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1 Natural Units

Standard physical units are the units of length (cm), mass (gr), time (sec) and charge (Cb). In
particle physics it is customary and convenient to choose natural units such that the fundamental
constants, the speed of light c, the reduced Planck constant h̄ and the permittivity (electric field
constant) ε0 are unity : c = h̄ = ε0 = 1. This convention eliminates three of the standard
units once one fundamental unit is chosen. The most commonly used unit is an energy, e.g.,
[E] = 1 GeV = 109 eV. Mass (m), momentum (mc) and energy (mc2) are given in GeV. We note
that

1 eV = 1.6022 · 10−12 erg . (1.1)

Using the experimental values for c, h̄ and ε0 in standard units one finds the conversion factors:

c = 2.9979 · 1010 cm s−1

h̄ = 6.5821 · 10−25 GeV s

h̄c = 1.9733 · 10−14 GeV cm (1.2)

(h̄c)2 = 0.38938 GeV2 mbarn

ε0h̄c = 2.798 · 10−37 Cb2

with 1 barn=10−24 cm2. Standard units are then given in energy units by:

1 fermi (fm) = 10−13cm = 5.0677 GeV−1

1 s = 1.5193 · 1024 GeV−1

1 g = 5.6096 · 1023 GeV (1.3)

1 mbarn (mb) = 2.5682 GeV−2

1 Cb = 1.89005 · 1018

The charge magnitude of the electron is

e = 1.602177 · 10−19 Cb = 0.302822

and the fine structure constant

α =
e2

4π
= (137.036)−1

Cross sections are usually obtained in GeV−2 and then converted to millibarns using

1 GeV−2 = 0.38938 mbarn

Hint: For updated precise values of physical constants contact the World-Wide-Web (WWW)
page http://www-pdg.lbl.gov/1996/contents sports.html#constantsetc
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1.1 Exercises: Section 1

① Calculate the conversion factors using the values for c, h̄ and ε0 in standard units.

② The width of the Z boson has been measured at LEP (October 2001) to be

ΓZ = (2.4952 ± 0.0023) GeV.

Calculate the Z lifetime τZ = Γ−1
Z in seconds. What distance (in mm) does a Z particle

travel before it decays (length of track in the detector) ? Hint: Use the velocity v (in units of

c), which is determined by the magnitude of the momentum |~p | = vMZ√
1−v2 =

√

E2
CM −M2

Z .

The distance traveled in the laboratory frame is then given by (Lorentz contraction!)

`Z(Eb) =
v√

1− v2
cτZ '

√

E2
CM

M2
Z

− 1 × 7.9 × 10−14 mm .

The experimental value for the Z mass is

MZ = (91.1875 ± 0.0021) GeV.

The Z is produced as a real (though unstable) particle provided ECM > MZ . Consider
typical LEP energies ECM = MZ + nΓZ for n = 1, 2, 5.

Use the Boltzmann constant k = 8.6173 · 10−5 eV ◦K−1 to evaluate the equivalent “tem-
perature of a Z event” at LEP.

In nature such temperatures must have existed in our universe shortly after the big bang.
In the early universe the time–temperature relationship (in the radiation dominated era) is
given by

t =
2.42

√

N(T )

(
1MeV

kT

)2

sec .

where

N(T ) =
∑

B

gB +
7

8

∑

F

gF

counts the effectively massless (mi � kT ) degrees of freedom of bosons and fermions.
Calculate at what time in the history of the universe the temperature of the universe was
equivalent to the mass of the Z boson.

③ The QED cross section for µ–pair production in e+e− annihilation at high energies (s� m2
µ)

is given by
dσ

dΩ

(
e+e− → µ+µ−

)
=

α2

8E2
b

1 + cos2 θ

2
,

where Eb is the e−–beam energy and θ the µ− production angle <)(e−, µ−) in the center
of mass frame. Calculate σtotal in cm2 for Eb=1 GeV. What is the event rate if the beam
luminosity is L = 1032 cm−2sec−1?. The luminosity measures the incoming flux of particles
per cm2 and per second.
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④ Range of interactions : the range of a field and the mass m of the corresponding field
quantum are related by the Compton wave length

r0 =
h̄

mc
,

where r0 appears in the static potential (Yukawa)

Φ(r) ∝ e−r/r0

r
.

Calculate the range of the strong, the weak and the electromagnetic interaction in cm under
the assumption that the interactions are mediated by exchange of a pion (mπ = 135 MeV),
a W boson (MW ' 80.45 ± 0.04 GeV) and a photon (mγ < 2 · 10−16 eV experimental
bound), respectively. In QED, mγ = 0. Discuss this limiting case and the role played by
Gauss’s law. Hint: Look for static, spherically symmetric solutions of the Klein-Gordon
equation.

Hint: For updated precise values of electroweak parameters contact the World-Wide-Web
(WWW) page http://lepewwg.web.cern.ch/LEPEWWG/Welcome.html
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2 Basic Principles, Particles and Fields

The basic theoretical framework for a theory of elementary particle interactions is quantum
field theory (the prototype is quantum electrodynamics QED) which derives from the following
principles:

1. Quantum theory : superposition principle, unitarity, probability interpretation, Hilbert
space structure.

2. Special relativity : Lorentz invariance, translation invariance

3. Causality (locality) : no signals propagate at speed v > c.

4. Existence of a unique normalizable ground state called vacuum.

5. Spectral condition : positivity of the physical state spectrum

6. Symmetry principles : Gauge invariance, global symmetries (quantum numbers, selection
rules, multiplets).

All known fundamental interactions (strong, electromagnetic, weak, Gravity?) fit into this
scheme. Important properties of relativistic quantum fields, which incorporate wave–particle
duality, follow in a straight forward manner from the above principles. A lot can be learned by
considering free relativistic particles, which show up in Nature as asymptotic scattering states
(at times t → ±∞). The aim of the following discussion is to set up notation and to sketch the
basics of quantum field theory.

2.1 Minkowski space, Lorentz transformations

The known simple form of Maxwell’s equations of classical electrodynamics holds for a restricted
class of coordinate frames only, the so called inertial frames. The space–time transformations
which leave the Maxwell equations invariant form the Lorentz group. Accordingly, Lorentz
transformations are transformations between different inertial frames. The invariance group of
Maxwell’s equations in this way singles out a particular space-time structure, the Minkowski
space. Lorentz invariance is a basic principle which applies for the other fundamental inter-
actions. We briefly sketch the elements which we will need for a discussion of relativistic field
theory.

A space-time event is described by a point (contravariant vector)

xµ =
(

x0, x1, x2, x3
)

=
(

x0, ~x
)

; x0 = t (= time)

in Minkowski space with metric

gµν = gµν =











1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1











.
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The metric defines a scalar product 1

x · y = x0y0 − ~x · ~y = gµνx
µyν

invariant under Lorentz transformations (L-invariance) which include

1. rotations

2. special Lorentz transformations (boosts)

The set of linear transformations

xµ → xµ
′

= Λµνx
ν + aµ

which leave invariant the distance

(x− y)2 = gµν(xµ − yµ)(xν − yν)

between two events x and y form the Poincaré group P. P includes the Lorentz transformations
and the translations. We denote the group elements by (Λ, a). To two transformations (Λ1, a1) and
(Λ2, a2), applied successively, there corresponds a transformation (Λ2Λ1,Λ2a1+a2) (multiplication
law of the group). The Lorentz transformations (Λ, 0) by themselves form the Lorentz group.
L-invariance of the scalar products implies the invariance condition

ΛµνΛρ σgµρ = gνσ

for the metric. This condition on the matrices Λµ
ν implies detΛ = ±1 and | Λ0

0 |≥ 1.Transformations
with det Λ = +1 are called proper (+). Such transformations do not change the orientation
of frames. Transformations with the property Λ0

0 ≥ 1 are called orthochronous, since they
exclude time inversions.

Special relativity requires physical laws to be invariant under proper orthochronous Poincaré
transformations P↑+. Thus P↑+ exhibits the general transformation law between inertial frames.

We denote by

∂µ =
∂

∂µ
=

(
∂

∂0
, ~∇
)

the derivative with respect to xµ = (x0, ~x). ∂µ transforms as a covariant vector i.e. it has the
same transformation property as xµ = gµνx

ν = (x0,−~x). The invariant D’Alembert operator
(four-dimensional Laplace operator) is given by

2 = ∂µ∂
µ = gµν∂µ∂ν =

∂2

∂x02 −4.

A contravariant tensor T µ1µ2···µn of rank n is an object which has the same transformation
property as the products of n contravariant vectors xµ11 xµ22 · · · xµnn . Covariant or mixed tensors
are defined correspondingly.

1As usual we adopt the summation convention: Repeated indices are summed over unless stated otherwise.
For Lorentz indices µ, · · · = 0, 1, 2, 3 summation only makes sense (i.e. respects L-invariance) between upper
(contravariant) and lower (covariant) indices and is called contraction.

5



The Kronecker symbol

δµν = gµρ gρν =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











is a 2nd rank mixed tensor. With its help, contracting the invariance condition of the metric with
gσλ, we may write

ΛµνΛ λ
µ = δ λ

ν

which shows that
Λµν = (Λ−1) µ

ν

is the transpose of the inverse of Λ. Covariant vectors transform like

x′µ = Λ ν
µ xν = xν(Λ−1)ν µ

and the L-invariance of x2 = xµx
µ follows immediately.

Finally we will need the totally antisymmetric pseudo-tensor2

εµνρσ =







+1 (µνρσ) even permutation of (0123)

−1 (µνρσ) odd permutation of (0123)

0 otherwise .

With the help of this tensor the determinant of any 4x4 matrix A is given by

εµνρσAαµA
β
νA

γ
ρA

δ
σ = detA εαβγδ .

The 4–dimensional volume element is invariant under proper Lorentz transformations which sat-
isfy detΛ = 1:

d4x→ detΛ d4x = d4x

A 3–dimensional hyper-surface element is defined by a covariant vector

dSµ = εµνρσ dx
νdxρdxσ

and by partial integration we obtain
∫

V
d4x ∂µf(x) =

∫

Σ
dSµf(x)

where Σ = ∂V is the boundary of V . The Gauss law takes the form
∫

V
d4x ∂µf

µ(x) =

∫

Σ
dSµf

µ(x) .

2One easily checks that it transforms as a rank 4 tensor and that it is numerically invariant (identically the
same in any inertial frame). Useful relations are

εµνρσεµνρσ = −24

εµνρσεµνρσ′ = −6δσσ′

εµνρσεµνρ′σ′ = −2δρ
ρ′
δσσ′ + 2δρ

σ′δ
σ
ρ′

εµνρσεµν′ρ′σ′ = −δνν′δρρ′δ
σ
σ′ + δνν′δρσ′δ

σ
ρ′ + δνρ′δ

ρ
ν′δ

σ
σ′ − δνρ′δ

ρ
σ′δ

σ
ν′ − δνσ′δρν′δ

σ
ρ′ + δνσ′δρρ′δ

σ
ν′
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For an infinite volume
∫

V
. . .→

∫

d4x . . . =

∫ +∞

−∞
dx0

∫ +∞

−∞
dx1

∫ +∞

−∞
dx2

∫ +∞

−∞
dx3 . . .

the surface terms vanish if the function falls off sufficiently fast in all directions. In this case a
component–wise partial integration yields

∫

d4x g(x) ∂µf(x) = −
∫

d4x (∂µ g(x)) f(x)

and the integral of a divergence is vanishing

∫

d4x ∂µf(x) = 0 .

2.2 States of free relativistic particles

The concepts we will develop in the following apply to any isolated relativistic quantum system,
irrespective of whether it is elementary or composite. On the one hand, elementary particles like
the photon γ, the leptons e, µ, τ , the neutrinos νe, νµ, ντ etc., according to present day knowl-
edge, are elementary and not composite. On the other hand, we know that all hadrons like the
proton p, the neutron n, the hyperon Λ or the pions π+, π0, π−, the kaons K+,K0, K̄0,K− etc.
are composite. As described by Quantum Chromodynamics (QCD), hadrons are made up from
“colored” quarks which are permanently confined inside the hadrons by strong forces mediated by
“colored” gluons. Hadrons thus are elementary composite particles, elementary in the sense
that they are not breakable into their constituents. In spite of their complex internal structure,
with valence quarks, sea quarks and a cloud of gluons, a proton, for example, has precisely spin
1/2, i.e. it is quantized according to the rules of isolated elementary objects. How this dynami-
cally happens in the proton is still a mystery and far from being understood theoretically. But
this does not limit the validity of the discussion to follow.

A relativistic quantum mechanical system is described by a state vector |ψ〉 ∈ H in Hilbert

space, which transforms in a specific way under P ↑+. We denote by |ψ′〉 the state transformed

by (Λ, a) ∈ P↑+ . Since the system is required to be invariant transition probabilities must be
conserved

| < φ′|ψ′ > |2 = | < φ|ψ > |2 .

Therefore there must exist a unitary operator U(Λ, a) such that

|ψ〉 → |ψ′〉 = U (Λ, a) |ψ〉 ∈ H
and U(Λ, a) must satisfy the group law:

U (Λ2, a2)U (Λ1, a1) = ωU (Λ2Λ1,Λ2a1 + a2) .

This means that U(Λ, a) is a representation up to a phase ω (ray representation) of P ↑+.
Without loss of generality one can choose ω = ±1 (Wigner 1939).

The generators of P↑+ are the relativistic energy–momentum operator Pµ

U (a) ≡ U (1, a) = eiPµaµ = 1 + iPµa
µ + . . .
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and the relativistic angular momentum operator Mµν

U (Λ) ≡ U (Λ, 0) = e
i
2
ωµνMµν = 1 +

i

2
ωµνMµν + . . .

Since for infinitesimal transformations we have

Λµν = δµν + ωµν with ωµν = −ωνµ,

the generators Mµν are antisymmetric:

Mµν = −Mνµ .

By unitarity of U(Λ, a), Pµ and Mµν are Hermitean operators on the Hilbert space. The generator
of the time translations P0 represents the Hamiltonian H of the system (H ≡ P0) and determines
the time evolution. If |ψ〉 = |ψ〉H is a Heisenberg state, which coincides with the Schrödinger
state |ψ(0) >S at t = 0, then |ψ(t) >S= e−iHt |ψ(0) >S represents the state of the system at
time t.

We usually work in the Heisenberg picture: The state of a system is represented by a time
independent vector |ψ〉 (Heisenberg state) while the physical observables are represented by time
dependent Hermitean operators

O(t) = e−iHt O(0) eiHt

which satisfy the Heisenberg equation of motion

[O(x),H] = i∂0O(x) .

The latter is the time component of

[O(x), Pµ] = i∂µO(x)

valid for relativistic systems.

The components of Mµν can be expressed in terms two vectors (by antisymmetry it has 6 inde-
pendent elements):

Mik := (M23,M31,M12) = ~J

are the operators of the total angular momentum of the system (generators of space rotations),
and

Mi0 := (M10,M20,M30) = ~K

are the generators of the Lorentz boost.

A finite rotation of magnitude |~ω| about the direction of ~ω is represented by

U(R(~ω), 0) = e−i~ω
~J .

Similarly, a special Lorentz transformation by “velocity” ~β is represented by

U(L(~β), 0) = ei
~β ~K .

In order to construct a complete set (basis) of state vectors we have to find a complete set of
commuting observables, which are represented by Hermitean operators. The set has to include
the Hamiltonian P0 in order have conserved (time independent) quantities. A basis of states is
then given by the simultaneous eigenvectors and is labeled by the corresponding eigenvalues.
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The properties of states which derive from relativistic behavior are determined by the Lie-algebra
of P↑+. This Lie algebra, the commutation relations for the Pµ and Mµν ( ~J , ~K), can be obtained
by insertion of infinitesimal transformations into the group law for the U(Λ, a) ′s (see Exercises 2.8
and E.2). One finds

[Pµ, Pν ] = 0

[ ~J , P0] = 0 (conserved)

[ ~K,P0] = −i ~P 6= 0 (not conserved)

and the angular momentum algebra [Ji, Jk] = iεiklJl. Furthermore, the generators of the boosts
satisfy

[Ji,Kk] = iεiklKl , [Ki,Kk] = −iεiklJl , [Ki, Pk] = iP0gik .

We notice that the generators of the special Lorentz transformations are not conserved. Therefore
no new conserved quantum numbers associated with the special Lorentz transformations are
obtained.

We are now able to define the concept of a free relativistic particle. It is an isolated system
corresponding to a quantum mechanical one particle state which transforms unitary and simple,
i.e. as an irreducible unitary representation, under P ↑+. The irreducible representations are those
representations which cannot be decomposed into simpler ones. They are the basic building
blocks from which all representations can be obtained by forming products. We briefly discuss
the simplest one particle states in the following.

As in ordinary (non relativistic) quantum mechanics [Ji, Pk] = iεiklPl 6= 0. Thus simultaneous
eigenstates of momentum and angular momentum can only be constructed in the rest frame,
where angular momentum determines the spin of the particle. Here the usual angular momentum
quantization applies: Simultaneous eigenstates to P 0 = m, ~J 2 = j(j+1) and J3 = j3 exist (m 6= 0
assumed):

|m, j, j3;α〉 j integer or half integer, j3 = −j,−j + 1, . . . , j − 1, j

By α we denote other possible quantum numbers like charge, lepton number, baryon number
etc. .

Since [Pµ, Pν ] = 0 we may construct simultaneous eigenstates with four-momentum pµ. Given pµ,
the Lorentz transformation L(p) transforming (m,~0) to pµ : pµ = Lµ0m is uniquely determined

by L0
0 = p0

m , Li0 = pi
m , Lik = 0. Then the boosted state3

|p, j, j3;α〉 = U (L(p), 0) |m, j, j3;α〉 (2.1)

is an eigenstate of Pµ
Pµ|p, j, j3;α〉 = pµ|p, j, j3;α〉

which transforms according to

U (Λ, a) |p, j, j3;α〉 = eiaΛp|Λp, j, j′3;α〉D(j) (RΛ,p)j3j′3
(2.2)

3The boost operator U(L(p), 0) may always be represented by a combination of rotations by an angle ±φ about
the z-axis, rotations by an angle ±θ about the y-axis and a boost in z-direction. The angles are determined by
writing the momentum ~p = |~p |(sin θ cosφ, sin θ sinφ, cos θ) in polar coordinates. If we rotate ~p into the direction of
the z-axis then perform a boost along the z-axis and rotate back to the original direction of ~p we obtain

U(L(p), 0) = U(Rφ,θ, 0) U(Lz(|~p |), 0) U(R−1
φ,θ, 0)

with U(Lz(|~p |), 0) = eiβK3 , tanh β = |~p |/p0 = v the velocity and U(Rφ,θ, 0) = e−iφJ3e−iθJ2eiφJ3 .
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where RΛ,p = L−1 (Λp) ΛL (p) is a pure rotation (so called Wigner rotation) and D(j) (R) is a
2j+1–dimensional representation of the rotation. There exist two Casimir operators (invariant

operators commuting with all generators of P↑+). One is the mass operator

M2 = P 2 = gµνP
µP ν (2.3)

the other is

L2 = gµνL
µLν ; Lµ

.
=

1

2
εµνρσPνMρσ (2.4)

where Lµ is the Pauli-Lubansky operator. These operators characterize mass m and spin j of the
states in an invariant way:

M2|p, j, j3;α〉 = p2|p, j, j3;α〉; p2 = m2 (2.5)

yields the mass of the particle and

L2|p, j, j3;α〉 = −m2j(j + 1)|p, j, j3;α〉 (2.6)

tells us that the spin j has an invariant meaning. The on–(mass)–shell condition p2 = m2

means that

pµ = (E, ~p ) with E = E(p) =
√

~p 2 +m2 .

Physical representations must fulfill the spectral condition

p2 ≥ 0, p0 ≥ 0 ,

namely, no particle can travel at speed faster that light and a particle must have
positive energy.

Lowest lying states are:

1. p2 = 0, p0 = 0 : vacuum

2. p2 = 0, p0 > 0 : photon, neutrino, · · ·: massless particles

1 state for fixed p

3. p2 = m2, p0 > 0 : electron, pion, · · · : massive particles

2j+1 states for fixed p

States of two and more particles of masses m1, m2, . . . have a continuous spectrum:

(p1 + p2 + . . .)2 ≥ (m1 +m2 + . . .)2 .

For massless particles which must travel at the speed of light, quantization in the rest frame is
not possible. Instead of the quantization relative to the z–axis in the rest frame a quantization
relative to the direction of the momentum ~p can be done. As a standard vector one conveniently
chooses a light-like momentum vector in the z-direction qµ = (q, 0, 0, q) which afterwards may
be boosted and rotated to an arbitrary light-like four-momentum pµ. Massless states are always
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→
|~p |

↑p0

vacuum ↗

↖ p2 = 0

↖ p2 = m2

Figure 2.1:

Momentum spectrum of a particle of mass m. continuum
of two particle states. continuum of three particle states.

eigenstates of helicity h = ~J · ~P/|~P | defined as the projection of angular momentum in direction
of ~p :

h|p, λ;α〉 = λ|p, λ;α〉, where λ = ±j, j spin of the particle.

One proves the transformation law (see Appendix C.1)

U (Λ, a) |p, λ;α〉 = eiaΛpe−iφλ|Λp, λ;α〉 , (2.7)

which tells us that massless states always transform diagonal in λ4. This result is not very
surprising because in order to flip the helicity one would have to perform a Lorentz–boost at
speed exceeding the speed of the particle which is not possible for particles traveling at the speed
of light.

Thus, to a given spin j there exist exactly two states can not be mixed by P ↑+ transformations.

~s⇒◦−→
~p

P←→ ~s⇒◦←−
~p

h:+ (right–handed = R) h:– (left–handed = L))

The states transform into each other under parity transformations.

Examples:

4The phase φ depends on the momentum pµ = (|~p |, p1, p2, p3) and is determined by

eiφ =
p1 + ip2

√
(p1)2 + (p2)2

.
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Neutrino: Spin 1
2 , helicity −

|p, 1
2 ,−1

2 >
~s⇐◦−→

~pν

one irreducible

representation

↓ P

|p, 1
2 ,

1
2 >

~s⇒◦−→
~pν

not existent

in Nature

Antineutrino: Spin 1
2 , helicity +

|p, 1
2 ,

1
2 >

~s⇒◦−→
~pν̄

one irreducible

representation

↓ P

|p, 1
2 ,−1

2 >
~s⇐◦−→

~pν̄

not existent

in Nature

Photon: Spin 1, helicity ±1

|p, 1, 1 >
right circularly

polarized photon

l P
two irreducible

representations

|p, 1,−1 >
left circularly

polarized photon

In general a 1 photon state is a reducible mixture of the two helicity states.

In high energy physics very often masses of light particles are negligible. It is then natural to
describe also the massive particles in a helicity basis with ~p/|~p | as a quantization axis. The
canonical basis is related to the helicity basis by a rotation

|p, j, j3;α >= |p, j, λ;α > D(j)
(

R−1
φ,θ

)

j3λ
(2.8)

where Rφ,θ is the rotation which rotates the z-axis into the direction of ~p . Of course for m 6= 0
the label λ takes the same 2j + 1 values as j3 .

Space and time reflections

The discrete transformations parity P and time reversal T defined by

Pxµ =







Px0 = x0

P~x = −~x
; Txµ =







Tx0 = −x0

T~x = ~x
(2.9)

represented on Hilbert space by unitary (P) and anti-unitary (T) operators U(P ) and Ū(T ),
respectively. Notice that P 2 = T 2 = 1 and one can show that the phases may be chosen such
that U(P )2 = 1 and Ū(T )2 = ±1 .
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The proper orthochronous Poincaré group P↑
+ together with the reflections P, T and PT=TP generate

the full Poincaré group P = P↑
+ ∪ P↑

− ∪ P↓
− ∪ P↓

+ where the different pieces are obtained as shown in the
following diagram:

P↑
+

P→ P↑
−

↓ T ↓ T
P↓
−

P→ P↓
+ .

