det (g 6= 0) if and
only if the group is semisimple. To verify this result for the groups SU(2),
Sl(2, R) and E2 is straightforward. Using the structure constants of table C.1,
one finds

gab =





−2 0 0
0 −2 0
0 0 −2



 for SU(2) , (C.69a)

gab =





−2 0 0
0 −2 0
0 0 2



 for Sl(2,R) , (C.69b)

gab =





0 0 0
0 0 0
0 0 −2



 for E2 . (C.69c)

The presence of zero eigenvalues in the third formula thus confirms that E2

is a nonsemisimple group.
The fact that the metric is a symmetric invariant tensor implies that (C.62)

must be satisfied. Using the metric to lower the index in the structure con-
stants according to

fabc = fab
dgdc , (C.70)

the condition (C.62) together with the antisymmetry of the fab
c in the lower

indices implies that fabc is totally antisymmetric,

fabc = −fbac = −fcba . (C.71)

Combining the results of table C.1 and (C.69) the antisymmetry can be ver-
ified for the groups SU(2), Sl(2, R) and E2. Note that for any choice of the
invariant metric one obtains an antisymmetric tensor fabc.

The Cartan-Killing metric is a real symmetric matrix, which can therefore
be diagonalized by means of an orthogonal redefinition of the generators.
Adopting suitable normalization constants for the generators it is possible
to write the metric as a diagonal matrix with eigenvalues +1,−1, or 0. If
there are zero eigenvalues as in (C.69c) the group is nonsemisimple. If the
metric is negative definite, as in (C.69a), the group is compact. A metric with
both positive and negative eigenvalues is noncompact, as is demonstrated by
(C.69b). Note that metrics defined in different representations need not be
proportional to one another. We return to this question at the end of this
section.

Since the Cartan-Killing metric is nonsingular for semisimple groups it is
possible to define an inverse gab:

gabgbc = δac . (C.72)
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The inverse metric can be used to define a matrix,

C = gabtatb , (C.73)

called the Casimir operator, which is invariant in any representation, i.e.

gCg−1 = C , (C.74)

where g denotes any group element in the representation corresponding to ta.
To verify (C.74), consider an infinitesimal transformation, for which

δC ∝ [ta, C] .

Substituting (C.73) one has

[ta, C] = gbc(tatbtc − tbtcta)

= gbc([ta, tb]tc + tb[ta, tc])

= fab
dgbctdtc + fac

dgbctbtd

= fabeg
edgbctdtc + faceg

edgbctbtd , (C.75)

where we have used the inverse of (C.70),

fab
c = gcefabe . (C.76)

Due to the antisymmetry of fabc the two terms in (C.75) cancel, so that C is
indeed invariant.

The type of invariant matrices is restricted by Schur’s lemma:
If a matrix commutes with every element in an irreducible representation of

a group, then this matrix must be proportional to the identity. For Lie groups
the lemma may also be rephrased as: if a matrix commutes with all generators
of the group in an irreducible representation then it must be proportional to
the identity.

On the basis of this lemma one thus concludes that, in an irreducible repre-
sentation labelled by R,

C(R) = dRI . (C.77)

where dR is a number depending on the representation. For the adjoint rep-
resentation, it follows that dR = 1, i.e.

(C(adjoint))cd = fae
cfbd

egab = δcd . (C.78)

For the defining representations of SU(2) and Sl(2, R), given in (C.21 ) and
in (C.30), we have

C = 3
8 I for SU(2) and Sl(2,R) . (C.79)
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For the rotation group SO(3) the Casimir operator is just the total angular

momentum operator (modulo a factor 2h̄2), and one has

C = 1
2 l(l + 1)I (C.80)

where l labels the representations.
Schur’s lemma can be used to derive another useful result concerning in-

variant metrics defined in different representations. Using the Cartan Killing
metric to raise and lower indices, it is possible to rewrite (C.62) as

fce
a(g−1gR)eb − (g−1gR)aefcb

e = 0 , (C.81)

where g−1gR is the inverse Cartan-Killing metric times the metric defined in
(C.61) for a representation R. In deriving (C.81) we made use of the anti-
symmetry property (C.71). According to (C.81) the matrix g−1gR commutes
with all the generators in the adjoint representation. For a simple group this
representation is irreducible, so that Schur’s lemma implies g−1gR ∝ I, or

gR
ab = cRgab . (C.82)

For a semisimple group one must decompose the metric according to the
various representations, for each of which one has a proportionality relation.
However, as the proportionality constants may differ from one irreducible
representation to another, (C.82) does not necessarily hold.

The proportionality constants cR and dR are related. This follows from
contracting (C.82) with gab and using (C.61) and (C.77), which leads to

cR =
dimR

dimG
dR . (C.83)

Here dim R and dim G are the dimensions of the representation R and of the
group; the latter coincides with the dimension of the adjoint representation.
Note that in this representation cR = dR = 1. Applying (C.83) to the defining
representations of SU(2) and Sl(2,R) yields

cR = 2
3 · 3

8 , (C.84)

where we use that dR = 3/8 according to (C.79). Consequently, the metric
equals 1

4 times the Cartan-Killing metric, a result than can be verified directly
from the generators defined in (C.21) and (C.30).

Problems

10.1. Show that a general SU(2) transformation can be written as

g = α0I + iαaτa with (α0)2 + (α1)2 + (α2)2 + (α3)2 = 1 .
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Argue that the SU(2) parameter space is the inside of a three-dimensional sphere.

10.2. Prove that

exp(−ξbtb)ta exp(ξctc) = tb[exp(−ξcfc)]
b
a , (1)

where (fc)b
a is the group generator in the adjoint representation (c.f C.42) by scaling

ξ → λξ and proving that both sides satisfy the same linear differential equation in λ i.e.,

d

dλ
X(λ) = [X(λ), ξata] , (2)

where X(λ) is the modifed left- or right-hand side of (1). Fix the proportionality constant

by comparing the left-and right-hand sides for λ = 0. Observe that an example of this

relation was derived in problem 5.1.
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