Combining a translation U(a) with a reflection I the group law yields

U(I)U(a)U−1(I) = U(Ia) ; I = P, T

or for an infinitesimal transformation

U(I) (1 + iaµPµ) U−1(I) = 1 + i(Ia)µPµ .

Therefore

U(I) PµU
−1(I) = εI(IP )µ ; εI =







1 U unitary

−1 U anti− unitary

since i changes sign if we pull through an anti-unitary operator U. For the Hamiltonian this reads

U(P ) P0U
−1(P ) = εPP0

U(T ) P0U
−1(T ) = −εTP0

and if we require the energy to remain positive we must have εP = +1 (U unitary) and εT = −1 (U
anti-unitary). We thus impose the condition

[U(I), H ] = 0

as usual if U(I) is to be a symmetry. In order to indicate the anti-unitarity of U(T ) we will denote it by

Ū(T ) in the sequel. Because of the anti-unitarity of Ū(T ) all signs of the generators of P↑
+ change sign

relative to the classical expectations.

Anti-unitarity is defined by the properties

Ū(α|ψ〉+ β|φ〉) = α∗Ū |ψ〉+ β∗Ū |φ〉 = α∗|ψ′〉+ β∗|φ′〉

and

< ψ′φ′ >=< ψφ >∗ .

The complex conjugation of matrix elements is admitted by the fact that it also preserves the probability
| < ψ|φ > |2 . Because of the complex conjugation of matrix elements an anti-unitary transformation
implies a Hermitean transposition of states and operators. Like any anti-unitary operator we may
write Ū(T ) in the form Ū(T ) = U(T ) K with U(T ) unitary and K an anti-unitary “unit–operator”,
satisfying K+ = K and K−1 = K . Then, while U(T ) just changes signs of the momenta and spins, K
interchanges “incoming” and “outgoing” states and implies a Hermitean conjugation of the operators:

K|φ >=< φ| , < ψ|K = |ψ >
KABK = B+A+

such that

< ψ|AB . . . |φ > K→ < φ| . . . B+A+|ψ > .

These properties show that an anti-unitary operator cannot have eigenstates and eigenvalues and hence
T–invariance cannot be a symmetry in the usual sense of the word. It merely is a substitution rule which

13



preserves probabilities. The interchange of incoming and outgoing states is of course natural for the time
reversal operator, and for scattering states and scattering matrix–elements has a literal meaning. After
this digression on anti-unitary transformations we proceed with the discussion of P and T.

By experiment : P and T are not universal symmetries . They are conserved by strong and
electromagnetic interactions but broken by weak interactions.

The generators of P↑+ transform as

P : P0 → P0, ~P → −~P , ~J → ~J , ~K → − ~K, h → −h
T : P0 → P0, ~P → −~P , ~J → − ~J , ~K → ~K, h → h

(2.10)

The physical states transform like:

m 6= 0 : U(P )|~p, j, j3;α〉 = ηP |−~p, j, j3;α〉
Ū(T )|~p, j, j3;α〉 = ηT (−1)j+j3 〈−~p, j,−j3;α|

m = 0 : U(P )|~p, λ;α〉 = ηP (−1)j−λe2iφλ|−~p,−λ;α〉
Ū(T )|~p, λ;α〉 = ηT e

−2iφλ〈−~p, λ;α| .

(2.11)

ηP and ηT are possible phase factors called inner P- and T-parities, respectively. Spin depen-
dent factors have been split off such that the parities are spin–independent. The term T−parity is
somewhat misleading because as we mentioned above an anti-unitary operator has no eigenvalues
( see the discussion of the CPT -theorem below). The phase φ is the same as in the transformation

law of the states under P↑+ transformations.

Result: Free relativistic particles are described by irreducible uni-
tary representations of P↑+. They are characterized by
(m, j;α) i.e. mass, spin and charge-like quantum numbers
α and by the coordinate–dependent three momentum ~p
and the 3rd component j3 of spin in the rest frame.

In the following we frequently omit the invariant label (m, j;α) and denote canonical states by
|~p, j3〉, helicity states by |~p, λ〉. The free four-momentum eigenstates (plane wave states) are
normalized in a relativistically invariant way by

< ~p ′, j′3|~p, j3 >= δj3,j′3 (2π)3 2ωp δ
(3)(~p ′ − ~p ) (2.12)

with ωp =
√

~p 2 +m2. The completeness relation reads:

∑

j3

1

(2π)3

∫
d3p

2ωp
|~p, j3〉〈~p, j3| = 1 . (2.13)

Here d3p
2ωp

is the relativistically invariant volume element. By

dµ(p) =
1

h3

d3p

2ωp

we denote the number of states in this volume element. Possible spin multiplicities are not in-
cluded here. Since h̄ = h

2π = 1 we have h = 2π for Planck’s constant and hence

dµ(p) =
1

(2π)3

d3p

2ωp
= (2π)−3 Θ(p0) δ(p2 −m2) d4p . (2.14)
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A basis for the multiple particle states of free particles can be constructed by forming tensor
products of single particle states, which simply means that the state is described by the product
of the wave functions of the single particle states. The n–particles states

|0〉 vacuum

|~p, j3〉 one particle state

|~p1, ~p2, j31 , j32〉 = |~p1, j31〉 ⊗ |~p2, j32〉
...

|~p1, ~p2 . . . ~pn, j31 , j32 . . . j3n〉 = |~p1, j31〉 ⊗ |~p2, j32〉 . . . ⊗ |~pn, j3n〉
...

span the so called Fock space of the particle species (m, j;α). The vacuum is normalized by
< 0|0 >= 1 .

According to the Pauli principle states of integer spin particles are symmetric under permuta-
tions (Bose statistics), states of half-odd-integer spin particles are antisymmetric under permu-
tations (Fermi statistics). The spin–statistics connection is a consequence of the requirement of
causality of quantum fields, as we shall see below. Particles obeying the Bose statistics are called
bosons, those obeying Fermi statistics fermions.

2.3 Creation and annihilation operators

In relativistic processes particles can be created or annihilated. Creation and annihilation oper-
ators for relativistic states can be immediately associated with the states discussed above.

We define a creation operator a+(~p, j3) by the requirement that a+(~p, j3) creates, from the vac-
uum, a particle of species (m, j, α) with momentum ~p and 3rd component j3 of spin in the rest
frame

| ~p, j3 > .
= a+ (~p, j3) | 0 > .

The corresponding annihilation operator a(~p, j3) is defined by the adjoint (Hermitean conjugate)
of the creation operator

a(~p, j3)
.
=
(
a+ (~p, j3)

)+
.

a(~p, j3) annihilates a particle of species (m, j, α) of momentum ~p and 3rd component of spin j3 in
the rest frame. Obviously, a(~p, j3) annihilates the vacuum, because

< 0 | ~p, j3 > = 0 implies

< 0 | a+(~p, j3) | 0 > = 0 or

< 0 | a+(~p, j3) = 0

hence, taking the Hermitean conjugate,

a(~p, j3) | 0 >= 0 .
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Furthermore, a(~p, j3) acts on one particle states by

∑

j′3

1

(2π)3

∫
d3p′

2ωp′
a(~p ′, j′3) | ~p, j3 >=| 0 > .

The operators a and a+ cannot commute or anticommute since

< ~p ′, j′3 | ~p, j3 > = < 0 | a (~p ′, j′3
)
a+(~p, j3) | 0 >

= δj3j′3 (2π)3 2ωp δ
(3) (~p− ~p ′) .

The commutator [A,B]− = [A,B] ≡ AB − BA (for bosons) or the anticommutator [A,B]+ =
{A,B} ≡ AB +BA (for fermions) obviously must read

[

a
(

~p ′, j′3
)

, a+(~p, j3)
]

± = a
(

~p ′, j′3
)

a+ (~p, j3))± a+ (~p, j3) a
(

~p ′, j′3
)

= δj3j′3 (2π)3 2ωp δ
(3) (~p− ~p ′) . (2.15)

One easily derives that in addition we must have

[
a
(
~p ′, j′3

)
, a(~p, j3)

]

± =
[
a+ (~p ′, j′3

)
, a+(~p, j3)

]

± = 0 (2.16)

These are either the canonical commutation relations valid for bosons or the canonical
anticommutation relations valid for fermions. Note that at this stage the spin of the particles
has not yet been fixed.

These relations hold on any free multiparticle state

|~p1, ~p2 . . . ~pn, j31 , j32 . . . j3n〉 =
1

N
a+(~p1, j31) a+(~p2, j32) . . . a+(~pn, j3n) |0 >

which is generated by application of products of creation operators to the vacuum. N is the
normalization factor. The (anti-) commutation relations are valid on the whole Fock space which
is spanned by the above multi-particle states.

Obviously: The wave functions

< Ψ|~p1, ~p2 . . . ~pn, j31 , j32 . . . j3n〉

are symmetric under permutations of the particles for the commutator algebra in which case
the particles are bosons and they are antisymmetric under permutations of the particles for the
anticommutator algebra in which case the particles are fermions.

Notice that, besides the relativistic transformation laws for the states, which directly carry over
to the operators a and a+, we are dealing with ordinary quantum mechanics of free multiparticle
states.

2.4 Fields associated with particles

The implementation of Einstein causality which requires physical signals to propagate at speed
v ≤ c, makes it necessary to consider states and operators in configuration space. Momentum
space and configuration space are related by Fourier transformation.
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The quantum field Ψα(x) associated with a particle of mass m and spin j is the relativistically
invariant Fourier transform of a linear combination of an annihilation operator a(~p, j3) and a
creation operator b+(~p, j3):5

Ψα(x) =
∑

j3

∫

dµ(p)
{

uα(~p, j3) a(~p, j3) e−ipx + vα(~p, j3) b+(~p, j3) eipx
}

. (2.17)

This equation expresses the field-particle duality: particles are the quanta of fields.

The quanta a and b may have different charge quantum number (αa 6= αb). They must have the
same mass and spin, however. In case of the Dirac field, for example, a describes the electron
and b the positron, the anti–particle of the electron (see below). If a = b we call a field neutral,
when a 6= b we call it charged.

The amplitudes uα(~p, j3) and vα(~p, j3) are classical free particle wave functions. In the Fourier
transformation we cannot use simply d4p because pµ must satisfy p2 = m2 and p0 > 0. Therefore
d4p is replaced by dµ(p) = (2π)−3 θ(p0) δ(p2 − m2) d4p. As a consequence Ψα(x) satisfies the
Klein-Gordon equation

(2 +m2)Ψα(x) = 0 (2.18)

which is the Fourier transform of the on–shell condition
(−p2 +m2

)
Ψ̃α(p) = 0. So far the

introduction of the field operator Ψα(x) looks quite trivial. Deep consequences follow from the
properties which are required to be satisfied by the fields and which determine very specific wave
functions uα and vα.

The fields Ψα(x) are required to satisfy the following properties:

(a) Ψα(x) transforms simple and local under P↑+, specifically,

U(Λ, a)Ψα(x)U−1(Λ, a) = Dαβ(Λ−1)Ψβ(Λx + a) , (2.19)

where D(Λ) is a finite–dimensional (non–unitary) representation of the group SL(2, C)

which, in contrast to P↑+ itself, exhibits true spinor representations (see Appendix B)6.
The above transformation law is local in the sense that the Lorentz transformed field is
determined by its value at the Lorentz transformed point only.

5Remark for the reader not yet well familiar with free quantum fields: One aspect is that we are looking for the
Fourier-transform of operators which live on the mass hyperboloid p2 = m2 in momentum space. This hyperboloid
has a positive energy (positive frequency part) mass shell with p0 > 0 (→ “annihilation part”) as well as a
negative energy (negative frequency part) mass shell with p0 < 0 (→ “creation part”) which both are separately
invariant under orthochronous Lorentz transformation. Therefore the Fourier transform we are looking for exhibits
two parts which go with different signs of p0 in exp−ipx and exp +ipx (by relativistic invariance p0 can enter only
via a scalar product, px in our case, i.e., with p0 the entire scalar product px has to change sign): the first term
“living” on the upper hyperboloid (p0 > 0) corresponds to the annihilation part which annihilates a particle of

mass m and spin j of positive energy p0 =
√

~p2 +m2 while the second term “living” on the lower hyperboloid

(p0 < 0) seems to be destroying a particle of negative energy p0 = −
√
~p2 +m2 which actually translates into

the creation part which creates a particle of mass m and spin j of positive energy p0 =
√

~p2 +m2. For the
mathematics associated with the Fourier transform on a hyperboloid we refer to Sec. 2.8 Exercise ⑤ (see also
Appendix E.2). As we shall see both terms must be present for a causal relativistic field. They must correspond
to particles of the same mass and spin but need not describe the same particle. The need for both terms in a
relativistic quantum field gives raise to the famous particle–antiparticle pairing discovered by P. Dirac in 1928.
Only four years later in 1932 C.D. Anderson dicovered the first antiparticle. The positron as a positively charged
electron. For more details and the basic derivations we refer to the Appendices A, B and C.

6SL(2, C) is the group of complex 2 x 2 matrices with determinant det U = 1. P↑
+ and SL(2, C) have the same

Lie-Algebra (infinitesimal transformations) but different global transformation properties. SL(2, C) is the simply
connected so called “covering group” of the full Poincaré group P, which is multiply connected.
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For pure translations the transformation law has the simple form

eiaµP
µ
Ψα(x) e−iaµP

µ
= Ψα(x+ a)

the infinitesimal form of which is

[Pµ,Ψα(x)] = −i∂µΨα(x) (2.20)

Similarly, for the generators of the Lorentz transformations one obtains

[Mµν ,Ψα(x)] = − (Lµν δαβ + (Σµν)αβ) Ψβ(x) (2.21)

with

Lµν = i (xµ∂ν − xν∂µ)

the four-dimensional analog of the orbital angular momentum operator and

(Σµν)αβ =







0 spin 0

1
2(σµν)αβ spin 1

2

i (gµαgνβ − gναgµβ) spin 1

are the appropriate spin matrices for spin 0,1/2 and 1, respectively. The 4 × 4 matrix σµν =
i
2 [γµ, γν ] is the antisymmetric tensor constructed from the Dirac matrices.

(b) Causality: Two fields at space-likely separated points x and x′ must be independent. This
means that the fields must commute (bosons) or anticommute (fermions) at space-like
separations (see Fig. 2.2):

[

Ψα(x),Ψ+
β (x′)

]

∓
= 0 for (x− x′)2 < 0 . (2.22)

For free fields the (anti-) commutator can easily be calculated by using the representation
of the fields in terms of the creation and annihilation operators which satisfy the canonical
(anti-) commutation relations. The latter yield c-number distributions involving a delta
function which allows to perform one integration trivially. The result is an integral over a
c-number distribution.
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forward light cone

(future)

→ here at present

backward light cone

(past)

~x

↑ x0

Figure 2.2: Causally connected regions in space–time.

Since the fields always satisfy the Klein-Gordon equation, the commutator (anticommutator)
must also satisfy the Klein-Gordon equation. The Klein-Gordon equation has exactly one scalar
causal solution

(2 +m2)∆(x) = 0 with ∆(x) = 0 when x2 < 0 .

Up to normalization which is fixed by convention one finds

i∆(x) =
1

(2π)3

∫

d4p ε(p0) δ(p2 −m2) e−ipx

=
1

(2π)3

∫
d3p

2ωp

(

e−ipx − eipx
)∣
∣
∣
p0=ωp=

√
~p 2+m2

=
1

2π
ε(x0)

{

δ(x2)− m2

2
θ(x2)

J1(m
√
x2)

m
√
x2

}

(2.23)

where J1(z) is a Bessel function. The singular function (distribution) ∆(x) satisfies the singular
initial conditions

∆(0, ~x ) = 0 , ∂0∆(x0, ~x )|x0=0 = −δ(3)(~x )

and is antisymmetric

∆(x) = −∆(−x) .

Fields describing spin j particles must have at least 2j + 1 components and are characterized by
different transformation laws, namely, finite dimensional representations of SL(2, C) which nec-
essarily are non-unitary. More familiar is the characterization of fields by specific field equations
(see Appendices B and C):
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Scalar field (mass m, spin 0) ϕ(x) : ( 2 +m2 ) ϕ(x) = 0

Dirac field (mass m, spin 1/2) ψα(x) : ( iγµ∂µ −m ) ψα(x) = 0

Proca field (mass m, spin 1) Vµ(x) : ( 2 +m2 )Vµ(x)− ∂µ( ∂νV
ν ) = 0

implies ∂µVµ(x) = 0

Photon field (mass 0, spin 1) Aµ(x) : ( 2gµν − (1− ξ−1) ∂µ∂ν ) Aν = 0 .

In the field equation for the photon field ξ is a gauge parameter, which is necessary to determine
the gauge potential Aµ(x). Physical observables like cross–sections, the electromagnetic field
strength tensor or the electromagnetic current are gauge invariant, i.e., they are independent
of the gauge parameter ξ (see Sec. 4).

One easily checks that the one–particle wave functions uα and vα must be classical (i.e. c–
number) solutions of the momentum–space versions of the corresponding field equations. They
can be determined easily in momentum space. For a scalar field u = v = 1, for a Dirac field u
and v are four-component spinors and for a spin 1 field u, v → εµ, ε∗µ are the polarization vectors.

Explicit formulae and properties of these fields are collected in Appendix A at the end of this sec-
tion. A more detailed discussion of spinors and fields may be found in Appendix B. Peculiarities
of massless particles and fields are considered in Appendix C.

For the free field (anti-) commutators one obtains:

Neutral scalar field : [ φ (x), φ (0)] = i∆(x)

Charged scalar field : [ φ (x), φ+(0)] = i∆(x)

[ φ (x), φ (0)] = 0

[φ+(x), φ+(0)] = 0

Dirac field : {ψα(x), ψ̄β(0)} = i (iγµ∂µ +m)αβ ∆(x)

{ψα(x), ψβ(0)} = 0

{ψ̄α(x), ψ̄β(0)} = 0

Neutral Proca field : [Vµ (x), Vν (0)] = i
(

gµν +
∂µ∂ν
m2

)

∆(x)

Charged Proca field : [Vµ (x), V +
ν (0)] = i

(

gµν +
∂µ∂ν
m2

)

∆(x)

[Vµ (x), Vν (0)] = 0

[V +
µ (x), V +

ν (0)] = 0 .

These are the configuration space versions of the basic canonical (anti-) commutation relations
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satisfied by the creation and annihilation operators. By ψ̄β
.
= ψ+

α γ
0
αβ, as usual, we denoted the

adjoint spinor which is defined such that ψ̄ψ is a Lorentz scalar (see the Appendix).

The crucial consequences of the requirements of locality and causality are:

1. Spin - statistics theorem:
Bosons quantized with commutation relations must have integer spin.
Fermions quantized with anticommutation relation must have half odd–integer spin.

2. Particle - antiparticle crossing theorem:

Each particle of mass m and spin j must have associated an antiparticle with the same mass
and spin, which transform under identical representations of P ↑+. A particle can be its own
antiparticle e.g. π0, γ. In general, a particle and its antiparticle have different quantum
numbers like charge, baryon number, lepton number and flavor. Examples are: (e−, e+),
(p, p̄), (n, n̄), (π+, π−), (K0, K̄0) etc. .

Since particle - antiparticle pairs can annihilate electromagnetically into a photon and the
photon is neutral, Qγ = Bγ = L`γ = · · · = 0 , particles and antiparticles must have opposite
quantum numbers.

For massless particles we get the stronger result: To each left–handed (right–handed) par-
ticle there must exist a right–handed (left–handed) antiparticle.

Examples of massless fields:

a) Antiparticle = particle, e.g. γ, requires that both helicities must exist in Nature and

Aµ(x) =
∑

±

∫

dµ(p) εµ±(p)
(

a(~p,±) e−ipx − a+(~p,±) eipx
)

is a Hermitean field with natural inner parity ηP = (−1)j = −1 .

b) Antiparticle 6= particle, e.g. νL, ν̄R exist in Nature

ψLα(x) =

∫

dµ(p)
(

uLα(~p,−) a(~p,−) e−ipx + vLα(~p,+) b+(~p,+) eipx
)

where ψLα = 1
2(1−γ5)ψα is the left–handed neutrino field and ψα a massless Dirac field. a+

creates a left–handed neutrino, b+ creates a right–handed antineutrino. Notice that νL and
ν̄L can not be combined into a local and causal field, because they transform in a different
way under P↑+. Given the existence of νL, causality requires the existence of ν̄R. It does
not require ν̄L to exist, however.

In order to understand better how the above theorems come about let us consider a modified field

Ψα(x) =
∑

j3

∫

dµ(p)
{
ξ uα(~p, j3) a(~p, j3) e−ipx + η vα(~p, j3) b+(~p, j3) eipx

}
(2.24)

where we have multiplied the annihilation part by ξ and the creation part by η. Now we calculate the
commutator and obtain a result of the form (see Appendix B.6)

[

Ψα(x),Ψ+
β (x′)

]

∓
=
(
i
m

)2j
t
µ1...µ2j

αβ ∂µ1 . . . ∂µ2j×
1

(2π)3

∫ d3p
2ωp

(

|ξ|2e−ip(x−x′) ∓ (−1)2j |η|2eip(x−x′)
)∣
∣
∣
p0=ωp=

√
~p 2+m2

(2.25)
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with appropriate tensor coefficients t
µ1...µ2j

αβ the precise form of which is not important here. Now, locality
only holds if the integral is proportional to ∆(x− x′) and this requires

|ξ|2 = ±(−1)2j |η|2 .

This condition indeed implies two things:

±(−1)2j = 1 (2.26)

which is the spin-statistics theorem and

|ξ| = |η| (2.27)

which is the crossing theorem. Normalization and phases can then be chosen without loss of generality
such that

ξ = η = mj by convention ! (2.28)

This normalization is chosen such that the fields have smooth limits as m→ 0.

Under very general conditions a field theory which involves different species of causal and local
fields can be arranged always to satisfy “normal commutation relations” which means that
for space–like separations different Bose fields commute, Fermi fields commute with Bose fields
and different Fermi fields anti–commute:

[ φi(x), φj(y)] = 0

{ψi(x), ψj(y)} = 0 (x− y)2 < 0

[ φi(x), ψj(y)] = 0 .

The validity of normal commutation relations is a condition for the validity of the PCT–theorem
which will be discussed later.

Important remark: The fields have been constructed as a tool to control Lorentz invariance
and causality of relativistic particles in Minkowski space. The fields associated with particles of
given mass, spin and ”charge” are determined in an unambiguous manner if we discard some
ambiguities with the massless spin 1 fields. These fields in general are non-Hermitean and
hence cannot themselves be observables. They merely serve as auxiliary fields in terms of which
observables may be represented. Thereby the general properties required for the fields carry
over to the observables in a simple way. Observable fields not only must be Hermitean,
covariant and gauge-invariant but they also must commute for space-like separations by
causality. Examples of observable fields are the electromagnetic field strength tensor F µν and
the electromagnetic current jµ = ψ̄γµψ . The Fermi fields themselves cannot have a direct
physical meaning since they never commute outside the light-cone by the fact that the spin-
statistics theorem requires them to anti-commute at space-like separations. Only the Hermitean
local bilinear forms ψ̄α(x)Γ(r)αβψβ(x) (Γ an appropriate 4 by 4 matrix (see the Appendix)) or
monomials of them are also causal. Let us consider as a typical example the commutator

[

ψ̄(x) Γ(r)ψ(x) , ψ̄(y) Γ(r′)ψ(y)
]

= Γ(r)αβΓ(r′)γδ [ψ̄α(x) ψβ(x) , ψ̄γ(y) ψδ(y) ] .

One easily checks that the bilinear commutator

ψ̄α(x) ψβ(x) ψ̄γ(y) ψδ(y) − ψ̄γ(y) ψδ(y) ψ̄α(x) ψβ(x)

= ψ̄α(x) {ψβ(x) , ψ̄γ(y) }ψδ(y) − ψ̄γ(y) {ψδ(y) , ψ̄α(x) }ψβ(x)

− {ψ̄α(x) , ψ̄γ(y) }ψβ(x) ψδ(y) + ψ̄γ(y) ψ̄α(x) {ψβ(x) , ψδ(y) }
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vanishes for (x− y)2 < 0, where the anti-commutators of the Dirac fields vanish.

There are important consequences of this. Fermion fields must always enter in a physical problem
as adjoint pairs ψ̄(x) ... ψ(y) . This gives raise to fermion number conservation if we assign
opposite fermion number to ψ and ψ̄. Transition matrix elements between states of different
fermion number all vanish and the phases of individual fermion fields are never observable.

2.5 Chiral fields

As we have mentioned earlier massless particles with non-vanishing spin are described in the
helicity basis. For any spin j there are exactly two states of helicity ±j which do not mix under
Poincaré transformations. This decomposition into two invariant subspaces carries over to the
local fields as we will briefly discuss now. We consider a massless Dirac field. In the helicity
representation appropriate to describe a massless field the Dirac matrix γ5 and the so called
chiral projectors

Π± =
1

2
(1± γ5)

are diagonal (see Appendix):

γ5 =




1 0

0 −1





Π+ =




1 0

0 0



 , Π− =




0 0

0 1





where 1 and 0 are the 2 × 2 unit and zero matrices, respectively. The four-spinors ψα, uα, vα
decompose into right–handed and left–handed two-component spinors or Weyl spinors

ψα = ψRα + ψLα

ψRα = (Π+ψ)α , ψLα = (Π−ψ)α

ψRα = 0 for α = 3, 4 ; ψLα = 0 for α = 1, 2

It is very simple to check that Π± are Hermitean projection operators, meaning that they have
the properties:

Π+ + Π− = 1 , Π2
+ = Π+ , Π2

− = Π− , Π+Π− = Π−Π+ = 0 . (2.29)

We point out once more that a left–handed chiral field describes a particle with negative
helicity (left–handed particle) and at the same time an antiparticle with positive helicity (right–

handed antiparticle) which are the two states with identical transformation properties under P ↑+.
A corresponding statement holds for a right–handed chiral field. Note that the “handedness”
of a field and of the anti–particle it describes are opposite.

May be not so well known is the corresponding representation for spin 1 particles like the photon.
From the field strength tensor F µν and its dual F̃ µν

.
= 1

2ε
µνρσFρσ we may form the tensors

Fµν± =
1

2

(

F µν ± F̃ µν
)

which have the following properties:
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• ∂µFµν± = 0
since the free field satisfies the homogeneous Maxwell equations: ∂µF

µν = 0 and ∂µF̃
µν = 0 .

• F̃µν±
.
= 1

2ε
µνρσF± ρσ = ±Fµν±

such that Fµν+ self-dual and Fµν− anti-self-dual. This implies that the two fields F µν±
have each exactly 3 independent components and the two fields do not mix under Lorentz
transformations. They describe each a pure state of fixed helicity.

• (Fµν±
)∗

= Fµν∓

As usual the field strength tensor Fµν = ∂µAν − ∂νAµ is given by the curl of the photon field
which is represented by a vector potential Aµ.

2.6 Addendum: Finite dimensional representations of SL(2, C)

The Lie algebra of SL(2, C), the group of complex unimodular 2 × 2 matrices, is identical to the

one of Lorentz group L↑+. The 6 generators are given by the generators of the rotations ~J plus

the generators of the Lorentz boosts ~K. The Lie algebra given by

[Ji, Jk] = iεiklJl , [Ji,Kk] = iεiklKl , [Ki,Kk] = −iεiklJl .

is a coupled algebra of the Ji’s and Ki’s. Since these generators are Hermitean ~J = ~J+ and
~K = ~K+ the group elements e−i~ω ~J and ei

~β ~K are unitary7 . This algebra can be decoupled by the
linear transformation

~A =
1

2

(

~J + i ~K
)

, ~B =
1

2

(

~J − i ~K
)

under which the Lie algebra takes the form

~A× ~A = i ~A , ~B × ~B = i ~B , [Ai, Bj ] = 0

of two decoupled angular momentum algebras. Since ~A+ = ~B and ~B+ = ~A, the new generators are
not Hermitean any more and hence give raise to non–unitary irreducible representations. These
are finite dimensional and evidently characterized by a pair (A,B), with 2A and 2B integers.
The dimension of the representation (A,B) is (2A + 1) · (2B + 1). Note that this classification
exhausts all finite dimensional irreducible representations which are necessarily non-unitary. The
unitary representations, under which physical states transform, on the other hand are necessarily
infinite dimensional.

One may introduce “states” in the representation space:

|a, b〉 , a = −A,−A+ 1, . . . , A− 1, A , b = −B,−B + 1, . . . , B − 1, B

for which the matrix elements of the generators read:

〈a, b| ~A|a′, b′〉 = δbb′ ~J
(A)
aa′

〈a, b| ~B|a′, b′〉 = δaa′ ~J
(B)
bb′

7In SL(2, C) the Lie algebra obviously has the 2× 2 matrix representation Ji = σi/2 Ki = −I σi/2 in terms of
the Pauli matrices, however, ~K+ = − ~K is non-Hermitean and the corresponding finite dimensional representation
non-unitary. Unitary representations of the Lorentzgroup, required to implement relativistic covariance on the
Hilbert space of physical states, are necessarily infinite dimensional
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with ~J (j) the usual (2j + 1) dimensional representation of the rotation group:

(

J
(j)
x ± iJ (j)

y

)

j3j′3
= δj3j′3±1 {(j ∓ j3)(j ± j3 + 1)}1/2

(

J
(j)
z

)

j3j′3
= δj3j′3 · j3 .

The simplest irreducible representations are of type (j, 0) , (0, j) and (j, j) :

(j, 0) :
A→ J (j)

B → 0






⇒

J → J (j)

K → −iJ (j)

⇒ Representation : D(j)(Λ) = e(~β−i~ω) ~J (j)

(0, j) :
A→ 0

B → J (j)






⇒ J → J (j)

K → iJ (j)

⇒ Representation : D̄(j)(Λ) = e(−~β−i~ω) ~J (j)

Note that D̄(j)(Λ) is the adjoint of D(j)(Λ) : D̄(j)(Λ) = D(j)+(Λ−1) .

We are now ready to classify the fields in terms of the simplest finite dimensional (non-unitary)

representations. We denote group element as follows: A ∈ SL(2, C) and Λ ∈ P ↑+. The simplest
representations the are:

1 D(0, 0) scalar field

A D(1/2, 0) neutrino field

Ā D(0, 1/2) antineutrino field



A 0

0 Ā



 D(1/2, 0) ⊕D(0, 1/2) Dirac field




ReA ImA

−ImA ReA



 D(1/2, 0) ⊕D(0, 1/2) Majorana field

Λ D(1/2, 1/2) vector field (contravariant)

(Λ−1)T D(1/2, 1/2) vector field (covariant)

Λ⊗ Λ D(1/2, 1/2) ⊗D(1/2, 1/2)

= D(1, 1) graviton field

(symmetric, traceless 2nd rank tensor)

⊕D(1, 0) ⊕D(0, 1) electromagnetic field

(self-dual and anti-self-dual antisymmetric 2nd rank tensor)

= D(0, 0) scalar field

(scalar)

the general rule for the reduction of direct product representations is the following:

D(
i

2
,
j

2
)⊗D(

m

2
,
n

2
) =

min(i,m)
∑

a=0

min(j,n)
∑

b=0

⊕D(
i+m− 2a

2
,
j + n− 2b

2
) .
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The representations D(j, k), while irreducible with respect to SL(2, C) , are not irreducible with
respect to the subgroup SU(2) ⊂ SL(2, C) of rotations, in general. This means that the repre-
sentations D(j, k), in general, do not have a fixed spin. The spin content may be obtained by
performing the angular momentum decomposition:

D(j, k) ⊃ D(j,k)
R = D

(j+k)
R ⊕D(j+k−1)

R ⊕ · · · ⊕D(|j−k|)
R . (2.30)

2.7 Charge conjugation, parity, time reversal and the CPT -theorem

Particle - antiparticle crossing gives rise to the definition of charge conjugation C (Kramer
1937), represented by a unitary operator U(C) on Hilbert space (representations up to a phase
ηC). Charge conjugation, parity and time reversal act as follows on the annihilation operators:

C : U(C) a(~p, j3) U−1(C) = ηC b(~p, j3)

U(C) b(~p, j3) U−1(C) = η̄C a(~p, j3)

P : U(P ) a(~p, j3) U−1(P ) = ηP a(−~p, j3)

U(P ) b(~p, j3) U−1(P ) = η̄P b(−~p, j3)

T : Ū(T ) a(~p, j3) Ū−1(T ) = ηT Cj3j′3 a
+(−~p, j′3)

Ū(T ) b(~p, j3) Ū−1(T ) = η̄T Cj3j′3 b
+(−~p, j′3) (2.31)

The matrix Cj3j′3 shows up due to the anti-unitarity of Ū(T ) which includes a complex conjugation.
C is a 2j + 1 × 2j + 1 matrix which transforms a rotation matrix into its complex conjugate
representation: CD(j)(R)C−1 = D(j)(R)∗ with C∗C = (−1)2j , C+C = 1. Explicitly, we have

Cj3j′3 =

(

eiπJ
(j)
2

)

j3j′3

= (−1)j+j3δj3,−j′3 .

As we mentioned earlier the intrinsic parities are defined to be spin–independent by explicitly
taking out the spin–dependent factors. The requirement of simple local transformation laws of
the fields under C,P, T transformations has interesting consequences. Simple means that the
creation part proportional to b+ and the annihilation part proportional to a transform with the
same phase such that the field is multiplied by the corresponding common phase. As we shall
derive below this implies:

η̄P = η∗P (−1)2j , η̄T = η∗T , η̄C = η∗C

or, equivalently,
ηP η̄P = (−1)2j , ηT η̄T = 1 , ηC η̄C = 1 . (2.32)

Consequently:

A particle - antiparticle pair must have inner parity:

ηP η̄P =







1 for bosons

−1 for fermions .
(2.33)

For massive neutral particles (particle ≡ antiparticle) we then must have

ηP =







±1 for neutral bosons

±i for neutral fermions
(2.34)
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and ηT = ±1 , ηC = ±1 for neutral particles.

The crucial question in any case is whether a particular type of interaction preserves the cor-
responding symmetry. If a symmetry is good the interaction fixes the relative phases of
different fields as we shall see later.

For neutral (Hermitean) fields like the photon field or the π0 and the ρ0 fields the phases are
observable and have to be determined by experiment. Thus neutral particles have absolute
intrinsic parities. Depending on whether ηP = +1 or ηP = −1 one distinguishes between scalar
or pseudo-scalar spin 0 bosons and between vector or axial vector spin 1 bosons, respectively.
For charged (non-Hermitean) fields only relative phases may have a physical meaning. The
individual phases of charged particles are not observable and may be chosen by convention as far
as they are not fixed relative to each other.

In order to establish the results just given, let us now consider the C, P and T transformation
properties of free fields in some more detail. We first notice, that a field Ψ contains a and b+

while its Hermitean conjugate Ψ+ contains b and a+ as annihilation and creation operators. The
transformed field must be a non-singular linear combination of the components of either the
field (P) or its Hermitean adjoint (C,T). This follows from the transformation properties of the
annihilation and creation operators and from the fact that the transformed field must be local
again and satisfies the appropriate field equation. We then find:

A) Scalar fields

U(C) φ(x) U−1(C) = ηC φ
+(x)

U(P ) φ(x) U−1(P ) = ηP φ (Px)

Ū(T ) φ(x) Ū−1(T ) = ηT φ
+(Tx) . (2.35)

For real fields φ = φ+ in particular we have

φ(x)
P→






φ(Px) scalar field

−φ(Px) pseudoscalar field

B) Vector fields

For the assignment of inner parities an important reference quantity is the Hermitean, gauge-
invariant and conserved electromagnetic current jµ(x). As an observable for which also a classical
limit exists it has no free phase. As suggested by classical correspondence, the natural convention
is to require it to transform like an ordinary four-vector:

U(P ) jµ(x) U−1(P ) = (Pj)µ(Px) = (j0,−~j )(Px)

Ū(T ) jµ(x) Ū−1(T ) = −(Tj)µ(Tx) = (j0,−~j )(Tx)

where the “phase” has to be chosen such that the charge keeps its sign. Correspondingly, j 0,
which represents the charge density, must keep sign. On the other hand under charge conjugation
the charge changes sign which implies

U(C) jµ(x) U−1(C) = −jµ(x) .

Notice that for any contravariant four-vector jµ we may write the parity transformed vector
(j0,−~j ) ≡ jµ as a covariant vector. We will use this notation in the following.
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Since the electromagnetic interaction LQEDint = ejµ(x)Aµ(x) respects C-, P- an T-invariance sep-
arately we immediately get the following transformation properties for the photon field:

U(C)Aµ(x) U−1(C) = −Aµ(x)

U(P ) Aµ(x) U−1(P ) = (PA)µ(Px) = Aµ(Px)

Ū(T ) Aµ(x) Ū−1(T ) = −(TA)µ(Tx) = Aµ(Tx) .

(2.36)

Notice that the charge parity for the photon is ηγC = −1 .

In general we have

U(C) V µ(x) U−1(C) = ηC V
+µ(x)

U(P ) V µ(x) U−1(P ) = ηP Vµ(Px)

Ū(T ) V µ(x) Ū−1(T ) = −ηT V +
µ (Tx) .

(2.37)

For real fields V µ = V +µ in particular we have

V µ(x)
P→






Vµ(Px) vector field

−Vµ(Px) axial vector field .

C) Dirac fields

U(C) ψα(x) U−1(C) = i
(
γ2γ0

)

αβ ψ̄
T
β (x)

U(P ) ψα(x) U−1(P ) =
(
γ0
)

αβ ψβ(Px)

Ū(T ) ψα(x) Ū−1(T ) = i
(
γ2γ5

)

αβ ψ̄
T
β (Tx)

(2.38)

where the phases have been chosen conveniently. We observe that, in contrast to the boson fields,
the transformation properties of the Dirac fields is by no means obvious. A short digression may
help to show how these results come about:

By the arguments given above, under C, P and T the Dirac field must transform as ψα(x)
C→ (XC)αβψ̄

T
β (x),

ψα(x)
P→ (XP )αβψβ(Px) and ψα(x)

T→ (XT )αβψ̄
T
β (Tx). The transpose ψ̄T appears just because we have

to get a column spinor rather than a row spinor ψ̄. The easiest way to determine the 4 x 4 matrices XI is
to use the Dirac equation.

Using the Hermitecity property γµ+ = (γ0,−~γ ) of the γ−matrices we may write γµ∂µ
P→ γµ+∂µ and

γµ∂µ
T→ −γµ+∂µ. Therefore (iγµ+∂µ −m) ψ(Px) = 0 and (iγµ+∂µ +m) ψ(Tx) = 0. For the transpose of

the adjoint spinor we have (iγµT∂µ +m) ψ̄T (x) = 0 and (iγµ∗∂µ −m) ψ̄T (Tx) = 0.

Now, since U(I)ψα(x)U−1(I) satisfies the Dirac equation, we obtain:

C: (iγµ∂µ−m)XCψ̄
T (x) = 0 and this requires X−1

C γµXC = −γµT . If we choose the arbitrary phase such
that XC is real and antisymmetric XT

C = −XC we find XC = −iγ5B = iγ2γ0. For specific representations
of B see the Appendix.

P: (iγµ∂µ −m)XPψ(Px) = 0 which requires X−1
P γµXP = γµ+ and hence XP = γ0 is the obvious choice.

T: (iγµ∂µ−m)XT ψ̄
T (Tx) = 0 and therefore X−1

T γµXT = γµ∗. Again we may choose the phase such that
XT is real and we find XT = iC = iγ2γ5. For specific representations of C see the Appendix.

For the case of spin 1/2, we are ready now to verify the non-trivial result that for half odd
integer spin particle and antiparticle have opposite inner P–parity. Equivalently, this means that
a particle-antiparticle pair has negative inner parity.
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To see this we compare the transformations of a Dirac field ψ(x) and its charge conjugate ψ c(x) ≡
iγ2γ0ψ̄T (x) under space inversion: First we have

ψ(x)
P→ γ0ψ(Px)

ψ̄T (x)
P→ γ0ψ̄T (Px)

where the second transformation law follows from the first one by taking the Hermitean conjugate,
multiplication with γ0 from the right and taking the transpose. When taking the Hermitean
conjugate the unitarity of U(P ) must be used. For the charge conjugate field we then obtain

ψc(x)
P→ iγ2γ0U(P ) ψ̄T (x) U(P )−1 = iγ2γ0γ0ψ̄T (Px)

and anticommuting one γ0 to the left of γ2 we find

ψc(x)
P→ −γ0ψc(Px)

which proves that particle and antiparticle transform with opposite sign under parity (see Eq.
2.32). Consequences of this result will be considered in an example at the end of this section.

We finally note the following transformation properties of the chiral fields (Weyl fields) defined
in Sec. 2.5

U(C) ψLα(x) U−1(C) = i
(
γ2γ0

)

αβ ψ̄
T
Rβ(x)

U(P ) ψLα(x) U−1(P ) =
(
γ0
)

αβ ψRβ(Px)

Ū(T ) ψLα(x) Ū−1(T ) = i
(
γ2γ5

)

αβ ψ̄
T
Lβ(Tx)

(2.39)

and the same relations with L and R interchanged. Notice that parity (P) and charge conjugation
(C) interchange left–handed (ψL) and right–handed (ψR) (Weyl-) fields, which means that a field

which transforms under a given irreducible representation of P ↑+ is transformed into a field which

transforms under a different representation under P ↑+. In order to avoid this, one has to describes
fermions by the reducible Dirac representation, and not by the irreducible two component Weyl
representation. The latter, at first sight, seems to be more natural for a description of spin
1/2 particles which have two independent degrees of freedom and not four. The reason for
the preference given to the Dirac representation in particle physics are the parity conserving
interactions QED and QCD, which must include both the L and the R fields in a symmetric
manner. This is simply achieved by using the Dirac field ψ = ψL + ψR, as we know.

A very important consequence of local field theory is the CPT -theorem: Any P ↑+ invariant
field theory with normal commutation relations is CPT invariant. Let Θ = CPT where C,P
and T may be applied in any order, there exists an anti-unitary operator Ū(Θ) such that with
appropriate phase conventions the transformation

Scalar field : Ū(Θ) φ(x) Ū−1(Θ) = φ+(−x)

Dirac field : Ū(Θ) ψ(x) Ū−1(Θ) = iγ5ψ(−x)

Photon field : Ū(Θ) Aµ(x) Ū−1(Θ) = −Aµ(−x)

(2.40)

etc. of the fields is a symmetry of the theory (Lüders 1954, Pauli 1955, Jost 1957).

The basic reason for the validity of the CPT -theorem is the following: If we consider a Lorentz
transformation Λ ∈ L↑+ represented by a unitary operator U(~χ, ~ω = ~n θ), then the operator
U(~χ, ~n (θ + 2π)) = −U(~χ, ~n θ) is representing the same L-transformation. In a quantum field
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theory the mapping Λ → −Λ for Λ ∈ L↑+, which is equivalent to θ : x → −x, should be a
symmetry: the invariance under four-dimensional reflections .

The physical consequences are the following: CPT -symmetry implies that the masses (more
generally the energy spectrum) of particles and antiparticles are equal

m = m̄

for interactive theories. The best experimental test of this property is provided by the KL − KS

mass difference:

(MK − MK̄)/MK ≤ (ML − MS)/MK ' 0.7 × 10−14

as an upper limit of the CPT -violation of the strong interactions. Furthermore the partial and
total widths of particles and antiparticles are identical

ΓA→B = ΓĀ→B̄

if the initial and final states do not mix:

< Ā|A >=< B̄|B >= 0 .

The latter condition is not satisfied for the (K 0, K̄0) and the (B0, B̄0) systems. Of course charged
particles never mix. Here the best limits for the identity of particle and antiparticle widths are

(τ+ − τ−)/(τ+ + τ−) =







(1.5 ± 3.4) × 10−5 for µ±

(2.6 ± 3.4) × 10−4 for π±

(5.7 ± 4.6) × 10−4 for K±

where τ± = Γ−1
± is the life-time of the positively and negatively charged partners, respectively.

Another static property which must be equal for particles and their antiparticles is the magnetic
moment (g-factors). The best limits are

g(e+)− g(e−) = ( 1.0± 4.2) × 10−12

g(µ+)− g(µ−) = (−5.2 ± 3.2) × 10−8 .

They are testing the CPT -invariance of the electromagnetic interaction8.

The above properties also follow from charge conjugation invariance (C), which holds for strong
and electromagnetic interactions only. Weak interactions violate parity P maximally (V − A
interaction) but conserve CP to good accuracy. Thus together with P also C is strongly violated
in weak processes. Most strikingly this manifests itself such that a right–handed neutrino and
a left–handed anti-neutrino seem not to exist in Nature9. Here the CPT -theorem yields a very
nontrivial result. CP is weakly violated by weak interactions. Experimentally it was observed so

8When a measurement of some quantity is performed in reality, all effects of all possible kind of interactions
in principle contribute. Since among the known interactions the weak ones violate P , C as well as CP , only
CPT can be strictly conserved. The only condition then is that nature is described by a quantum field theory.
When the C–violating weak contributions are smaller than the experimental accuracy, the equality of particle and
anti-particle properties derive from C invariance alone. A corresponding statement can be made with respect to
CP violating effects which in many cases are much more suppressed then the genuine weak interactions.

9Today we know from the observed neutrino oscillations, that also the latter neutrinos species must exist. In
contrast to “ordinary helicity” neutrinos, they seem not to couple directly to ordinary matter, however. Such
“sterile” wrong helicity neutrinos in first place seem to participate only via helicity flip transitions mediated by a
tiny mass term.
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far only in (K0, K̄0) decays. A crucial experimental goal is the observation of CP violation in the
(B0, B̄0) system! In fact, according to present day knowledge, CP is an exact symmetry in the
lepton sector as well as in the (u, d) quark sector which describes nucleons, pions, the ρ− meson
etc. Of course the CPT -theorem implies that always at least two of the tree discrete symmetries
have to be violated simultaneously. In particular, CP violation implies the violation of time
reversal invariance T .

If a symmetry I = C, P or CP is preserved by an interaction, which is universally true for the
strong and electromagnetic interactions, the intrinsic parities ηI represent multiplicatively con-
served quantum numbers in multiparticle reactions. This is obvious since multiparticle states
are created (annihilated) from the vacuum by corresponding products of creation (annihilation)
operators, with each operator carrying a corresponding I-parity factor.

Let us discuss this in some more detail for the P-parity as an example. Considering space-
reflections the parity property of the spatial wave–function must be taken into account. If we
consider a two-body reaction

A + B → C + D

in the center of mass (CM) frame we may separate the radial and the angular part of the spatial
wave–function

ψLM (x) = R(r) Y M
L (θ, φ)

if the system is in a state of fixed angular momentum L. For a space reflection r → r , θ →
π − θ , φ → φ + π the spherical harmonics change sign according to

YM
L (π − θ, φ+ π) = (−1)L YM

L (θ, φ)

which means that an angular momentum eigenstate has positive or negative parity depending on
whether L is even or odd. We thus obtain

ηAP η
B
P (−1)L = ηCP η

D
P (−1)L

′

if the initial an final states have angular momenta L and L′, respectively. Generally, the parity
of a multiparticle (composite) system, in a state of angular momentum L, is the
product of the inner parities of the individual particles (constituents) times the
orbital momentum parity (−1)L .

Suppose now that a particle C can be singly produced in a reaction

A + B → A + B + C .

Such a particle cannot carry any conserved charge-like quantum number Q,B,L`... or fermion
number. Notice that strong interactions conserve all flavors and thus also flavor must be conserved
in this case. Thus C has to be a neutral boson and from

ηAP η
B
P (−1)L = ηAP η

B
P η

C
P (−1)L

′

we conclude that

ηCP = (−1)L+L′

is the intrinsic parity of the particle C. Such an absolute intrinsic parity is assigned to the photon,
the π0 and the ρ0. On the other hand if C is a fermion or carries any charge-like quantum numbers
it can be pair produced only

A + B → A + B + C + D .
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In this case an unambiguous intrinsic parity ηCP η
D
P is obtained for the pair only. It is still mean-

ingful to assign an intrinsic parity to such a particle by convention. In the parity conserving
strong interaction physics one chooses ηP = 1 for the normal baryons p, n,Λ, . . .. What we
said here about the P-parity of course is true for the C-parity and the CP -parity.

We end this section by a discussion of some interesting examples which illustrate the interplay of
discrete symmetries.

Examples

(a) P and C violation and CP conservation in weak leptonic decays

The leptonic decay π+ → µ+ + νµ of the charged pion is a beautiful example to observe P and C
violation under the condition of strict CP conservation in a weak interaction process. If we apply
C and P to the given process we obtain processes which include neutrinos of the ”wrong” helicity
the couplings of which appear to be absent in Nature. However, the combined transformation
CP=PC yields the observed decay π− → µ− + ν̄µ .

P→

C ↓ CP ↘ PC ↓ C

P→

π+

π−

π+

π−

µ+

νµ

µ−

ν̄µ

νµ

µ+

ν̄µ

µ−

⇓

⇑

⇓

⇑

⇑

⇓

⇑

⇓

Fig. 2.3: Starting from the observed π+ decay P and C map this decay
into decays which do not exist. CP or PC however relate the
observed π+ and π− decays.

(b) C parities of π0 and η0

Since the photon has C–parity ηγC = −1 as mentioned earlier, the observed C–conserving electro-
magnetic decays

π0 → γγ , η0 → γγ

tell us that

ηπ
0

C = ηη
0

C = +1 .
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The conservation of C–parity on the other hand implies that

π0 6→ γγγ , η0 6→ π0γ or γγγ

are forbidden decays.

(c) Spin, isospin and parity of the pions

The pions are the lightest of all strongly interacting particles. They are known to have integer
spin and baryon number zero as can be seen from the production and absorption reactions (with
d=(pn) denoting the deuteron)

p+ p→ π+ + d

π+ + d→ p+ p ,

which also shows that pions, like photons, may be created or annihilated singly in particle reac-
tions.

① Spin of the charged pion:

A simultaneous measurement of production and absorption allows one to determine the spin of
the charged pion. The idea is that the unpolarized cross-section depends in a particular way on
the spin, since one has to average over the initial state polarizations and sum over to final state
polarizations. For a reaction A = a+ b→ B = c + d we have (see Sec. (3.5) below for details on
the notation)

(
dσ

dΩ

)unpol

CM
=

1

(8π)2s

1

2Sa + 1

1

2Sb + 1

√

λ(s,m2
c ,m

2
d)

λ(s,m2
a,m

2
b)

∑

spins

|< B|T |A >|2 .

By time reversal invariance the spin sum of the absolute square of the matrix element is the same
for a reaction and its inverse. Therefore we obtain

(
dσAB
dΩ

)unpol

CM
(2Sa + 1) (2Sb + 1) λ(s,m2

a,m
2
b) =

(
dσBA
dΩ

)unpol

CM
(2Sc + 1) (2Sd + 1) λ(s,m2

c ,m
2
d)

a relationship which is completely independent of the details of the interaction and usually is
called “principle of detailed balance”. For the above reaction using the fact that the spin of
the proton is 1/2 the one of the deuteron 1 we find

(
dσproduction

dΩ

)unpol

CM

/(
dσabsorption

dΩ

)unpol

CM
=

3

4
(2Sπ + 1)

λ(s,m2
π,M

2
d )

λ(s,m2
p,m

2
p)

The experimental results require Sπ± = 0.

② Spin of the neutral pion:

The neutral pion predominantly decays electromagnetically into two photons π0 → 2γ. If we
consider the decay in the rest frame of the pion, the two gammas are emitted mono-energetically,
with energy Eγ = mπ0/2, in opposite directions. The total angular momentum of the two spin
1 photons can only be even. If the state has orbital angular momentum zero we can have a spin
0 or a spin 2 state only (see Sec. 5). Since the π0 is the isospin partner of the charged pions its
spin must be zero.
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③ Isospin of the pions:

A comparison of proton-proton (pp) and proton-neutron (pn) scattering experiments reveals a
fundamental symmetry of the strong interactions, the (strong) isospin symmetry (charge in-
dependence of the nuclear force). The internal symmetry group is SU(2) and the nucleons p and
n form a doublet (pn). The isospin of the pions is then obtained by comparing the production of
charged and neutral pions in the reactions

p+ p→ d + π+

p+ n→ d+ π0 .

The pp initial state must be in an Ii = 1 state. The deuteron has Id = 0. By conservation of
isospin in strong interaction we must have Iπ+ = 1. The pn state can be in singlet Ii = 0 or in a
triplet Ii = 1 state, with equal probability. But, if Iπ0 = 1 the final state must have If = 1 and
thus only half of the initial states create a π0. Therefore we expect

σ(p+ n→ d + π0)/σ(p + p→ d+ π+) = 1/2

which is confirmed by experiment. The pions form a isospin triplet where π+, π0, π− correspond
to the I3 = +1, 0,−1 components.

④ Parity of the pions:

The occurrence of the reaction

π− + d→ 2 n ,

at rest, is possible only if the pion is a pseudo-scalar particle i.e. it has inner parity ηπ
−

P = −1 .

In order to show this we apply the relation ηπ
−

P ηdP (−1)L = (ηnP )2 (−1)L
′
. In the reaction under

consideration the pion is trapped in an S-orbit of the deuteron, thus L = 0, and the total angular
momentum of the initial state is equal to the spin of the deuteron which is 1. Since the orbital
angular momentum is zero, the parity of the deuteron is ηdP = +1. The final state exhibiting two
neutrons is restricted by the Pauli exclusion principle. The triplet state S = 1 (parallel spins)
is symmetric, the singlet state S = 0 (anti-parallel spins) is antisymmetric. Under the exchange
of the two fermions the total wave function changes by the factor (−1)(L+S+1). Since only an
antisymmetric state is admitted, L + S must be even. Thus, in spectroscopic notation 2S+1 LJ ,
possible states are 1S0 , 3P2,1,0 , 1D2 , . . . , not however a 3S1 state, for example. By angular
momentum conservation only the 3P1 state is possible, which has negative parity. Therefore the
parity of the charged pion must be negative. Note that the parity of the proton is set to ηpP = +1
by convention; the neutron, as the isospin partner of the proton, then also has parity ηnP = +1.

While the reaction

π− + d→ 2 n+ γ

occurs at a rate comparable to the reaction considered so far, the production of a single additional
π0

π− + d 6→ 2 n+ π0

seems to be strictly forbidden by experiment. Both processes are allowed by charge and baryon
number conservation, but, the conservation of parity P in strong interactions implies that the
second reaction is forbidden if ηπ

0

P = −1 .

34



The parity of the neutral pion may be determined again from the decay π0 → 2γ under the
assumption that the spin of the pion is 0, by analyzing the polarizations of the emitted photons.
This is possible by studying the angular correlations of the two Dalitz pairs (e+e−–pairs) obtained

by the conversion of the two virtual photons in π0 → ∗
γ +

∗
γ → e+e−e+e−.

(d) Positronium and the intrinsic parity of a fermion–antifermion pair

It is perhaps unexpected that a fermion–antifermion system must have negative inner parity. This
has important consequences for example for the properties of positronium, a hydrogen–like (e+e−)
bound state. The wave function of the two fermions must be antisymmetric if we interchange
at the same time the positions the spins and the charges10. The interchange of the positions
is equivalent to a spatial reflection about the center of mass of the system which implies that
the wave function multiplies with (−1)L, where L is the orbital angular momentum. Under the
exchange of the two spins, the spin wave–function is antisymmetric for S=0 and symmetric for
S=1 (see Sec. 5), hence, the wave function gets multiplied by (−1)1+S . Together with the charge
conjugation C we obtain: (−1)L (−1)1+SC = −1 and thus C = (−1)L+S . Because of the negative
inner parity the system has parity P = (−1)1+L and thus CP = (−1)1+S . The CP–invariance
of the electromagnetic interaction thus implies that the spin S is an exact quantum number. In
spectroscopic notation 2S+1 LJ , the ground states are

State Spin Name Charge-parity Decays

1S0 S = 0 parapositronium C = 1 2γ, 4γ, · · ·
3S1 S = 1 orthopositronium C = −1 3γ, 5γ, · · ·

Positronium decays electromagnetically into photons. By energy–momentum conservation at least
two photons must be in the final state. The 3S1 state cannot decay into two photons because a
two photon system cannot have total angular momentum 1. By its negative C-parity it cannot
decay into any even number of photons (Furry’s theorem). The 1S0 state has even C-parity
and cannot decay into an odd number of photons. The inner P-parity of positronium can be
observed directly in the angular correlation of the emitted photons.

2.8 Exercises: Section 2

① Determine the matrix Λµ
ν for

a) a rotation by an angle ϕ about the z-axis

b) a special Lorentz transformation of velocity ~v in z-direction.

Write down the operators U(Λ) for the above transformation.

② Show that for a general Poincaré transformation U(Λ, a) the generators of the Poincaré
group satisfy

U(Λ, a)PµU(Λ, a)−1 = Λν µ Pν

10Formally, we have
ψα(x)ψc

β(y) → ψc
β(y)ψα(x) = −ψα(x)ψc

β(y)

by the anticommutation relations for the fermions fields.
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and

U(Λ, a)MµνU(Λ, a)−1 = Λρµ Λσν (Mρσ − Pρaσ + Pσaρ) .

While the first equation tells us that Pµ transforms as a covariant four-vector, the second
proves that Mµν is a 2nd rank tensor only with respect to homogeneous Poincaré transfor-
mation.

③ Use the previous result to derive the Lie algebra of P ↑+ by expanding U(Λ, a) to first order.
The result should be

[Pµ, Pν ] = 0 ,

[Pρ,Mµν ] = −i (gρµPν − gρνPµ) ,

[Mµν ,Mρσ] = i (gµρMνσ − gµσMνρ + gνσMµρ − gνρMµσ) .

Give a physical interpretation.

④ Prove that

d3p

ωp
and ωpδ

(3)(~p ′ − ~p ) with ωp =
√

~p 2 +m2

are relativistically invariant. Hint: Use

Θ(p0) δ(p2 −m2) d4p =
d3p

2ωp
.

⑤ Show that the Fourier transform of a distribution φ̃(p) = 2πδ(p2 −m2)ξ̃(p) with support
on the hyperbola p2 = m2 has the form

φ(x) =
1

(2π)3

∫
d3p

2ωp

(

e−ipxξ̃(ωp, ~p ) + eipxξ̃(−ωp,−~p )
)

which is a decomposition into a positive and a negative frequency part. Hint: Use

∫ +∞

−∞
dp0 f̃(p0, ~p ) =

∫ ∞

0
dp0

(

f̃(p0, ~p ) + f̃(−p0, ~p )
)

and

∫ +∞

−∞
d3p ei~p~x g̃(~p ) =

∫ +∞

−∞
d3p e−i~p~x g̃(−~p ) .

Compare the form obtained with the representation of a free field in terms of creation and
annihilation operators.

⑥ Show that

∆(x) =
i

(2π)3

∫
d3p

2ωp

(

e−ipx − eipx
)∣
∣
∣
p0=ωp=

√
~p 2+m2

= 0 if x2 < 0
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⑦ For a system of free particles and antiparticles the four-momentum operator can be ex-
pressed in the simple form

P µ =
∑

r

∫

dµ(p)pµ
{
a+(~p, r)a(~p, r) + b+(~p, r)b(~p, r)

}
.

Show that P µ has the properties

P µ | 0 > = 0

P µ | ~p, r, α > = pµ | ~p, r, α >

and satisfies the commutation relations

[P µ, a (~p, r)] = −pµa(~p, r)
[
P µ, a+(~p, r)

]
= +pµa+(~p, r) etc.

Give a physical interpretation of these properties.

⑧ For a Dirac field the charge operator is given by

Q =

∫

d3x j0(x) =

∫

d3x : ψ+
α (x) ψα(x) :

where

jµ = ψ̄γµψ , ∂µj
µ = 0

is the conserved electromagnetic current operator. Show that

Q =
∑

r

∫

dµ(p)
{
a+(~p, r)a(~p, r)− b+(~p, r)b(~p, r)

}

is time independent. Give a physical interpretation of Q by means of the commutation
relations

[Q, a] = −a , [Q, b+] = −b+ , [Q,ψ] = −ψ .

⑨ Prove that for a Dirac particle

(Λ+)αβ =
1

2m

∑

r

uα(p, r)ūβ(p, r) =
1

2m
(p/ +m)αβ

(Λ−)αβ = − 1

2m

∑

r

vα(p, r)v̄β(p, r) = − 1

2m
(p/−m)αβ

are projection operators with property

Λ+u(p, s) = u(p, s) , Λ+v(p, s) = 0

Λ−u(p, s) = 0 , Λ−v(p, s) = v(p, s) .

Give a physical interpretation of this result.

Note: In the space of four-spinors the usual Hermitean conjugation is replaced by going to
the adjoint

Γ→ Γ† = γ0Γ+γ0 .

Thus, the usual Hermitecity Γ = Γ+ requirement is replaced be self–adjointness requirement
Γ = Γ†, because the L–invariant scalar product between two spinors u and v is ūv ≡ u+γ0v,
and not u+v. The latter is not L–invariant.
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⑩ Prove that

Π± =
1

2
(1± γ5n/)

for n a space-like vector orthogonal to the momentum p of a Dirac particle

n2 = −1 ; n · p = 0

are projection operators with the property

Π±u(p, s) = u(p, s) δs,±
Π±v(p, s) = v(p, s) δs,± .

Give a physical interpretation of the latter properties.
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3 Interactions, S–matrix, Perturbation Expansion and Cross–
sections

3.1 Interacting fields

The free fields are characterized by free homogeneous field equations

(2 +m2)φ(x) = 0

(iγµ∂µ −m)ψ(x) = 0

(2 +m2)Vµ(x)− ∂µ (∂νV
ν(x)) = 0 .

(3.1)

These equations can be derived from an invariant Lagrangian density

L = L(ϕ, ∂ϕ)(x) ; ϕ = φ, ψ, V, . . .

by means of Hamilton’s principle of stationary action which states that for physical trajectories
11

δ

∫

d4x L(ϕ, ∂ϕ)(x) = 0 under variations ϕ→ ϕ + δϕ .

The stationarity condition yields the Euler-Lagrange equations

∂µ
∂L
∂∂µϕ

=
∂L
∂ϕ

; ϕ = φ, ψ, V, . . . (3.2)

which coincide with the field equations given above for the Lagrangian densities

L0 =
1

2

(

∂µφ∂
µφ−m2φ2

)

L0 = ψ̄ (iγµ∂µ −m)ψ

L0 = −1

4
FµνF

µν +
m2

2
VµV

µ ; Fµν
.
= ∂µVν − ∂νVµ . (3.3)

Interactions are simply included now by adding local invariant products of fields to the free
Lagrangian densities:

L(x) = L0(x) + Lint(x) (3.4)

where Lint(x) is a sum of local monomials of fields, called (interaction-) vertices. The field
products also may include derivatives of fields. By local we mean that all fields must be taken at
the same space-time point x. L-invariance requires each monomial to be a Lorentz scalar. Lint(x)
determines the dynamics of the system. Notice that adding a total derivative ∂µK

µ with Kµ(x)
some nonsingular vector field to the Lagrangian does not change the action i

∫
d4xL(x) and hence

leaves unaffected the dynamics of the system.

Since the bilinear terms are included in L0(x) already, the interaction term in general includes
products of at least three fields. The requirement of renormalizability (see later) in fact only

11Notice that we always have to subtract the vacuum expectation value from the Lagrangian

L(x) → L(x)− < 0|L(x) |0 >

in order that the action
∫
d4xL(x) exists in the limit of an infinite space-time volume.
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allows for products of at most four boson fields, for fermion fields only a pair ψ̄ · · ·ψ times a
boson field is admitted. The most familiar example is the electromagnetic interaction (see Sec. 4)

LQEDint (x) = −ejµem(x)Aµ(x)

where jµem(x) = ψ̄(x)γµψ(x) is the conserved electromagnetic current and Aµ(x) is the photon
field.

Local interactions of local and causal fields allow to control the causality of the interacting theory.
Of course the basic principles listed at the beginning of this section are required to hold for the
interacting theory. In addition we assume that the vacuum is a cyclic vector, which means that
a dense set of physical states may be generated by applying arbitrary products of field operators
to the vacuum vector |0 >.

The equations of motion for the interacting theory are given by the Euler-Lagrange equations for
the full Lagrangian. For example, for a scalar field theory with self-interaction

Lint = − λ
4!
φ4 (x) (3.5)

the free homogeneous field equation is modified to

(2 +m2) φ(x) = − λ
3!
φ3 (x)

.
= −λĴ{φ}(x) . (3.6)

Typically, an inhomogeneous non-linear source term which is proportional to a coupling constant,
λ in our case, is added.

Interacting “particles” in general do not have definite mass, spin, charge etc. because they are
no longer isolated systems. However, if the interaction is sufficiently short-ranged the effective
interaction time may be considered to be finite and after a sufficiently long time (t → +∞) the
system will be in a state of freely moving outgoing particles. Similarly we assume that before
interaction sets in at early enough times (t→ −∞) we start with a state of freely moving incoming
particles. This scattering theory picture gives rise to the asymptotic condition for interacting
fields: The assumption is that the interacting fields ϕ(x) may be chosen such that for any states
|A > and |B >

lim
t→−∞/+∞

< B|ϕ(t, ~x )|A >=< B|ϕin/out(t, ~x )|A > (3.7)

where ϕin(x) and ϕout(x) describe a free incoming and a free outgoing particle, respectively.
A field which satisfies the asymptotic condition is called an interpolating field (Heisenberg
field). It is the asymptotic condition which provides the key for the particle interpretation of the
interacting theory and exhibits particles as asymptotic states. It is via the asymptotic condition
that the spin-statistics and particle–anti-particle crossing theorems and other properties we have
discussed for free fields carry over to the interacting theory.

Although we shall assume that the asymptotic condition holds in the following we should mention
here that there are serious limitations to its validity. The reason is that the simple scattering
theory picture only works if no massless particles and if no bound states exist in a theory. In
many important cases, therefore, it does not apply. A well known example is QED. Due to the
masslessness of the photon charged particles are always accompanied by a cloud of an arbitrary
number of soft photons such that, strictly speaking, a “one-electron” state is never (zero prob-
ability) produced in QED. In perturbation theory the unphysical nature of charged one-particle
states manifests itself by the occurrence of infrared (IR) singularities in the charged particle
wave-functions. This problem is called the infrared problem of QED and can be solved by a
suitable modification of the definition of charged particle states (dressed states or infra-particle
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states) and a generalization of the asymptotic condition. In QCD, which formally looks like a non-
Abelian version of QED, the situation is dramatically different. Quarks and gluons do not form
asymptotically free particle states. They are confined in hadronic bound states. Only mesons,
bound states of a quark–anti-quark pair, and (anti-) baryons, bound states of three (anti-) quarks,
appear as scattering states. In this case the relationship between the fields in the Lagrangian
(quarks and gluons) and the interpolating fields of the asymptotic states (hadrons) is complicated
and related problems presently are unsolved. In any case, where bound states are involved we
are hampered by our rather limited ability to handle the relativistic bound state problem.

Renormalization and the asymptotic condition.

So far we have not mentioned the serious problem of ultraviolet (UV) divergences which
show up due to the fact that the interaction terms are ill-defined local products of singular fields.
In mathematical terms, quantum fields are operator–valued distributions, which means that
their matrix elements are singular functions, so–called distributions, which require smearing
with suitable test–functions (wave packets). The reason for the problem of course is that we are
working, for simplicity, with plane wave fields and states rather than with well behaved wave
packets. Products of free fields already exhibit singularities

lim
x→yϕ(x)ϕ(y) = ?

in the limit of coinciding arguments. By inspecting the two point functions < 0|ϕ(x)ϕ(y) |0 > of
free fields in configuration space one finds terms like δ((x − y)2) , 1/(x − y)2 , Θ((x − y)2) and
ln((x − y)2) which are singular on the light cone and at the tip of the light cone. These light–
cone and short–distance singularities in configuration space are “represented” in momentum-
space as integrals which diverge at large momenta and therefore usually are called ultraviolet
singularities. It is relatively easy to prove that vacuum expectation values of free fields are
distributions which are regular functions if no arguments coincide. In order to obtain a well–
defined starting point, one has to use the fact that any distribution may be defined as a limit of
a sequence of ordinary functions

∆(x− y) = lim
r→0

∆r(x− y) .

One thus starts with a regularization of the theory, parameterized by some parameter r. In
the regularized version of the theory local products of fields are well-defined. The problem is that
a regularization in general violates one or several of our basic principles like unitarity, causality,
Poincaré invariance etc., in particular, symmetries may be violated and we have to make sure that
at the end, in the limit r→ 0, all the required properties are recovered. At this stage we cannot
go into these technical problems further. The essence of renormalization theory, which deals with
these questions, is that after a re-parameterization of parameters and fields (renormalization) the
regularization can be removed in a non-singular way. Renormalization has to do with imposing
appropriate boundary conditions for the field equations. This is what we are going to discuss
now. Thereby it is assumed that the theory is suitably regularized.

If the fields in the Lagrangian correspond to particles that can be detected in a scattering exper-
iment, the asymptotic condition has to be used for the physical interpretation of the field theory
model. For the moment we ignore the subtleties associated with the infrared problem of QED.
In quantum field theory parameters like the mass or the coupling constant get modified by the
interaction, as we shall see in examples later on. Therefore, if we want the parameters to have
some prescribed values we have to fine tune the corresponding parameters in the Lagrangian in
an appropriate way. This tuning is called parameter renormalization . The parameters in
the original Lagrangian are called bare parameters the numerically prescribed parameters,
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determined usually by some experiment, are called renormalized or physical parameters. Sim-
ilarly, nothing guarantees the fields in the Lagrangian to converge at large times to properly
normalized free in- and out-fields. We thus have to renormalize the bare fields in the Lagrangian
in order to obtain the proper interpolating fields. The renormalization of the fields is called field
renormalization or wave-function renormalization .

On a formal level renormalization is needed to implement the asymptotic condition as a physical
boundary condition. Let us illustrate this for the φ4-model described by the bare Lagrangian

L =
1

2
(∂φ)2 − m2

2
φ2 − λ

4!
φ4 .

The desired boundary conditions may be achieved by performing the following substitutions on
the bare Lagrangian:

1. Parameter renormalization:

m2 → m2
0 = m2 + δm2

λ → λ0 = λ + δλ

2. Wave-function renormalization:

φ(x)→ φ0(x) =
√
Z φ(x)

where the bare quantities appearing in the original Lagrangian are indexed by 0 now and the
quantities without an index are the physical ones. As an interpolating field φ(x) has to satisfy

< 0|φ(x)|p >t→−/+∞−→ e−ipx p0 =
√

~p 2 +m2

for a scalar one-particle state |p > of physical mass m. As a first step we re-parameterize the
bare Lagrangian in terms of the renormalized parameters and fields as follows:

L =
1

2
(∂φ0)2 − m2

0

2
φ2

0 −
λ0

4!
φ4

0

=
Z

2
(∂φ)2 − (m2 + δm2) Z

2
φ2 − (λ+ δλ) Z2

4!
φ4 .

In a second step we now split the Lagrangian into a free part and an interaction part where the
free part is chosen such that it describes the asymptotic free field of mass m:

L = L0 + Lint
L0 =

1

2
(∂φ)2 − m2

2
φ2

Lint = − λ
4!
φ4 + ∆L

∆L = −λ0Z
2 − λ
4!

φ4 +
Z − 1

2
(∂φ)2 − m2

0Z −m2

2
φ2

=
c

4!
φ4 +

b

2
(∂φ)2 +

a

2
φ2 (3.8)

The terms of ∆L are called counter terms and the counter term coefficients a, b and c have
to be adjusted by the physical boundary conditions. The number of counter terms is equal
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to the number of conditions we have to satisfy, namely, fixing the mass, the coupling constant
and the normalization of the field. A theory is called renormalizable if after re-normalizing
the parameters and fields of the original (bare) Lagrangian the regularization can be removed
in an unambiguous manner. While the relationship between the bare and the renormalized
parameters and fields become singular as the regularization is removed the matrix elements of
the renormalized fields expressed as functions of the renormalized parameters remain finite.

Formal solution of the field equations.

We briefly illustrate how we may obtain a solution of the field equations for the interacting theory.
In order to keep notation as simple as possible we consider the scalar self-interacting φ4-model
introduced above. First we notice that a field equation may always be written in an equivalent
way as an integral equation, the so-called Yang-Feldman equation. This is possible with the
help of the Green function determined by the point-source equation

(2 +m2) ∆0(z) = −δ(4)(z)

plus suitable boundary conditions, to be specified in a moment. The minus sign for the source
term is a pure matter of convention. Let us denote by φ0(x) a solution of the free field equation,
then the interacting field

φ̂(x) = φ0(x) + λ

∫

d4y ∆0(x− y) Ĵ{φ̂}(y)

is a solution of the full field equation. This can be verified easily by applying the Klein-Gordon
operator to φ̂(x). If λ is small enough we expect that the interaction term can be treated as a
perturbation. In this case we may try to solve the integral equation by iteration starting from

the free field solution φ̂(0) = φ0:

φ̂(n)(x) = φ0(x) + λ

∫

d4y ∆0(x− y) Ĵ{φ̂(n−1)}(y)

such that

φ̂(x) = lim
n→∞ φ̂

(n)(x) = F{φ0}(x)

where F{φ0} is a functional of the free field φ0(x). This iteration defines a perturbation
expansion and yields the solution as a formal power series in the coupling constant λ.

We call it formal since we do not expect the series to converge. We merely expect it to be an
asymptotic expansion meaning that the partial sums sN (λ) =

∑N
n=0 cnλ

n (result to finite order
in the perturbation expansion) for finite N and for sufficiently small λ give a good approximation
of the generally unknown exact answer s(λ), while the sequence sN does not converge for N →∞ .
One can expect that for a given value of λ(� 1) there exists an optimal choice for N such that
|sN (λ)− s(λ)| reaches a minimum at N = N0. N0 may be estimated in some cases. In general it
is unknown, however.

Now we have to impose the appropriate boundary condition which for scattering problems is the
asymptotic condition. We thus have to work with the interpolating field and the renormalized
parameters. The renormalized field equation reads:

(2 +m2) φ(x) =
∂Lint
∂φ(x)

− ∂µ
∂Lint
∂∂µφ(x)

= −λJ{φ}(x)

−λJ{φ}(x) = − λ
3!
φ3(x) +

c

3!
φ3(x)− b2 φ(x) + a φ(x)
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and the renormalized Yang-Feldman equation is given by

φ(x) = φin (x) + λ

∫

d4y ∆ret(x− y) J{φ}(y)

φ(x) = φout(x) + λ

∫

d4y ∆adv(x− y) J{φ}(y)

in terms of the in- and out-fields, respectively. The Green functions are determined by

(2 +m2) ∆ret,adv(z) = −δ(4)(z)

and must satisfy the boundary conditions

∆ret(z) = 0 for z0 < 0

∆adv(z) = 0 for z0 > 0 .

We easily convince ourselves that these boundary conditions guarantee that φ(x) fulfills the
asymptotic condition. The two Green functions may be represented in terms of the causal free
field commutator function ∆(z) (defined in Sec. 2.4) as

∆ret(z) = Θ(z0) ∆(z)

∆adv(z) = −Θ(−z0) ∆(z)

and have the property

∆ret(z) − ∆adv(z) = ∆(z) .

For obvious reasons ∆ret(adv) is called retarded (advanced) commutator function. Since ∆(z) = 0
for z2 < 0 the theta-function

Θ(x) =







1 for x > 0

0 for x < 0

just is a prescription to pick the forward (retarded) or the backward (advanced) light cone.
Therefore ∆ret and ∆adv are Lorentz invariant Green functions.

Taking the difference of the two Yang-Feldman equations we find

φout(x) = φin(x) + λ

∫

d4y ∆(x− y) J{φ}(y)

which proves that the in- and out-fields are related in a causal manner also for the interacting
theory. As explained before we could solve this equation by iteration as a perturbation series in
the renormalized coupling constant and would obtain as a result a functional φout = F{φin} .
Rather than going this direct way, we shall proceed in a somewhat different more elegant manner
to find F in the following.

If scattering takes place

φout 6= φin ,

however, we expect that the in-states and the out-states span the same physical Hilbert space in
which case there exists a unitary transformation, the scattering operator S which maps the
in-field into the out-field

φout(x) = S−1φin(x)S = φin(x) + S−1[φin(x), S] . (3.9)
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This formula directly compares to a Yang-Feldman equation. It is clear that the determination
of F is equivalent to the determination of S as a functional of the in-fields.

Since the S–operator must have a representation as a functional of the in-fields we may write

S = 1 +
∞∑

n=1

in

n!

∫

d4x1 · · · d4xn Cn(x1, · · · , xn)Wn(x1, · · · , xn)

where

Wn(x1, · · · , xn) = : φin(x1) · · · φin(xn) :

is a normal–ordered12 product of n in-fields. This expression is just a definition of the symmetric
coefficient functions Cn the explicit form of which is not important here. We have to calculate
the commutator [φin(x), S]. The commutator [φin(x),Wn] may be easily calculated. In the first
term we commute φin(x) n-times to the right. Each time we are commuting φin(x) with one
of the fields, φin(xj) say, from the product Wn we obtain the c-number free field commutator
i∆(x− xj) times the product Wn but with φin(xj) missing now. Thus

[φin(x),Wn] = i
n∑

j=1

∆(x− xj)
∂Wn

∂φin(xj)
.

Using this and the symmetry of the Cn’s we obtain after suitable relabeling of the summation
indices

[φin(x), S] = −
∫

d4y ∆(x− y)
∞∑

n=1

in

n!

∫

d4x1 · · · d4xn Cn+1(y, x1, · · · , xn)Wn(x1, · · · , xn) .

The sum is in fact what we get as a result of a functional differentiation 13

−i δS

δφin(y)

of the S–operator. Thus we obtain

φout(x) = φin(x) +

∫

d4y ∆(x− y) iS−1 δS

δφin(y)
.

The comparison with the Yang-Feldman equation tells us that

iS−1 δS

δφin(y)
= λJ{φ}(y)

= − ∂Lint
∂φ(y)

= − δ

δφ(y)

∫

d4x Lint(x) .

12this notion is defined and discussed in Sec. 3.4
13A functional F{J} is a quantity F which depends on a space-time function J(x). We define the functional

derivative by
δF{J}
δJ(x)

= lim
ε→0

F{J ′} − F{J}
ε

with J ′(y) = J(y) + εδ(y − x) or, equivalently,
∫

d4x f(x)
δF{J}
δJ(x)

= lim
ε→0

F{J + ε f} − F{J}
ε

for smooth test functions f(x) .
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This is a functional differential equation. We are not yet able to solve this equation because the
l.h.s is represented in terms of the in-fields while the r.h.s. is given in terms of the interpolating
fields. However, with the help of the S–operator it is not difficult to find the interpolating field
as a functional of the in-field. The interpolating field must satisfy the asymptotic conditions:

lim
t→−∞

φ(x) = φin (x) = S−1S φin(x)

lim
t→+∞

φ(x) = φout(x) = S−1φin(x) S .

Thus besides the common factor S−1 we need a function which yields

S φin(x) for t→ −∞

on the one hand and
φin(x) S for t→ +∞

on the other hand. This can be achieved be using the so called time-ordered product (T–
product), defined by

T{A(x), B(y)} .= Θ(x0 − y0)A(x) B(y)±Θ(y0 − x0)B(y) A(x) (3.10)

for the simplest case of two fields A(x) and B(y). The “–”-sign in the second term applies for
fermion-fields which must be anti-commuting. For a product of n fields this generalizes to

T{A1(x1), A2(x2), · · · , An(xn)} .= (−1)F Ai1(xi1), Ai2(xi2), · · · , Ain(xin) (3.11)

where (i1, i2, · · · , in) is the permutation of (1, 2, · · · , n) for which x0
i1
> x0

i2
> · · · > x0

in . The
sign (−1)F accounts for the Fermi statistics of fermion-fields, hence F denotes the number of
fermion-fields which have to be anti-commuted in the permutation (1, 2, · · · , n) → (i1, i2, · · · , in)
.

When a field is integrated over, the time-ordering prescription must be performed before integra-
tion, for example, let B =

∫
d4y B(y) then

T{A(x),B} .= A(x)

∫ x0

−∞
d4y B(y) +

∫ +∞

x0
d4y B(y) A(x) . (3.12)

This generalizes in an obvious way to functionals where multiple integrals are involved like the
expression for the S–operator in terms of the in-fields. Notice that under the T–prescription all
operators commute (boson-fields) or anti-commute (fermion-fields).

Using these definitions we obtain

φ(x) = S−1T{φin(x), S} (3.13)

for the interpolating field. This generalizes to

F{φ}(x) = S−1T{F{φin}(x), S}

for any regular functional F of the fields.

With the help of this important result we obtain

δS

δφin(y)
= T{ δAint

δφin(y)
, S}
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where

Aint = i

∫

d4x Lint{φin}(x)

denotes the interaction part of the action expressed in terms of the in-fields and we have skipped
the common factor iS−1. Now, using the fact that the operators commute under the T–product
we easily verify that the solution of this functional differential equation reads

S = T
(

eAint

)

⊗

= T

(

e
i
∫ +∞
−∞ d4x Lint{φin}(x)

)

⊗
=

∑∞
n=0

in

n!

∫
d4x1 · · · d4xn T{L(in)

int (x1), · · · ,L(in)
int (xn)}⊗

(3.14)

where L(in)
int (x) = Lint{φin}(x) and the prescription ⊗ indicates that the solution has to be

normalized such that

in< 0|S|0 >in= 1 ⇔ S =
Sformal

in< 0|Sformal|0 >in
(3.15)

which means to skip all vacuum-to-vacuum transition amplitudes 14. This is our key result. The
S–operator is given in terms of the in-fields and can be evaluated order-by-order in a perturbative
expansion.

Dimensional counting and renormalizability.

Let us add here a brief consideration of the dimensions (in energy units) of different quantities.
Dimensional counting will provide a simple rule (necessary condition) to check the renormaliz-
ability of a field theory. Let us denote the dimension of space-time by d. Of course we will set
d = 4 at the end.

We start from the observation that the integrated Lagrangian density

A = i

∫

ddx L(x) ,

called action and measured in units of h̄ = 1 is a dimensionless quantity. Therefore the La-
grangian must have dimension dim L(x) = d in mass units. By inspection of the individual
terms of the bilinear (free) part of the Lagrangian we find that the fields must carry a dimension.
Taking into account that a derivative has dimension 1 we find the following dimensions for the
fields:

∂µφ∂
µφ : dim φ = d−2

2

ψ̄γµ∂µψ : dim ψ = d−1
2

(∂µVν − ∂νVµ)2 : dim Vµ = d−2
2 .

Hence, in d = 4 dimensions, boson fields have dimension 1 while spin 1/2 fermion fields carry
dimension 3/2. The dimension of a vertex is given by the sum of the dimensions of the fields plus

14The functional differential equation obviously determines S up to a multiplicative c-number factor only. This
factor is fixed by the physical normalization condition S|0 >in= |0 >in which is not automatically satisfied. On
a purely formal level Sformal = T (expAint) seems to solve the functional differential equation. However, closer
inspection shows that this expression is well defined only for a system in a finite space-time box of volume V T .
One then obtains for large finite volumes in < 0|Sformal|0 >in= eifV T and the “thermodynamic limit” V T → ∞
cannot exist, because f 6= 0 for any interacting theory (Haag theorem, Haag 1955). The limit only exists after the
proper normalization has been imposed.
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the number of derivatives present at the vertex. Thus a vertex V given by a product of nB boson
fields and nF Fermi fields and which includes nD derivatives has dimension

dimV = nB
d− 2

2
+ nF

d− 1

2
+ nD .

One can show that a field theory can be renormalizable only if all vertices in the Lagrangian
have dimensions ≤ d. In d = 4 dimensions this yields the very severe restriction dimV =
nB + 3

2nF + nD ≤ 4 for the possible interaction vertices. Notice that Lorentz invariance requires
fermion fields to enter in pairs ψ̄ · · ·ψ. Since we require at least 3 fields: dimV ≥ 3. Allowed are
vertices of the type

φ4 , VµV
µVνV

ν , VµV
µ∂νV

ν , VµV
ν∂νV

µ ,

φ2∂νV
ν , φV ν∂νφ , φ3 , VµV

µφ ,

ψ̄γµψVµ , ψ̄γµγ5ψVµ , ψ̄ψφ , ψ̄γ5ψφ .

Notice that repeated fields may stand for different fields of the given type.

This dimensional counting rule provides a necessary condition for a model to be renormalizable.
If no spin 1 fields are involved it is also a sufficient condition. However, for models which involve
spin 1 bosons, like the models of strong, weak and electromagnetic interactions, the question
of renormalizability is much more involved mainly because a viable theory not only has to be
renormalizable but at the same time must be unitary. It turns out that only locally gauge
invariant vector boson models, the Abelian and non-Abelian gauge theories, are renormalizable
and unitary (see Sec. 6 and 8).

Models with vertices of the type

ψ̄γµψψ̄γµψ , ψ̄σµνψFµν or ψ̄γµγ5ψ∂µφ

can not be renormalizable. Nevertheless, models exhibiting such interaction terms often appear
as low energy effective models as we shall see later. A corresponding remark applies to models
which include fields of higher spin like spin 3/2, spin 2 etc.

3.2 Scattering processes, the S–matrix

In the last subsection we introduced the S–operator as a unitary operator which provides a
transformation between the free in-fields and free out-fields

φout(x) = S−1φin(x)S .

We obtained a formal expression Eq. (3.14) for S which allows to compute the properties of
the interacting theory in terms of free fields. Here we first consider some general properties of
scattering matrix elements.

We are mainly interested in scattering, production and decays of particles. For simplicity we shall
assume that the interaction is short-ranged (no massless particles), such that particles at times
t→ ±∞ are described by free asymptotic multiparticle states. We denote them as follows:

initial states: | α, in > in-states (t→ −∞)

final states: | β, out > out-states (t→ +∞)
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α and β are the labels of the states and include mass, spin, momentum and other quantum
numbers.

The quantum mechanical transition probability is given by

w(β, α) =|< β, out | α, in >|2 .

If scattering takes place

| α, out > 6= | α, in > .

However, we expect that the in-states and the out-states span the same physical Hilbert space

Hin ' Hout ' Hphys

i.e. we assume asymptotic completeness of the states. In this case there exists a unitary
transformation, the scattering matrix or S-matrix, which maps the in-state onto the out-states

| α, out >= S+ | α, in > .

For the vacuum state

| 0, out >= | 0, in >= | 0 > .

Similarly, for one particle states of stable particles

| α, out >= | α, in >= | α > ,

since a single particle cannot scatter. The conservation of probability requires the unitarity

SS+ = S+S = 1 ⇔ S+ = S−1 (3.16)

of the S-matrix.

Using the completeness relation
∑

β | β out >< β out |= 1 of the out-states we obtain

| α, in > = S | α, out >

=
∑

β

| β, out >< β, out | S | α, out >

=
∑

β

| β, out > Sβα

where Sβα are the S-matrix elements . Using | α, out >= S+ | α, in > and SS+ = 1 we observe
that Sβα can be evaluated either in the out-basis or in the in-basis:

Sβα = < β, out | S | α, out >

= < β, in | SSS+ | α, in >

= < β, in | S | α, in > (3.17)

In the following we briefly discuss some symmetry properties of S-matrix elements.

Symmetries of the S-matrix
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A symmetry of S is represented by unitary transformations U = ei
∑

i
ωiGi with ωi a set of real

parameters and Gi the Hermitean generators of the symmetry transformations (see Sec. 5 below).
Symmetries of the scattering matrix not only imply relation between matrix elements but also
selection rules:

Let

i) G be a generator of a symmetry transformation such that [G,S] = 0

ii) and | α > and | β > be eigenstates of G

G | α > = gα | α >
G | β > = gβ | β >

then

< β | SG | α > = gα < β | S | α >
< β | GS | α > = gβ < β | S | α >

and hence

(gα − gβ) < β | S | α > = 0 .

This tells us that Sβα can be different from zero only if | α > and | β > are eigenstates of G
with the same eigenvalue. We thus have a conservation law, gα = gβ , or a selection rule , if
gα 6= gβ then Sβα = 0, associated with a quantum number g . For absolutely conserved quantities
like charge, baryon number and the lepton numbers the selection rules are called super selection
rule.

We now list some properties of S-matrix elements which derive from the space-time symmetries.
We consider multiparticle states where each particle is characterized by its momentum p, spin j
and helicity λ.

1. Translation invariance

Translation invariance

< out p′1, j
′
1, λ
′
1, . . . | p1, j1, λ1, . . . in >

= < out p′1, j
′
1, λ
′
1, . . . | U+(1, a) U(1, a) | p1, j1, λ1, . . . in >

= eiPia−iPfa < out p′1, j
′
1, λ
′
1, . . . | p1, j1, λ1, . . . in >

implies total four-momentum conservation

< out p′1, j
′
1, λ
′
1, . . . | p1, j1, λ1, . . . in >

= δ(4)(Pf − Pi) S̃(p′1, j
′
1, λ
′
1, . . . | p1, j1, λ1, . . .) .

By Pf =
∑
p′i we denoted the total outgoing momentum by Pi =

∑
pi the total incoming

momentum.

If no interaction takes place, like for free fields, we have a trivial S-matrix S = S0 ≡ 1 and
hence | α, out >=| α, in >. Consequently

< out p′1, j
′
1, λ
′
1, . . . | p1, j1, λ1, . . . in >0= I(p′1, j

′
1, λ
′
1, . . . | p1, j1, λ1, . . .)

= (2π)3 2ωp1 δ
(3)(~p1 − ~p1

′) δj1j′1 δλ1λ′1 (2π)3 2ωp2 δ
(3)(~p2 − ~p2

′) δj2j′2 δλ2λ′2 · · ·
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It is convenient and customary to split off the identity from the S–matrix and to define the
T–matrix by

S = 1 + i (2π)4 δ(4)(Pf − Pi) T . (3.18)

For the matrix elements this reads

S
(

p′1, j
′
1, λ
′
1, . . . | p1, j1, λ1, . . .

)

= I(p′1, j
′
1, λ
′
1, . . . | p1, j1, λ1, . . .)

+i (2π)4δ(4)(Pf − Pi) T
(
p′1, j

′
1, λ
′
1, . . . | p1, j1, λ1, . . .

)

2. Lorentz invariance

Lorentz invariance implies

∑

λ′1,...,λ1,...

| T (p′1, j′1, λ′1, . . . | p1, j1, λ1, . . .
) |2=

∑

λ′1,...,λ1,...

| T (Λp′1, j′1, λ′1, . . . | Λp1, j1, λ1, . . .
) |2

Summation over the helicities (or 3rd components of spin) is necessary here because these
are coordinate dependent state labels.

3. Parity invariance (in case parity is a symmetry)

| T (p′1, j′1, λ′1, . . . | p1, j1, λ1, . . .
) |2=| T (P p′1, j

′
1,−λ′1, . . . | P p1, j1,−λ1, . . .

) |2

with P p = (p0,−~p ).

4. Time reversal invariance (in case CP is a symmetry)

| T (p′1, j′1, λ′1, . . . | p1, j1, λ1, . . .
) |2=| T (T p′1, j′1, λ′1, . . . | T p1, j1, λ1, . . .

) |2

with T p = (p0,−~p ).

Unitarity and the T–matrix

Let us denote the in-state by |i > (initial state) and the out-state by |f > (final state) and
correspondingly by Sfi =< f |S|i > the S–matrix elements and by Tfi =< f |T |i > the T–matrix
elements. Consider the unitarity relation of S

< f |S+S|i >=< f |I|i >= δfi

and insert a complete set of intermediate states. We obtain

∑

n

< f |S+|n >< n|S|i >=
∑

n

< n|S|f >∗< n|S|i >= δfi .

Inserting the definition of the T–matrix this yields

0 =
∑

n { i (2π)4 δ(4)(Pn − Pi) < n|I|f >∗< n|T |i >
−i (2π)4 δ(4)(Pf − Pn) < n|T |f >∗< n|I|i >

+(2π)8 δ(4)(Pf − Pn) δ(4)(Pn − Pi) < n|T |f >∗< n|T |i >}
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or

i
{

T ∗if − Tfi
}

=
∑

n(2π)4 δ(4)(Pn − Pi) T ∗nfTni (3.19)

where Pf = Pi. In more explicit form this reads

i {T ∗ (p1, j1, λ1, . . . | p′1, j′1, λ′1, . . .)− T (p′1, j
′
1, λ
′
1, . . . | p1, j1, λ1, . . .)}

=
∑

λ′′1 ...

∫
dµ(p′′1) . . . (2π)4 δ(4)(

∑

i p
′′
i −

∑

i pi)

T ∗ (p′′1 , j
′′
1 , λ
′′
1 , . . . | p′1, j′1, λ′1, . . .) · T (p′′1, j

′′
1 , λ

′′
1 , . . . | p1, j1, λ1, . . .)

and for elastic forward scattering where p′1 = p1, j
′
1 = j1, λ

′
1 = λ1, . . . we obtain the optical

theorem

2 Im T (p1, j1, λ1, . . . | p1, j1, λ1, . . .)

=
∑

λ′′1 ...
∫
dµ(p′′1) . . . (2π)4 δ(4)(

∑

i p
′′
i −

∑

i pi) | T (p′′1, j
′′
1 , λ

′′
1 , . . . | p1, j1, λ1, . . .) |2

which tells us that the imaginary part of the forward scattering amplitude is related to the total
probability for transitions i → n “summed” over all possible states n. Physical applications of
the optical theorem we will encounter later on.

Let us now discuss, as a next step, how to calculate scattering matrix elements.

Calculating S–and T–matrix elements

In principle we are able to calculate S- and T–matrix elements once a theory is specified by a
given Lagrangian. The S–matrix elements are obtained using

< out p′1, j
′
1, λ
′
1, . . . | p1, j1, λ1, . . . in >

= < in p′1, j
′
1, λ
′
1, . . . | S | p1, j1, λ1, . . . in >

where the S–operator is represented in terms of the free in–fields (see Eq. (3.14))

S = T (ei
∫
d4x Lint{ϕin}(x))⊗

by expanding the exponential into a formal power series. Since both the states and the fields
(appearing in Lint) are associated with the same free in–states, and hence may be represented in
terms of free creation and annihilation operators, we are able to actually calculate the S–matrix
elements

< out p′1, j
′
1, λ
′
1, . . . | p1, j1, λ1, . . . in >=

∑∞
n=0

in

n!

∫
d4x1 · · · d4xn

in< 0|a+
in(p′1, j

′
1, λ
′
1) . . . T{L(in)

int (x1), · · · ,L(in)
int (xn)} ain(p1, j1, λ1) . . . |0 >in⊗

to any order n of the perturbation expansion. Besides the integrations the problem is reduced to
the problem of calculating vacuum expectation values of products of free creation and annihila-
tion operators which can be evaluated by just using the canonical (anti-) commutation relations
together with the vacuum annihilation property of the annihilation operators.

Thus, once we know the particles and the interaction Lagrangian we can evaluate S matrix
elements in a straight forward way. It is useful, however, to develop some simple rules, known as
Feynman rules, which allow for an efficient calculation of perturbation series. The reader who
is not interested in a detailed derivation of the Feynman rules may skip reading the next two
chapters which are somewhat technical.
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Efficient techniques are important in perturbation theory, since, even in simple applications,
one easily encounters a large number of terms. Feynman rules will be given later when we will
discuss specific models of interactions. Before we are doing so we discuss some useful tools in the
following: The calculation of vacuum expectation values of free fields (Wick’s theorem), which is
the configuration space version of the vacuum expectation values of products of free creation and
annihilation operators, and the relationship between vacuum expectation values of fields (Green
functions) and S–matrix elements (LSZ–formulas), which we consider first in the next subsection.

3.3 The LSZ Reduction Formulas

The purpose of this chapter is to show that each external particle which takes part in a scattering
process contributes a one–particle wave function as a factor to the scattering amplitude. This is
summarized in Tab. 3.1.

The dynamics of an interacting system is characterized by particle fields and their field equations
which derive from a Lagrangian by the principle of stationary action. How can we calculate S
matrix elements in terms of these fields? A conceptually clear answer to this question was given
by Lehmann, Symanzik and Zimmermann (LSZ) in 1957. We will discuss it in following. We
start with a short digression on wave packets:

As usual we will work with plane waves in the following discussion. Several points could be made more
precise if we would work with wave packets instead of plane waves. All arguments of our derivation
remain valid if we replace exp(−ipx) and exp(ipx) by normalized positive and negative frequency solutions,
respectively, of the Klein-Gordon equation. Let us consider a complete set, labeled by α, of positive
frequency solutions

(
2 +m2

)
fα(x) = 0

orthonormalized by

i

∫

d3xf∗
α′(x)

↔

∂ 0 fα(x) = δα′α .

As a positive frequency solution of the Klein-Gordon equation we may write fα(x) as a Fourier transform
of a function with support on the positive mass hyperboloid

fα(x) =

∫
d4p

(2π)4
2πΘ(p0)δ(p2 −m2)f̃α(p) e−ipx

whence
∫

dµ(p)f̃∗
α′(p)f̃α(p) = δα′α .

Smeared states are defined by

| fα >=

∫

dµ(p)f̃α(p) | ~p >

and one may introduce creation and annihilation operators by

| fα >= a+
α | 0 > , aα =

(
a+
α

)+

which satisfy

[aα′ , a+
α ] = δα′α

and the field is represented by

ϕ(x) =
∑

α

{
aαfα(x) + a+

αf
∗
α(x)

}
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and

aα = i

∫

d3x f∗
α(x)

↔

∂ 0 ϕ(x) .

The wave packet solutions we may think of as being smooth functions extending far enough in space to
approximate very closely to plane waves but are fastly decreasing at spatial infinity such that surface terms
obviously vanish. In momentum space f̃α(p) may be taken as a smooth function concentrated around p
with some finite spread.

Before we are going to consider scattering matrix elements we present a few concepts which will
be needed:

3.3.1 Creation and annihilation operators in terms of fields

We are familiar with the representation of the free fields in terms of annihilation and creation
operators which destroy or create free particle states as they appear in scattering states. What
we need is the inverse relationship, the creation and annihilation operators in terms of the fields.
These can be found easily by inverting the known formulas. In the following free field formulas
one has to identify p0 = ωp =

√

~p 2 +m2 where m is the particle mass.

• Charged scalar field

ϕ(x) =

∫

dµ(p)
{

a(~p ) e−ipx + b+(~p ) eipx
}

a(~p ) = i

∫

d3x eipx
↔
∂ 0 ϕ(x) , b+(~p ) = −i

∫

d3x e−ipx
↔
∂ 0 ϕ(x)

• Dirac field

ψα(x) =
∑

r=±1/2

∫

dµ(p)
{

uα(~p, r) a(~p, r) e−ipx + vα(~p, r) b+(~p, r) eipx
}

a(~p, r) =

∫

d3x eipxū(~p, r)γ0ψ(x) , b+(~p, r) =

∫

d3x e−ipxv̄(~p, r)γ0ψ(x)

• Charged vector field

V µ(x) =
∑

r=±1,0

∫

dµ(p)
{

εµ(~p, r) a(~p, r) e−ipx + εµ∗(~p, r) b+(~p, r) eipx
}

a(~p, r) = −i
∫

d3x eipx
↔
∂ 0 Vµ(x) εµ∗(~p, r) , b+(~p, r) = i

∫

d3x e−ipx
↔
∂ 0 Vµ(x) εµ(~p, r)

For neutral particles one has to identify b = a, and neutral Bose fields are real.
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3.3.2 The asymptotic condition

For free fields, by construction, the spatial integrals which represent the creation and annihilation
operators are time independent. We now consider these operators to be in- or out-operators
which create incoming or outgoing free scattering states, respectively. We then can use the
asymptotic condition

φin/out(x
0, ~x ) = lim

x0→−∞/+∞
φ(x0, ~x ) ,

where φ = ϕ, ψ, Vµ, to express these operators as limits in terms of the interpolating (interacting)
fields as follows:

ain(~p ) = i

∫

d3x eipx
↔
∂ 0 ϕin(x)

= i lim
x0→−∞

∫

d3x eipx
↔
∂ 0 ϕ(x)

for the in-operators,

aout(~p ) = i

∫

d3x eipx
↔
∂ 0 ϕout(x)

= i lim
x0→+∞

∫

d3x eipx
↔
∂ 0 ϕ(x)

for the out-operators, and analogous expressions for the other operators and fields.

3.3.3 Partial integration

The in- and out- operators are interrelated by a partial integration. Using
∫

d3x

∫ +∞

−∞
dx0 ∂

∂x0
F (x0, ~x ) = lim

x0→+∞

∫

d3xF (x0, ~x )− lim
x0→−∞

∫

d3xF (x0, ~x )

and the representations of the in- and out- operators in terms of the interpolating fields it is easy
to find the explicit form of these interrelations as follows:

• Scalar fields

For the scalar field we have

F (x) = eipx
↔
∂ 0 ϕ(x)

and

∂0F (x0, ~x ) = eipx∂2
0ϕ(x) − ∂2

0

(

eipx
)

ϕ(x) .

Since eipx satisfies the Klein-Gordon equation we have

∂2
0e
ipx = (~∂ 2 −m2) eipx .

By two partial integrations, in which the surface terms can be dropped, we can bring ~∂ 2 to
operate on ϕ(x) and obtain

∫

d4x ∂0F (x) =

∫

d4x eipx
(

2 +m2
)

ϕ(x) .
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The relations we are looking for therefore read

aout(~p ) = ain(~p ) + i

∫

d4x eipx
(

2 +m2
)

ϕ(x)

b+in(~p ) = b+
out(~p ) + i

∫

d4x e−ipx
(

2 +m2
)

ϕ(x) .

This is a very interesting relationship since it directly relates the evolution of in- into out- states
to the interaction of the fields, given by the source term of the field equations. For example, we
have

(

2 +m2
)

ϕ(x) =







0 free field

−λJ{ϕ}(x) λϕ4 -theory .

In fact the above relation is not new, it is just the momentum space version of the Yang-Feldman
equation in the form

ϕout(x) = ϕin(x) + λ

∫

d4y ∆(x− y) J{ϕ}(y)

which we discussed in Sec. 3.1 for the λϕ4-theory.

• Dirac fields

For the Dirac field we have

F (x) = eipxū(~p, r)γ0ψ(x)

and

∂0F (x0, ~x ) = eipxū(~p, r)γ0∂0ψ(x) + ∂0

(

eipx
)

ū(~p, r)γ0ψ(x)

Taking the derivative of the exponential and using the Dirac equation p/u = mu for the spinor

∂µ
(

eipx
)

ū(~p, r)γµ = ieipxū(~p, r)p/ = ieipxū(~p, r)m

we obtain

∂0

(

eipx
)

ū(~p, r)γ0ψ(x) = −~∂
(

eipx
)

ū(~p, r)~γψ(x) + ieipxū(~p, r)mψ(x)

p.i.
= −ieipxū(~p, r)

(

i~γ~∂ −m
)

ψ(x) .

In the last line we have performed a partial integration (dropping surface terms as usual) already
as the relation needs holds under the integral only. We then arrive at

∫

d4x ∂0F (x) = −i
∫

d4x eipxū(~p, r) (iγµ∂µ −m)ψ(x)

and thus

aout(~p, r) = ain(~p, r)− i
∫

d4x eipxū(~p, r) (iγµ∂µ −m)ψ(x)

b+in(~p, r) = b+
out(~p, r) + i

∫

d4x e−ipxv̄(~p, r) (iγµ∂µ −m)ψ(x) .

Again we find that particle creation and annihilation is in direct correspondence to the source
of the field, the interaction term of the field equation , for example,

(iγµ∂µ −m)ψ(x) =







0 free field

−eAµγµψ(x) in QED .
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• Vector fields

For the vector fields we may directly use the scalar formulas if we identify ϕ(x) = −Vµ(x)εµ(∗)(~p, r).
Thus

aout(~p, r) = ain(~p, r)− i
∫

d4x eipx
(

2 +m2
)

Vµ(x) εµ∗(~p, r)

b+in(~p, r) = b+
out(~p, r)− i

∫

d4x e−ipx
(

2 +m2
)

Vµ(x) εµ(~p, r)

with source terms, for example, (Vµ = Aµ real and mA = 0)

2Aµ(x) =







(1− ξ−1) ∂µ∂νA
ν(x) free photon field

−ejµ em(x) + (1− ξ−1) ∂µ∂νA
ν(x) in QED

A crucial point here is that the gauge dependent term drops out in the “reduction formula”. In
fact, a partial integration of ∂µ for the term proportional to (1− ξ−1) yields

∫

d4x e±ipx∂µ∂νA
ν(x) εµ(~p, r) = −

∫

d4x ∂µ
(

e±ipx
)

∂νA
ν(x) εµ(~p, r)

= ∓i
∫

d4x e±ipx∂νA
ν(x) pµε

µ(~p, r)

= 0 ,

since the polarization vectors satisfy pµε
µ(~p, r) = 0. Thus for physical states, as described by the

creation and annihilation operators, gauge dependent terms drop out i.e. they couple to physical
sources. For QED this directly proves the physical form of Maxwell’s equation to be valid when
acting on the physical state space.

Taking advantage of the fact that the derivative term does not contribute one customarily writes
the reduction formula for the photon like

aout(~p, r) = ain(~p, r)− i
∫

d4x eipx
(

2gµν − (1− ξ−1) ∂µ∂ν
)

Aν(x) εµ∗(~p, r)

b+in(~p, r) = b+
out(~p, r)− i

∫

d4x e−ipx
(

2gµν − (1− ξ−1) ∂µ∂ν
)

Aν(x) εµ(~p, r)

such that with

(

2gµν − (1− ξ−1) ∂µ∂ν
)

Aν(x) =







0 free field

−ejµ em(x) in QED

the relationship between the physical in and out operators takes a more physical appearance. As
a rule one always may take the inverse free propagator, as given by the kernel of the bilinear part
of the Lagrangian, to act on the interpolating field.

→
φ(x) −λφ3(x)

Fig. 3.1: Relationship between field φ(x) and state
(source (•): (2 +m2)φ(x) = −λφ3(x))
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3.3.4 Reduction of states

In order to keep notation simple let us consider scattering with an in-state |i > and an out-state
|f > each containing a neutral spin zero particle of mass m, besides some other particles labeled
by α and β, respectively:

|i > = |p, α in > = a+
in(p) |α in >

|f > = |q, β out > = a+
out(q) |β out > .

The S–matrix element is given by

S(q, β|p, α) =< out β, q | p, α in >=< out β, q | a+
in(p) | α in >

= < out β, q | a+
out(p) | α in > +i

∫

d4x e−ipx
(

2x +m2
)

< out β, q | ϕ(x) | α in >

We say that we have “reduced” or “contracted” a particle from the in-state. The first term
is a matrix element of the unit operator, unity for forward scattering and zero otherwise: For
example, if |f > contains only one spin zero boson of mass m:

< out β, q | a+
out(p) | α in >=< out β | aout(q) a+

out(p) | α in >= 2ωp (2π)3δ(3)(~q − ~p ) < out β | α in >

It thus corresponds to a freely moving, unscattered particle and therefore is uninteresting as it
does not contribute to the T–matrix proportional to S − 1.

p q
p q

α β α β

= + second term

Fig. 3.2: Disconnected contribution from an unscattered particle

The second term is the contribution to the T–matrix element. If we denote the source of the field
ϕ(x) by j(x)

j(x) =
(

2x +m2
)

ϕ(x)

and use translation invariance to write

< out β, q | j(x) | α in >= e−i(pα−pβ−q)x < out β, q | j(0) | α in >

we find

i

∫

d4x e−ipx
(

2x +m2
)

< out β, q | ϕ(x) | α in >

= i

∫

d4x e−ipxe−i(pα−pβ−q)x < out β, q | j(0) | α in >

= i(2π)4δ(4)(pβ + q − pα − p) < out β, q | j(0) | α in >

Thus the result of the reduction is

S(q, β|p, α) = I(q, β|p, α) + i(2π)4δ(4)(pf − pi) < out β, q | j(0) | α in >
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which tells us that the T–matrix element is the matrix element of the source of the interpolating
field of the particle we have reduced:

T (q, β|p, α) =< out β, q | j(0) | α in > .

We only deal with this second term of the reduction in the following.

We proceed by reducing an outgoing particle from the remaining matrix element:

< out β, q | ϕ(x) | α in > = < out β | aout(q) ϕ(x) | α in >

= i limy0→+∞
∫
d3y eiqy

↔
∂ y0 < out β | ϕ(y) ϕ(x) | α in >

At this stage we have to be ingenious and notice that the product ϕ(y) ϕ(x) can be rewritten as
a “product” T̃ {ϕ(y) ϕ(x)} which satisfies the boundary condition

lim
y0→+∞

T̃ {ϕ(y) ϕ(x)} = lim
y0→+∞

ϕ(y) ϕ(x) = ϕout(y) ϕ(x)

We again perform a partial integration

i lim
y0→+∞

∫

d3y eiqy
↔
∂ y0 < out β | T̃ {ϕ(y) ϕ(x)} | α in >

= i lim
y0→−∞

∫

d3y eiqy
↔
∂ y0 < out β | T̃ {ϕ(y) ϕ(x)} | α in >

+ i

∫

d4y ∂y0

(

eiqy
↔
∂ y0 < out β | T̃ {ϕ(y) ϕ(x)} | α in >

)

= i

∫

d3y eiqy
↔
∂ y0 < out β | T̃ {ϕin(y) ϕ(x)} | α in >

+ i

∫

d4y eiqy
(

2y +m2
)

< out β | T̃ {ϕ(y) ϕ(x)} | α in >

The prescription T̃ has to have the property that the first term can be evaluated. This requires
ϕin(y) to appear not to the left of ϕ(x). And it must be Lorentz invariant. Since the operation
of ϕin(y) on | α in > is known it is natural to require as a second boundary condition

lim
y0→−∞

T̃ {ϕ(y) ϕ(x)} = lim
y0→−∞

ϕ(x) ϕ(y) = ϕ(x) ϕin(y)

The only L-invariant solution satisfying both boundary conditions is the time ordered product

T̃ {ϕ(y) ϕ(x)} = T {ϕ(y) ϕ(x)} = Θ(y0 − x0) ϕ(y) ϕ(x) + Θ(x0 − y0) ϕ(x) ϕ(y)

= ϕ(y) ϕ(x)−Θ(x0 − y0) [ϕ(y), ϕ(x)]

Notice that the T–product differs from the ordinary product by the retarded commutator. Since
locality requires [ϕ(y), ϕ(x)] = 0 for (y−x)2 < 0 multiplication with the Θ-function Θ(x0−y0) is
not in conflict with L-invariance since it just cuts the forward cone. The only problem can show
up for y = x i.e. at the tip of the light cone and is dealt with in renormalization theory.

As a result of the reduction of a second particle from the out-state we find

< out β, q | ϕ(x) | α in > = < out β | aout(q) ϕ(x) | α in >

=< out β | ϕ(x) ain(q) | α in > +i
∫
d4y eiqy

(

2y +m2
)

< out β | T {ϕ(y) ϕ(x)} | α in >

Again the first term is uninteresting. It vanishes if |α in > does not contain a spin zero boson
of mass m and momentum p′ = q, otherwise the term corresponds to matrix element of the unit
operator. The T–matrix element is given by

(S − I) (q, β|p, α) = i2
∫

d4y d4x eiqye−ipx
(

2y +m2
) (

2x +m2
)

< out β | T {ϕ(y) ϕ(x)} | α in >
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In this way we can reduce all particles from the states. The rule for obtaining the T–matrix
element is very simple:

• Write the states defining the S–matrix element in terms of a product of the appropriate
free in- and out-creation operators acting onto the vacuum state.

• Replace the creation operators from the in-state and the annihilation operators from the
out-state by their interpolating fields (source terms).

• As a result the T–matrix element is represented in terms of the connected part of the vacuum
expectation value of the time ordered product of the interpolating Heisenberg fields.

For scattering of neutral spin zero particles of mass m, with n particles incoming and m particles
outgoing, this reads

(S − I) (q1, · · · , qm|p1, · · · , pn) = in+m
∫
d4y1 · · · d4ym d4x1 · · · d4xn

eiq1y1 · · · eiqmyme−ip1x1 · · · e−ipnxn (2y1 +m2
) · · · (2ym +m2

) (
2x1 +m2

) · · · (2xn +m2
)

< 0 | T {ϕ(y1) · · ·ϕ(ym) ϕ(x1) · · ·ϕ(xn)} | 0 >conn .

As indicated we are interested only in the connected part given by diagrams which do not factorize
into two or more independent parts corresponding to independent subprocesses. Note that in
momentum space the Klein-Gordon operators are the inverse free propagators which cancel the
external one-particle propagators of the time-ordered amplitude. The main result is that in
momentum space the S–matrix elements are the residues of the one-particle poles of
the time-ordered Green functions.

This generalizes to charged and higher spin particles in an obvious way. For non integer spin the
T–product must be defined in accordance with the anti-commutativity of the Fermi fields:

T {ψ(y) ψ(x)} = Θ(y0 − x0) ψ(y) ψ(x) −Θ(x0 − y0) ψ(x) ψ(y)

= ψ(y) ψ(x)−Θ(x0 − y0) {ψ(y), ψ(x)}

The vacuum expectation value of the time ordered products of fields are called time ordered
Green functions or simply τ -functions:

τ(x1, x2, · · ·) ≡< 0 | T {φ(x1) φ(x2) · · ·} | 0 >

Fields in a time ordered product commute (bosons) or anti-commute (fermions).

Usually it is more convenient to work directly in momentum space. We use the convention

φ(x) = (2π)−4
∫

d4q e−iqxφ̃(q) ≡
∫

qi

e−iqxφ̃(q) (3.20)

for the Fourier transformation of the fields.

We summarize the reduction rules as follows: p is the on–shell particle momentum p2 = m2 and
q is an off–shell momentum which at the end will be taken in the on–shell limit q2 → p2 = m2
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Spin 0 bosons:

Incoming particle i
∫
d4x ϕ+(x)

(←
2 +m2

)

e−ipx −i (q2 −m2) ϕ̃+(q)

Incoming antiparticle i
∫
d4x e−ipx

(→
2 +m2

)

ϕ(x) −i (q2 −m2) ϕ̃(−q)

Outgoing particle i
∫
d4x eipx

(→
2 +m2

)

ϕ(x) −i (q2 −m2) ϕ̃(q)

Outgoing antiparticle i
∫
d4x ϕ+(x)

(←
2 +m2

)

eipx −i (q2 −m2) ϕ̃+(−q)

Spin 1/2 fermions:

Incoming particle i
∫
d4x ψ̄(x)

(

iγµ
←
∂ µ +m

)

u(p, r)e−ipx −i ˜̄ψ(q) (q/−m) u(p, r)

Incoming antiparticle i
∫
d4x e−ipxv̄(p, r)

(

iγµ
→
∂ µ −m

)

ψ(x) −iv̄(p, r) (q/+m) ψ̃(−q)

Outgoing particle −i ∫ d4x eipxū(p, r)
(

iγµ
→
∂ µ −m

)

ψ(x) −iū(p, r) (q/−m) ψ̃(q)

Outgoing antiparticle −i ∫ d4x ψ̄(x)
(

iγµ
←
∂ µ +m

)

v(p, r)eipx −i ˜̄ψ(−q) (q/+m) v(p, r)

Spin 1 bosons:

Incoming particle −i ∫ d4x V +
µ (x)

(←
2 +m2

)

εµ(p, r)e−ipx iṼ +
µ (q) (q2 −m2) εµ(p, r)

Incoming antiparticle −i ∫ d4x e−ipxεµ(p, r)
(→
2 +m2

)

Vµ(x) iεµ(p, r) (q2 −m2) Ṽµ(−q)

Outgoing particle −i ∫ d4x eipxεµ∗(p, r)
(→
2 +m2

)

Vµ(x) iεµ∗(p, r) (q2 −m2) Ṽµ(q)

Outgoing antiparticle −i ∫ d4x V +
µ (x)

(←
2 +m2

)

εµ∗(p, r)eipx iṼ +
µ (−q) (q2 −m2) εµ∗(p, r)

The external field φ̃(q) appearing in the vacuum expectation value of the time ordered product
only gives a contribution if it contracts with a field of the same kind from a vertex. This yields an
external propagator for that field times an amputated amplitude with the external propagator
omitted. Graphically:

lim
q2→m2

−i (q2 −m2) →

Fig. 3.3:: Amputation for a scalar field

The external propagators of the time ordered Green functions multiply to unity with the inverse
propagators obtained by the reduction of states. Hence the T–matrix elements are given by
the on–shell limits of the amputated τ -functions multiplied with the classical wave functions
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listed in Tab. 3.1 describing the state. For one particle states which can emit massless quanta
(bremsstrahlung like process) the on–shell limit does not exist, which tells us that the notion of
a free one particle state in this case is not physical because the state is always dressed by an
arbitrary number of soft massless quanta. This is a well known problem, the infrared problem,
in QED, where an electron is always dressed by soft photons. The problem can be solved by a
physically more realistic definition of these states. Here we assume all particles to be massive in
which case, after cancelation of the propagator poles, one can prove that the on–shell limits exist
to all orders in perturbation theory (Steinmann 1971).

Table 3.1: Rules for the treatment of external legs in the evaluation of T–matrix elements.

scattering state graphical representation wave function

Scalar particles:

incoming particle 1

incoming antiparticle 1

outgoing particle 1

outgoing antiparticle 1

Dirac particles:

incoming particle u(p, r)

incoming antiparticle v̄(p, r)

outgoing particle ū(p, r)

outgoing antiparticle v(p, r)

Vector particles:

incoming particle εµ(p, r)

incoming antiparticle εµ(p, r)

outgoing particle εµ∗(p, r)

outgoing antiparticle εµ∗(p, r)
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3.4 Perturbation theory.

3.4.1 The Gell-Mann–Low formula.

In the last chapter the calculation of S–matrix elements was related to the calculation of the
time–ordered Green functions. For interacting fields the time–ordered Green functions are given
by

< 0|T{ϕ(x1) . . . ϕ(xN )}|0 >
= in< 0|T{ϕin(x1) . . . ϕin(xN ) S}|0 >in⊗

which is the Gell-Mann–Low formula (Gell-Mann and Low 1954).

A formal proof of the Gell-Mann–Low formula may proceeds as follows: We first remind the reader of
the definition of time ordering for a functional. For an exponential functional exp {i

∫∞

−∞
d4x′ F (x′)} by

definition

T

(

e
i
∫

∞

−∞
d4x′ F (x′)

)

=

∞∑

n=0

in

n!

∫

d4x1 · · · d4xn T (F (x1), · · · , F (xn))

such that for any function f(x) we have

T{f(x) T (e
i
∫

∞

−∞
d4x′ F (x′)

)} = T{f(x) e
i
∫

∞

−∞
d4x′ F (x′)}

= T (e
i
∫

∞

x0
d4x′ F (x′)

)f(x0, ~x ) T (e
i
∫

x0

−∞
d4x′ F (x′)

) .

Now we use the representation of the interpolating fields in terms of free in–fields which we derived in
Sec. 3.1

ϕ(x) = S−1T{ϕin(x) S} = T (e
i
∫

x0

−∞
d4x L

(in)
int )−1ϕin(x) T (e

i
∫

x0

−∞
d4x′ L

(in)
int

(x′)
)

where we have used

S = T (e
i
∫ +∞

−∞
d4x′ L

(in)
int

(x′)
) = T (e

i
∫

+∞

x0
d4x′ L

(in)
int

(x′)
)T (e

i
∫

x0

−∞
d4x′ L

(in)
int

(x′)
)

and assume S to be normalized properly (see Eq. (3.15)) such that

|0 >= |0 >in= |0 >out= S+|0 >in .

For the time ordered Green functions we then obtain

< 0|T{ϕ(x1) . . . ϕ(xN )}|0 >=
∑

i Θi < 0|ϕ(xi1) . . . ϕ(xiN )|0 >
=

∑

i Θi in< 0|S−1T{ϕin(xi1 )S} . . . T{ϕin(xiN )S}|0 >in⊗

=
∑

i Θi in< 0|T{ϕ(xi1)S} . . . T{ϕ(xiN )S}|0 >in⊗

=
∑

i Θi in< 0|U(∞, x0
i1

)ϕin(xi1 )U(x0
i1
, x0
i2

)ϕin(xi2 )U(x0
i2
, x0
i3

)ϕin(xi3 ) . . . ϕin(xiN )U(x0
iN
,−∞)|0 >in⊗

= in< 0|T{ϕin(x1) . . . ϕin(xN ) S}|0 >in⊗

where

U(a, b) ≡ T
(

e
i
∫

x′0=a

x′0=b
d4x′ L

(in)
int

(x′)
)

.

The sum extends over all permutations i : (1, 2, . . . , N) → (i1, i2, . . . , iN) and Θi is a shorthand for the
time–ordering product of Θ–functions for a given permutation i .
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Thus, in perturbation theory we have

< 0|T{ϕ(x1) . . . ϕ(xN )}|0 >=
∑∞
n=0

in

n!

∫
d4y1 · · · d4yn

in< 0|T{ϕin(x1) . . . ϕin(xN ) L(in)
int (y1), · · · ,L(in)

int (yn)}|0 >in⊗

(3.21)

which compares to the S–matrix element Eq. (3.20). The two expressions are related by the LSZ
reduction formulas.

Eq. (3.21) is the analog of the expression for the S–matrix element with the replacement of the
creation and annihilation operators by fields subjected to the time ordering prescription. One
thus has to calculate vacuum expectation values of free fields. This we consider in the following
paragraph.

3.4.2 Normal-ordering, Wick’s theorem.

For notational convenience, in this paragraph, we use the convention that all states and fields
describe free particles. In the perturbation expansion we usually have to evaluate products of
monomials of free fields. We consider free fields ϕ = φ, ψ, V, . . . which have vanishing vacuum
expectation values

< 0|ϕ(x)|0 >= 0 . (3.22)

The vacuum expectation values of products of fields

< 0|
∏

i

ϕi(xi)|0 >

are called Wightman functions, those of time-ordered products

< 0|T{
∏

i

ϕi(xi) }|0 >

time-ordered Green functions or τ–functions. In order to evaluate vacuum-expectation
values of field products we have to represent the fields in terms of the creation and annihilation
operators and, using the canonical (anti-) commutation relations, to (anti-) commute all annihi-
lation operators to the right of the creation operators until we can use the vacuum annihilation
property

a(~p )|0 >= 0 or < 0|a+(~p ) = 0

(Dyson 1949). This procedure gives raise to the definition of normal–ordered products of fields.
In configuration space we may split a field

ϕ(x) = ϕ(+)(x) + ϕ(−)(x)

into a positive frequency part ϕ(+)(x) , which contains the annihilation operator, and a
negative frequency part ϕ(−)(x) , which contains the creation operator. In products the
annihilation parts ϕ(+)(x) and the creation parts ϕ(−)(x) each (anti-) commute among themselves
as a immediate consequence of the canonical (anti-) commutation relations.

Definition: A normal–product : ϕ1(x1) · · ·ϕn(xn) : is defined by the prescription: Write all
fields as a sum of the annihilation part and the creation part and write all annihilation parts to
the right of the creation parts. For fermion-fields a factor (−1) has to be taken into account for
each interchange of two fields. The field arguments may partially or all coincide. By definition all
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boson-fields are commuting and all fermion fields are anti-commuting under the : · · · :-prescription
and the normal products have vanishing vacuum expectation values

< 0| :
∏

i

ϕi(xi) : |0 >= 0 . (3.23)

The formal definition of a normal–product is

: ϕ1(x1) · · ·ϕn(xn) : =
n∑

m=0

∑

i

(−1)Fiϕ
(−)
i1

(xi1) · · ·ϕ(−)
im

(xim)ϕ
(+)
im+1

(xim+1) · · ·ϕ(+)
in

(xin)

where
∑

i extends over all possibilities to chose an ordered subset of m elements (i1, · · · , im) out of
the ordered set (1, · · · , n). (im+1, · · · , in) is the ordered complement of (i1, · · · , im) in (1, · · · , n).
Furthermore, for Fermi fields, we have a sign factor (−1)Fi where Fi = 0(1) if (i1, · · · , im) exhibits
an even(odd) permutation of the Fermi fields relative to the set (1, · · · , n). The number of terms
is given by the binomial coefficients

(n
m

)
defined by

(x+ y)n =
n∑

m=0




n

m



xmyn−m ;




n

m



 =
n!

m!(n−m)!
.

Correspondingly one finds for coinciding Bose fields

: φn(x) : =
n∑

m=0




n

m





(

φ(−)(x)
)m (

φ(+)(x)
)n−m

.

The normal products represent a basis of field-products and any ordinary product as well as
time-ordered products of fields may be represented as a linear combination of normal products.

Consider a pair of fields. The ordinary product

ϕ(x)ϕ(y) = ϕ(−)(x)ϕ(−)(y) + ϕ(−)(x)ϕ(+)(y) + ϕ(+)(x)ϕ(−)(y) + ϕ(+)(x)ϕ(+)(y)

differs from the corresponding normal–product

: ϕ(x)ϕ(y) : = ϕ(−)(x)ϕ(−)(y) + ϕ(−)(x)ϕ(+)(y)± ϕ(−)(y)ϕ(+)(x) + ϕ(+)(x)ϕ(+)(y)

by a free field (anti-) commutator

ϕ(x)ϕ(y) =: ϕ(x)ϕ(y) : + [ϕ(+)(x), ϕ(−)(y) ]∓ (3.24)

and since < 0| : ϕ(x)ϕ(y) : |0 >= 0 we have

[ϕ(+)(x), ϕ(−)(y) ]∓ =< 0|ϕ(x)ϕ(y) |0 > . (3.25)

We say that ϕ(x)ϕ(y) and : ϕ(x)ϕ(y) : differ by a contraction which is represented by a
two-point function < 0|ϕ(x)ϕ(y) |0 >. For a scalar field we find

[φ(+)(x), φ(−)(y) ] = < 0|φ(x)φ(y) |0 >
=

∫

dµ(p) e−ipx
∫

dµ(q) eiqy [a(~p ), a+(~q )]

=

∫

dµ(p) e−ipx
∫

dµ(q) eiqy (2π)3 2ωp δ
(3)(~p− ~q )

=

∫

dµ(p) e−ip(x−y)

= (2π)−3
∫

d4pΘ(p0) δ(p2 −m2) e−ip(x−y)

.
= i∆+(x− y;m2) (3.26)
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This is the so called positive frequency part of the commutator. The latter is the sum of a positive
and a negative frequency part

∆(x;m2) = ∆+(x;m2) + ∆−(x;m2) (3.27)

where

∆−(x;m2) = −∆+(−x;m2) = i(2π)−3
∫

d4pΘ(−p0) δ(p2 −m2) e−ipx . (3.28)

For an adjoint pair of fermion-fields, similarly, we find

{ψ(+)(x), ψ̄(−)(y) } = < 0|ψ(x)ψ̄(y) |0 >
= iS+

F (x− y;m)

= i (iγµ∂µ +m) ∆+(x− y;m2)

and for a vector field

[V (+)
µ (x), V (−)

ν (y) ] = < 0|Vµ(x)Vν(y) |0 >
= iD+

µν(x− y;m2)

= −i
(

gµν +
∂µ∂ν
m2

)

∆+(x− y;m2) .

Notice that only fields describing identical particle–antiparticle species yield non-vanishing two–
point functions.

If we normal-order several fields then for each pair of fields there is one term which must be
reordered and yields besides the normal-ordered term an additional term where the corresponding
pair is replaced by its vacuum-expectation value. With these observations one easily verifies the
following statements:

Statement 1: The normal products have the orthogonality property

< 0| : ϕ1(x1) · · ·ϕn(xn) : : ϕ′1(y1) · · ·ϕ′m(ym) : |0 >= δnm
∑

i

n∏

j=1

< 0|ϕj(xj) ϕ′ij (yij ) |0 >

where the sum extends over all possible pairings (contractions) between the two sets of points
(x1 · · · xn) and (y1 · · · ym) .

A problem in calculating vacuum expectation values of products of free fields is that there are
many identical contributions for which one only needs the multiplicities called usually combina-
torial factors. It is sufficient then to concentrate in evaluating differing contributions. For this
purpose the following statements about contractions between two normal–ordered monomials are
useful:

Statement 2:

1

n!m!
: ϕn(x) :: ϕm(y) :=

min(n,m)
∑

k=1

1

k!
(< 0|ϕ(x)ϕ(y)|0 >)k

1

(n− k)! (m− k)!
: ϕn−k(x) :: ϕm−k(y) :

(3.29)
because for picking k fields out of n we have

(n
k

)
possibilities, a corresponding factor applies for

picking k fields out of m, and there are k! equivalent possibilities to contract the k fields at x
with the k fields at y. This yields

n!m!

(n− k)! k! (m− k)! k!
k!
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and distributing the factorials appropriately we obtain the stated result. By normal ordering we
avoided self–contractions at a point. For the latter we have the rule:

Statement 3:

1

n!
ϕn(x) =

n/2
∑

k=1

1

2k k!
(< 0|ϕ(x) ϕ(x)|0 >)k

1

(n− 2k)!
: ϕn−2k(x) : (3.30)

Here we have
( n
2k

)

possibilities to pick 2k fields out of n. The 2k fields can be contracted in
(2k − 1)!! = (2k − 1)(2k − 3) · · · 3 · 1 different ways, namely, the first one with one of the (2k − 1)
others, after two are used up, the next one with one of the (2k − 3) remaining ones and so forth.
The result then follows.

These rules will be useful for evaluating the combinatorial factors in Feynman rules, as we shall
see below.

Simple examples illustrating the relationship between normal ordered and normal field monomials
are

: φ(x) : = φ(x)

: φ2(x) : = φ2(x)− < 0|φ2(x)|0 >
: φ4(x) : = φ4(x)− 3! < 0|φ2(x)|0 >: φ2(x) : − < 0|φ4(x)|0 >

: ∂µφ∂
µφ(x) : = ∂µφ∂

µφ(x) since < 0|∂µφ∂µφ(x)|0 >= 0

etc.

By translation invariance

< 0|φn(x)|0 >=< 0|φn(0)|0 >=< 0|φn|0 >

are constants. The transition from ordinary field products to normal-products amounts to a
change of basis and inhibits a reparametrization. This is illustrated for the φ4 -Lagrangian

L =
1

2
(∂φ)2 − m2

2
φ2

− λ
4!
φ4 +

c

4!
φ4 +

b

2
(∂φ)2 +

a

2
φ2

+ < 0|L|0 >

=
1

2
: (∂φ)2 : −m

2

2
: φ2 :

− λ
4!

: φ4 : +
c

4!
: φ4 : +

b

2
: (∂φ)2 : +

a′

2
: φ2 :

+ < 0|L|0 >′

where

a′ = a+ (c− λ)/2 < 0|φ2|0 >
< 0|L|0 >′ = < 0|L|0 > +(a−m2)/2 < 0|φ2|0 > +(c− λ)/4! < 0|φ4|0 >

Since vacuum expectation values of L have to be subtracted in any case the only difference is a
reparametrization of the mass term.

It should be noted that normal ordering in general leads to a reparametrization which spoils the
classical form of the equations of motion. For example, field theories exhibiting a spontaneously
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broken symmetry (B. W. Lee 1969) or non–Abelian gauge theories broken by a Higgs mechanism
are described more concisely if one avoids reparametrization by normal ordering .

The considerations on normal–ordering hold for time–ordered products as well if we apply the
time-ordering prescription on both sides of the equations and notice that

T{: · · · :} =: · · · :

One then easily proves the following theorem (Wick 1950):

Wick’s theorem:

T (ϕ1(x1) · · ·ϕn(xn)) =: ϕ1(x1) · · ·ϕn(xn) :

+
∑

i < 0|T (ϕi1(xi1)ϕi2(xi2)) |0 > : ϕi3(xi3) · · ·ϕin(xin) :

+
∑

i < 0|T (ϕi1(xi1)ϕi2(xi2)) |0 >< 0|T (ϕi3(xi3)ϕi4(xi4)) |0 > : ϕi5(xi5) · · ·ϕin(xin) :

+ · · ·

+
∑

i







< 0|T (ϕi1(xi1)ϕi2(xi2)) |0 > · · · < 0|T (ϕin−1(xin−1)ϕin(xin)
) |0 > (n even)

< 0|T (ϕi1(xi1)ϕi2(xi2)) |0 > · · · < 0|T (ϕin−2(xin−2)ϕin−1(xin−1)
) |0 > : ϕin(xin) : (n odd)

which may be proved by induction. The sums extend over all permutations i . A simple conse-
quence of Wick’s theorem is that vacuum expectation values of time ordered products of fields
are given by

< 0|T (ϕ1(x1) · · ·ϕ2n(x2n)) |0 >
=
∑

i(−1)Fi < 0|T (ϕi1(xi1)ϕi2(xi2)) |0 > · · · < 0|T (ϕi2n−1(xi2n−1)ϕi2n(xi2n)
) |0 >

< 0|T (ϕ1(x1) · · ·ϕ2n−1(x2n−1)) |0 >= 0

(3.31)

Note that non-vanishing contributions are obtained for complete contractions, only, where all
fields are contracted pairwise. Next we look for the explicit form of a time–ordered contraction.

3.4.3 Stückelberg–Feynman Propagators.

In perturbation theory the main objects are the time–ordered products of free fields. We consider
a scalar field first. In evaluating

T {· · ·ϕ(x) · · · ϕ(y) · · ·}
= T {· · · ϕ(x)ϕ(y) · · ·}

we have to consider
Θ(x0 − y0)ϕ(x)ϕ(y) + Θ(y0 − x0)ϕ(y)ϕ(x)

and for the first term we have

x0 > y0 : ϕ(x)ϕ(y) =
(

ϕ(+)(x) + ϕ(−)(x)
) (

ϕ(+)(y) + ϕ(−)(y)
)

= ϕ(+)(x)ϕ(+)(y) + ϕ(−)(x)ϕ(+)(y) + ϕ(+)(x)ϕ(−)(y) + ϕ(−)(x)ϕ(−)(y)

= : ϕ(x)ϕ(y) : +
[

ϕ(+)(x), ϕ(−)(y)
]

where the third term was reordered. Since the vacuum expectation value of the normal ordered
term vanishes we obtain as a total time–ordered contribution

Θ(x0 − y0)
[

ϕ(+)(x), ϕ(−)(y)
]

+ Θ(y0 − x0)
[

ϕ(+)(y), ϕ(−)(x)
]
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where [

ϕ(+)(x), ϕ(−)(y)
]

≡ i∆+(x− y)

is a c–number, the positive frequency part of the free field commutator. The time–ordered two–
point Green function

Θ(x0 − y0) i∆+(x− y) + Θ(y0 − x0) i∆+(y − x) ≡ i∆F (x− y) (3.32)

describes the propagation of a free relativistic particle as it appears in relativistic scattering
theory and is called Feynman propagator (Stückelberg 1941, Feynman 1949).

The explicit form of the Feynman propagator ∆F (z) may be obtained easily in momentum space. Using
Eqs. (3.26), (3.28) and (3.32) we can calculate ∆̃F (q) =

∫
d4z eiqz ∆F (z) . We obtain

∆̃F (q) = −i(2π)−3

∫

d4p δ(p2 −m2) (2π)3 δ(3)(~p− ~q )×
{

Θ(p0)

∫ ∞

0

dz0 e−i(p
0−q0) z0 + Θ(−p0)

∫ 0

−∞

dz0 e−i(p
0−q0) z0

}

=
−i
2ωq

{∫ ∞

0

dz0 e−i(ωq−q
0) z0 +

∫ 0

−∞

dz0 e+i(ωq+q0) z0
}

=
1

q2 −m2 + iε
with ε→ +0

For the last step we have used the following oscillatory integrals, which are well defined only as boundary
values of an appropriate analytic function (so called iε–prescription): The integral

∫ ∞

0

dz0 e−iωqz
0

eiq
0z0 =?

is obviously well defined in the complex q0–plane for Im (q0)> 0. We write q0 → q0 + iε , ε > 0 and
obtain

∫ ∞

0

dz0 ei(q
0−ωq) z0 =

ei(q
0+iε−ωq) z0

i(q0 + iε− ωq)

∣
∣
∣
∣
∣

∞

0

=
1

i(ωq − q0 − iε) .

In a similar way, with q0 → q0 − iε , ε > 0 now,

∫ 0

−∞

dz0 ei(q
0+ωq) z0 =

ei(q
0−iε+ωq) z0

i(q0 − iε+ ωq)

∣
∣
∣
∣
∣

0

−∞

=
1

i(ωq + q0 − iε)

and the sum of the two integrals is

1

i

{
1

ωq + q0 − iε +
1

ωq − q0 − iε

}

=
1

i

2ωq
m2 − q2 − iε .

Here we have replaced iεωq by the equivalent iε and neglected terms of order O(ε2). This is justified
because we are interested in the limit limε→0 only and because ωq > 0 in any case. The iε–prescription
means that the limit ε→ +0 is to be taken at the end. This will be understood always in the following.
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In Fig. 3.4 we show how the poles of the Feynman propagator must approach the real q0–axis starting
from the finite ε “regularization”.

⊗

⊗

Im q0

Re q0−ωq
ωq

Fig. 3.4: Location of the two poles of the Feynman propagator in the complex q0–plane.

As a result we find in momentum space

∆̃F (q) =
1

q2 −m2 + iε
(ε→ +0)

and

∆F (z) = (2π)−4
∫

d4q
e−iqz

q2 −m2 + iε
(ε→ +0) . (3.33)

3.4.4 Feynman rules for the φ4-model.

We are prepared now to formulate the Feynman rules. As a simple example we consider the φ4-
model, which we introduced in Sec. 3.1 as an example of an interacting theory. We thus consider
a single scalar field of mass m with self-interaction

Lint = − λ
4!
φ4 (x) .

We first consider the τ–functions Eq. (3.21). For a given order n we have to find all possible
contributions. We already know that vacuum expectation values only are non-vanishing if all
fields are pairwisely contracted. We thus arrive at the result:

in< 0|T{ϕin(x1) . . . ϕin(xN )

∫

d4y1 L(in)
int (y1), · · · ,

∫

d4yn L(in)
int (yn)}|0 >in⊗

=
∑

Γ

∫

d4y1 · · · d4yn
∏

zi,zk∈x1,...,yn
i∆F (zi − zk) (3.34)

where the sum is over all possible complete contractions of free fields and each complete contrac-
tion corresponds to a product of (N + 2n)/2 Feynman propagators. Each possible contraction
scheme may be characterized by a Feynman graph Γ which is obtained as follows:

• Each contribution at n-th order perturbation theory is characterized by a Feynman diagram
with N external (x1, x2 . . . , xN ) and n internal (y1, y2, . . . , yn) vertices (drawn as points in
a plane) which are completely contracted i.e. connected by lines (propagators).
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• In configuration space the contribution to the τ–function characterized by a particular
Feynman graph is given by the products of propagators which are represented by the lines
of the graph. The internal vertices are integrated out as follows from Eq. (3.34).

For actual calculations it is much simpler to work in momentum space. We use the convention
Eq. (3.20) for the Fourier transformation of the fields. We thus take the Fourier transform

τ̃ (N)(p1, p2, . . . , pN ) =

∫

d4x1 d
4x2 . . . d

4xN ei
∑N

i=1
pixi < 0|T{ϕ(x1) ϕ(x2) . . . ϕ(xN )}|0 >

with the convention that all momenta are incoming. By translation invariance the τ–functions

τ (N)(x1, x2, . . . , xN ) =< 0|T{ϕ(x1) ϕ(x2) . . . ϕ(xN )}|0 >

depend on the coordinate differences ξi = xi − xi+1 (i = 1, . . . , N − 1) only

τ (N)(x1, x2, . . . , xN ) = T (N)(ξ1, ξ2, . . . , ξN−1)

and this implies four-momentum conservation,
∑N
i=1 pi = 0, such that

τ̃ (N)(p1, p2, . . . , pN ) = (2π)4δ(4)(
N∑

i=1

pi) T̃ (N)(p1, p1 + p2, . . . , p1 + p2 + . . . + pN−1)

where

T̃ (N)(q1, q2, . . . , qN−1) =

∫

d4ξ1 d
4ξ2 . . . d

4ξN−1 e
i
∑N−1

i=1
qiξiT (N)(ξ1, ξ2, . . . , ξN−1)

depends on the N−1 independent momenta q1 = p1, q2 = p1+p2, . . . , qN−1 = p1+p2+. . .+pN−1 .
In the perturbation expansion an internal vertex is proportional to

∫

d4x φ4(x) =

∫

d4x
4∏

i=1

∫

qi

e−iqixφ̃(qi) =
4∏

i=1

∫

qi

(2π)4 δ(4)(
4∑

i=1

qi) φ̃(qi)

and one four-momentum integration can be performed trivially with the help of the four-momentum
conservation delta–function at each vertex. We obtain the following Feynman rules in momen-
tum space:

Expand the Fourier transform of the τ–function in terms of Feynman diagrams

< 0|T{ϕ̃(p1) ϕ̃(p2) . . . ϕ̃(pN )}|0 >=
∑

Γ

< 0|T{ϕ̃(p1) ϕ̃(p2) . . . ϕ̃(pN )}|0 >Γ .

The sum extends over all topologically distinct Feynman diagrams Γ which we can draw with N
external lines and the interaction vertices. Vacuum sub-diagrams (disconnected components of
Γ without external lines) are not permitted (⊗–prescription≡ vacuum normalization). We label
external lines by momenta p1, p2, . . . , pN . These are chosen incoming by convention. Internal
lines we label by k1, k2, . . . , kI . The contribution from the diagram Γ is then obtained via the
following correspondence:

Lines and vertices represent the factors: (see Eq. (3.8))

➊ Lines:

q
1

q2−m2+iε ; q ∈ {pi, kj}
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➋ Vertices:

a) external:

pi
1

b) internal: (bare interaction vertex)

−λ

(vertex renormalization)

⊗ c(λ)

(mass and wave–function renormalizations)

⊗ a(λ) + b(λ) q2

➌ Integration: At each vertex we have four-momentum conservation. After taking into
account this, those internal momenta ki which are not determined by
the external momenta are called loop momenta and remain to be in-
tegrated over

1

(2π)d

∫

ddki · · ·

where d is the space–time dimension.

➍ Factors: Multiply the integrals over the products of propagators and coupling ma-
trices obtained so far by the following additional factors:

total four-momentum conservation : (2π)dδ(d) (
∑
pi ext)

each interaction vertex : i

each propagator : i

combinatorial factors : 1
c(Γ) (see below)

A diagrams is connected if it does not consist of disconnected parts. Note that four-momentum
conservation holds for each connected component, such that in general one has a product of
δ–functions in place of just one overall one.

The combinatorial factor is given by the symmetry number

c(Γ) = s2n12n3(3!)n3

of a diagram. n1 is the number of lines connecting a vertex with itself, n2 is the number of
double lines (two lines connecting a pair of vertices) and n3 the number of triple lines (three
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lines connecting a pair of vertices). s is the number of permutations of vertices which leave the
diagram unchanged (external vertices fixed).

The rules follow from Eqs. (3.29) and (3.30): Take out a permutation symmetry factor 1
n! for each

product of n identical fields at a vertex. These symmetry factors are omitted in the Feynman
rules. Then the multiple lines have the weight factors

: 1
2!

: 1
2!

: 1
3!

as given above.

The contribution from a diagram Γ has the form

< 0|T{ϕ̃(p1) ϕ̃(p2) . . . ϕ̃(pN )}|0 >Γ=
1

c(Γ)
δΓ

∫
ddk1

(2π)d
. . .

ddkL
(2π)d

IΓ(pi, kj)

where IΓ(pi, kj) is the Feynman integrand and

δΓ =
∏

γ

(2π)dδ(d)
(∑

pγi ext

)

is the product δ–functions expressing energy–momentum conservation, one factor for each con-
nected component γ of Γ. The number of loops (nontrivial integrations) L is at most

L ≤ I − (V − 1)

where I is the number of internal lines and V the number of internal vertices. This is just
counting the number of δ–functions at the vertices minus one for the overall energy–momentum
conservation. This holds for each connected component of a diagram. Diagrams which have no
parts which are connected just by a single particle line (the diagram cannot be cut into two parts
by cutting a single line) we call one particle irreducible (1pi). For connected 1pi diagrams we
have

L = I − (V − 1) .

The S–matrix elements for the scattering of N particles are obtained from the τ–functions by
replacing the external propagators (attached at the external vertices) by the one–particle wave
functions, as required by the LSZ reduction formulas (see Tab. 3.1). The latter are just 1 for
scalar particles.

When calculating a certain quantity in perturbation theory one, obviously, proceeds order by
order, starting with the Born or tree approximation, which is represented by tree type dia-
grams which do not exhibit loops. The expansion in the coupling constant corresponds to a loop
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expansion, i.e., corrections are represented by the one-loop, two-loop, ... diagrams contributing
to a given process, which is fixed by specifying the external legs. In a renormalizable theory
interaction vertices can be field monomials with three or four fields only. Since all connected
diagrams are trees 1pi diagrams we need consider the 1pi diagrams only. Let the diagram have
N external legs, V3 three-vertices and V4 four-vertices. Then we have

3V3 + 4V4 −N = 2I ; V3 + V4 = V

where, again, I is the number of internal lines and V the number of internal vertices. Now there
are several possibilities:

1. λϕ3 theory: V4 = 0 and hence

3V −N = 2I = 2(L + V − 1) or V = N − 2 + 2L

which shows that the expansion in powers V of λ is in fact a loop expansion in powers of λ2,
since L can take integer values only.

2. λϕ4 theory: V3 = 0 and hence

4V −N = 2I = 2(L + V − 1) or 2V = N − 2 + 2L

which shows that the expansion in powers V of λ is in fact a loop expansion in powers of λ, since
L can take integer values only.

3. Non–Abelian gauge theory: Here, as we shall see later, three-vertices are of order g and
four-vertices of order g2 where g is the gauge coupling constant. The order in g is now

O = V3 + 2V4

and hence, eliminating V3 = 2V −O and V4 = O − V ,

2V +O −N = 2I = 2(L + V − 1) or O = N − 2 + 2L

which shows that the expansion in powers O of g is in fact a loop expansion in powers of g2. V
has dropped from the relationship, here.

For an amplitude A(N) with N external legs we have

A(N) = g−(N−2) (1 + a1

(
α

π

)

+ · · ·+ aL

(
α

π

)L

+ · · ·) ; α =
g2

4π

where the factor π is included because it naturally comes in via the loop integrals.

4. In theories like the electroweak Standard Model one has, in general, many coupling
constants and it is not obvious that there is a simple relationship between the number of loops
and the multi coupling constant expansion. In spite of the many couplings in the SM there is
however a natural way to set up a perturbation expansion, which relates to the loop expansion.
The key for this possibility is the fact that masses in the SM are generated by the Higgs mechanism
(spontaneously broken gauge theory). Typically masses are generated via the vacuum expectation
value v of a scalar field, i. e. a mass mi is proportional to a coupling constant gi times the vacuum
expectation value: mi ∝ giv. If, as in the case of the SM, the theory in the unbroken phase v = 0
is massless (the scalar field itself may be an exception) and only has dimensionless couplings
then after the breaking one has the following situation: The quadrilinear couplings are ratios
of the form M 2/v2 whereas the trilinear couplings are of the form M 2/v or m/v (M denotes a
boson mass, m a fermion mass). We immediately see that counting powers of v−1 is the same as
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counting powers of g in the previous example. Therefore the expansion in powers of v−2: For an
amplitude A(N) with N external legs we have

A(N) = v−(N−2) (1 + a1x+ · · ·+ aLx
L + · · ·) ; x =

1

(4πv)2

where the factor 4π is included because it naturally comes in via the loop integrals.

3.5 Cross sections and decay rates

The differential cross section for a two particle collision

A(p1) +B(p2) → C(p′1) +D(p′2) · · ·

Pi = p1 + p2

Pf = p′1 + p′2 + · · ·

A, p1

B, p2

C, p′1

X

is given by

dσ =
(2π)4δ(4)(Pf−Pi)
2
√
λ(s,m2

1,m
2
2)
| Tfi |2 dµ(p′1)dµ(p′2) · · · (3.35)

s = (p1 +p2)2 is the square of the total CM energy and λ(x, y, z) = x2 +y2 +z2−2xy−2xz−2yz
is a two body phase-space function. In the CM frame (see the figure):

√
λ =

√

λ
(
s,m2

1,m
2
2

)
= 2 | ~p | √s

where ~p = ~pi is the three-momentum of the initial state particle A.

-��
�
���

�
�

��	

θ

C

X

A
~p1 = ~p

B
~p2 = −~p

The total cross section follows from the differential one by “summation” over all final states

σtot =

∫

dσ =
(2π)4

2
√

λ
(
s,m2

1,m
2
2

)

∑

spins′

∫
∏

i

dµ(p′i) δ
(4)

(
∑

i

p′i − p1 − p2

)

| Tfi |2 .
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In particular, for a two-body final state A+B → C+D one defines the Lorentz invariant kinematic
variables

s = (p1 + p2)2 = (p′1 + p′2)2

t = (p1 − p′1)2 = (p2 − p′2)2

u = (p1 − p′2)2 = (p2 − p′1)2

the so–called Mandelstam variables. They satisfy

s+ t+ u = m2
1 +m2

2 +m
′2
1 +m

′2
2
.
= Σ

Pi = p1 + p2

Pf = p′1 + p′2

A, p1

B, p2

C, p′1

D, p′2

The final state two-body phase-space function

√
λ′ =

√

λ(s,m
′2
1 ,m

′2
2 ) = 2 | ~pf |

√
s = s

√
y+y−

determines the modulus of final state CM momentum ~pf = ~p1
′ = −~p2

′ . The variables y± are
given by

y± = 1− (m′1 ±m′2)2

s
.

The invariant momentum transfer t is given by

t = (p1 − p′1)2 = m2
1 +m

′2
1 − 2p1p

′
1 = m2

1 +m
′2
1 − 2

(
E1E

′
1 − |~pi ||~pf | cos θ

)

with Ej =
√

m2
j + ~pj 2, or, written in a manifestly invariant way,

t =
1

2

(

Σ− s+
1

s

√
λ
√
λ′ cos θ

)

and u follows from t by a substitution cos θ → − cos θ. For a final state particle the three-
momentum volume element may be written as d3p = ~p 2 d|~p |dΩ where dΩ is the element of solid
angle

dΩ = sin θ dθ dφ = −d(cos θ) dφ .

Notice that |T |2 cannot depend on the azimuthal angle φ because the process is symmetric with
respect to rotations about the beam-axis. Formally this follows because |T |2 is L-invariant and
hence can depend only on the scalar products of the momenta which all are determined by s,
t and the four particle masses. Then, performing all trivial integrations (using four-momentum
conservation), we obtain

(
dσ

dΩ

)

CM
=

1

(8π)2s

√

λ(s,m
′2
1 ,m

′2
2 )

λ(s,m2
1,m

2
2)
| Tfi |2
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or

dσ

dt
=

| Tfi |2
16πλ(s,m2

1,m
2
2)

where

dt = −2|~pi ||~pf |
dΩ

2π
.

If initial and final states are unpolarized we have to average over the initial state polarizations
and to sum over the final state polarizations such that

dσ

dt

unpol

=
1

2j1 + 1

1

2j2 + 1

∑

spins

dσ

dt
. (3.36)

We may reconsider at this point the optical theorem. The imaginary part or absorptive part
of the forward scattering amplitude of an elastic process A +B → A + B is proportional to the
sum over all possible final states A + B → “anything” which defines the total inclusive cross
section

σtot (A+B → X) = (2π)4

2
√
λ(s,m2

1,m
2
2)
·

∑

n

∑

spins′
∫ ∏n

i=1
d3p′i

(2π)3 2ωp′
i

δ(4)(P ′n − Pi) | T (p′1, j
′
1, λ
′
1, . . . , p

′
n, j
′
n, λ
′
n | p1, j1, λ1, p2, j2, λ2) |2 .

The state X is anything allowed by conservation laws. Thus X must have the same conserved
quantum numbers as the initial state. We know are able to write down the final version of the
optical theorem

Im Tforward (A +B → A+B) =
√

λ
(

s,m2
1,m

2
2

)

σtot (A +B → anything) (3.37)

For unpolarized particles in the initial state one has to average over spins on both sides of the
equation. The relation is depicted graphically in Fig. 3.3.

=
∑

n

Im

A, p1

B, p2

A, p1

B, p2

Figure 3.3: The optical theorem yields the inelasticity (3.37) in terms of the forward scattering
amplitude.

This relationship can be tested experimentally: On the one hand one measures the differential
cross-section dσ

dΩ (θ) as a function of the scattering angle θ for elastic scattering A + B → A +B
and then extrapolates to θ → 0 . On the other hand one measures the total inclusive cross-section
for A +B → anything.

Since

(
dσ

dΩ

)elastic

θ=0
=

1

(8π)2s
| Tforward (A +B → A+B) |2

and
| Tforward |2= (Re Tforward)2 + (Im Tforward)2
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one obtains the unitarity bound

(
dσ

dΩ

)elastic

θ=0
≥ 1

(8π)2s
λ
(

s,m2
1,m

2
2

)

σ2
tot (A+B → anything) .

Finally we consider the decay of unstable particles. The differential decay rate for A → B +
C + · · · is given by

dΓ =
(2π)4δ(4)(Pf−Pi)

2m1
| Tfi |2 dµ(p′1)dµ(p′2) · · · (3.38)

By “summing” over all possible decay channels we find the total width

Γ = Σ

∫

dΓ =
1

τ

where τ is the lifetime of the particle, which decays via the exponential decay law

N(t) = N0 e
−t/τ

For a two body decay the momenta of the decay particles are fixed by the masses A(M) →
B(m1) + C(m2) (M > m1 +m2) and one obtains:

Γ = M
16π

√

1− (m1−m2)2

M2

√

1− (m1+m2)2

M2
1

2sV +1

∑
| T12 |2
M2

(3.39)

Here sV is the spin of the decaying particle and 1
2sV +1

∑ | T12 |2 the trensition matrixelement
averaged over the spin of the decaying particle. This formula (see (14.4) will be derived later in
Sec. 14.
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Appendix to Section 3:
Derivation of the differential cross section

In a typical scattering experiment a beam of practically free particles hits either a target, in a
fixed target experiment, or another beam, in a collider experiment.

fixed target collider

After the interaction the scattered and/or newly produced particles move practically freely before
they are kinematically analyzed and identified in a detector.

Given a suitably prepared initial state |i >, we are interested to calculate the probabilities for
the system to undergo a transition into a possible final state |f >. The result of a collision is a
superposition

∑

f

|f >< f |S|i > (3.40)

of all possible final states. S is the scattering operator introduced in Sec. 3.2 (see also Sec. 3.1)
and the amplitudes Sfi =< f |S|i > are the S–matrix elements. The probability for observing a
particular final state |f > is given by |Sfi|2.

It is convenient to split off the trivial part of the S–matrix, which describes the free passing of
particles, and to factor out the total four-momentum conservation, which leads us to the transition
matrix T . The T–matrix is defined by

< f |S|i >= Sfi = δfi + i(2π)4 δ(4)(Pf − Pi) · Tfi . (3.41)

For f 6= i we have

Sfi = i(2π)4 δ(4)(Pf − Pi) · Tfi . (3.42)

At this point a serious problem is encountered if we attempt to calculate the transition proba-
bility |Sfi|2. Obviously, with the above expression, we get an infinite answer, a non-sense result

proportional to
(

δ(4)(Pf − Pi)
)2

. The reason for the problem is that, so far, we have calculated

Sfi using plane wave scattering states, which are not localized in space-time and hence are not
normalizable. The problem may be circumvented either by going to “box quantization” or by
working with normalizable states.

Heuristic derivation of the differential cross section

We first present a simple heuristic derivation of the differential cross section formula Eq. (3.35)
and of the differential width formula (3.38). For this purpose we consider the experiment to be
confined in a box of spatial volume V , where V is assumed to be sufficiently large as compared to
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the effective range of the interaction. The number of states in a box of volume V with momenta
in a momentum space element d3p is:

V

(2π)3
d3p .

Once we have the four-momentum conservation

(2π)4 δ(4)(Pf − Pi) =

∫

d4xe−i(Pf−Pi) x

as we go to infinity with the volume, a second such factor for Pf = Pi becomes

“ (2π)4 δ(4)(Pf − Pi) ” =

∫

d4xe−i(Pf−Pi) x

∣
∣
∣
∣
Pf=Pi

=

∫

d4x = V · t

where t is a time interval, sufficiently large as compared to the interaction time. We thus may
write

“
(

(2π)4 δ(4)(Pf − Pi)
)2

” = “ (2π)4 δ(4)(Pf − Pi)
∫

d4xe−i(Pf−Pi) x ”

= (2π)4 δ(4)(Pf − Pi) · V · t ,

such that

|Sfi|2 = (2π)4 δ(4)(Pf − Pi) |Tfi|2 V t .

We then obtain the transition probability per unit time

Pfi = (2π)4 δ(4)(Pf − Pi) |Tfi|2 V .

In order to proceed, we have to match the normalization of the states in the box to the ones we
previously used to calculate Tfi. The normalization of the states in the box is

< pn′ |pn >= δn′,n ,

where |pn > is a state of one particle in the box in the state n. This has to be compared with
our plane wave normalization

< ~p ′, α′ | ~p, α >= δαα′ (2π)3 2ωp δ
(3) (~p− ~p ′) ,

which can be obtained as a limit from the box states as
∫

V

(

ei~pn′ ~x
)∗
ei~pn ~x = V · δn′,n → (2π)3 δ(3) (~p− ~p ′) .

Here we used that

∫

V
d3x ei(~p−~p

′) ~x →






∫
d3x = V for ~p ′ = ~p

0 otherwise

on the one hand, and

∫

V
d3x ei(~p−~p

′) ~x → (2π)3 δ(3) (~p− ~p ′)
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on the other hand, for V →∞. Accordingly, we must identify

|pn >→
1

√
2ωpV

| ~p, α >

and thus

Tfi → 1√
2ωp1V ···

√

2ωp′
1
V ···

Tfi

↑ ↑
box normalization conventional normalization .

The transition probability for final states with particles with momentum in the element d3p′i
around ~p ′i is

dP = Pfi
n∏

i=1

V

(2π)3
d3p′i

= (2π)4 δ(4)(Pf − Pi) V
|Tfi|2

2ωp1V · · · 2ωp′1V · · ·
n∏

i=1

V

(2π)3
d3p′i

= (2π)4 δ(4)(Pf − Pi)
V |Tfi|2

2ωp1V · · ·
n∏

i=1

dµ(p′i) .

We may now consider particular initial states.

For one particle in the initial state we directly obtain the differential decay width. In the rest
frame of the decaying particle we have

dΓ =
(2π)4 δ(4)(Pf − Pi)

2m1
|Tfi|2 dµ(p′1) · · · dµ(p′n) .

For two particles in the initial state we have the transition probability

dP =
(2π)4 δ(4)(Pf − Pi)

2E1 2E2 V
|Tfi|2 dµ(p′1) · · · dµ(p′n) .

The cross section is defined by the ratio of the transition probability dP per unit time and the
current density j of the incoming particles:

dσ =
dP

j

with

j =
I

V E1E2
; I =

(

(p1p2)2 −m2
1m

2
2

)1/2
.

Note that I is Lorentz invariant, as it should be. In the c.m. system we have ~p1 = −~p2 = ~p and
hence I = |~p| (E1 +E2) and thus

j =
|~p|
V

(
1

E1
+

1

E2

)

=
v1 + v2

V
.

Since v1 + v2 = vin is the relative velocity of the incoming particles, this is the conventional
definition of the current density for colliding particles, normalized to one particle. For an arbitrary
frame we have

j =
1

V

(

(~v1 − ~v2 )2 − (~v1 × ~v2 )2
)1/2
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Figure 3.4: Distinguishable versus indistinguishable particle scattering

which reduces to the conventional current density j = |~v1 − ~v2 |/V in the case ~v1 || ~v2.

As a final result we have

dσ =
(2π)4 δ(4)(Pf − Pi)

2
√

λ(s,m2
1,m

2
2)
|Tfi|2 dµ(p′1) · · · dµ(p′n)

with
√

λ(s,m2
1,m

2
2) = 2I.

Scattering and decay involving identical particles

So far we assumed all scattering particles to be distinguishable. In many cases actually we have
to deal with identical particles, for example, if two photons or two Z bosons or two or more π0’s
are produced. The problem is illustrated in Fig. 3.4. If A and B are different kinds of particles
the probability that a particle (A or B) is observed at the counter C is15

|A(ϑ)|2 + |A(π − ϑ)|2 . (3.43)

We add the two probabilities since the two possible processes are distinguishable, but we have
chosen not to distinguish between them. In contrast, if the particles are indistinguishable, the
two processes are indistinguishable, they do not represent different processes. Thus it appears
that for identical particles one has to integrate only over one hemisphere, which may be converted
into a full angular integration provided we divide by 2. As a rule in the cross section and decay
rate formulae (3.35) and (3.38), respectively, one always has to divide by the number of indis-
tinguishable states (degeneracy factor) and for n identical bosons there are n! indistinguishable
permutations (averaging over indistinguishable possibilities).

The problem addressed here has its formal solution remembering that in quantum mechanics
multi-particle states with identical particles have to be symmetrized (Bosons) or anti-symmetrized
(Fermions) and normalized appropriately. The proper QM two-particle sates must have the form

|Φ〉in,out =
1√
2

(|φA, φB〉 ± |φB , φA〉)in,out (3.44)

where the + sign holds for bosons and − sign for fermions. On the right-hand side of these
equations it is supposed that we can label the indistinguishable (non-interacting) particles by
subscripts A and B where the particle A and B are in states described by a set of eigenvalues

15the azimuthal angle ϕ is redundant here because of the azimuthal symmetry of the problem considered
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φA and φB, respectively. The “state” |φA, φB〉out corresponds to the one detected by the counter
of Fig. 3.4a alone while |φB , φA〉out corresponds to the one detected by the counter of Fig. 3.4b.
However, quantum mechanically (physically) only the state described by the superposition |Φ〉out

is detectable (an apparatus which would be able to distinguish the two “states” does not exist).
Taking the transition matrix element between the states (3.44) we have

out〈Φ′|Φ〉in =
1

2

(

out〈φ′A, φ′B |φA, φB〉in ± out〈φ′B , φ′A|φA, φB〉in + (A↔ B)

)

= out〈φ′A, φ′B |φA, φB〉in ± out〈φ′B , φ′A|φA, φB〉in .

The second equality holds because A and B are dummy labels when the particles are indistin-
guishable. This translates into

|A(ϑ)±A(π − ϑ)|2 . (3.45)

This result has to be compared with the one obtained for the case of distinguishable particles
(3.43).

An additional complication arises for identical particles because of the role of the spin. Two
otherwise identical particles (same species) may be distinguishable if they have different spin.
Hence, in general, in a mixed state we have to distinguish the component in which the particles
have identical spin and thus are indistinguishable and a component where the particles have
different spin and thus are distinguishable. For two spin 1/2 fermions, two electrons say , and for
unpolarized electrons then the probability of detecting an electron at counter C reads

1

2

(

|A(ϑ)|2 + |A(π − ϑ)|2
)

+
1

2

(

|A(ϑ)−A(π − ϑ)|2
)

as there is an equal probability that the electrons can be distinguished or not.
These considerations show that one has to be careful in the formal definition of the transition
probabilities, because the result in general depends on the experimental set up and the precise
definition of the observable of interest. Here so called maximal observations play a special role,
where a system is analyzed with respect to all possible simultaneous measurements. The latter
are related to a complete system of commuting observables, which posses a complete system of
simultaneous eigenvectors and eigenvalues. Note that quantum mechanically such complete in-
formation does not remove the identical particle degeneracy as we know.

Exercise: Show that λ(s,m2
1,m

2
2) can be written as

λ(s,m2
1,m

2
2) = (s− (m1 +m2)2) (s− (m1 −m2)2) ; s = (p1 + p2)2 .

λ is the two–body phase space function, sometimes also called Källén–function.

Units: The total cross section

σtot =

∫

dσ

has the dimension of an area. Typical cross section units are:

1 barn = 10−24 cm2

1 millibarn (mb) = 10−27 cm2

and the subunits micro- (µb), nano- (nb), pico- (pb) and femto- (fb) barns. An orders of mag-
nitude comparison we consider the Compton wave length of a particle of mass m: λC = h̄/(mc)
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as a measure for the uncertainty principle in quantum mechanical localization. A natural area to
compare with accordingly is λ2

C .

Examples: strong interaction (short ranged) considered as mediated by one pion exchange:

h̄

mπc
' 1.41 fermi = 1.41 × 10−13 cm

(
h̄

mπc

)2

' 2( fermi )2 = 20 mb

the total cross section for π+p–scattering at energies 5 to 10 GeV, well above the proton mass, is

σtot ' 25mb ' 1.25 ×
(

h̄

mπc

)2

A proper derivation of the differential cross section

Particle beams and target in reality have a finite momentum resolution with momenta concen-
trated around average momenta p̄1, p̄2 . . .. They must be described by appropriate wave packets.
The improper translationally invariant momentum eigenstates

| ~p, α >=| ~p, λ, ᾱ >

of helicity λ and other quantum numbers ᾱ are normalized by

< ~p ′, α′ | ~p, α >= δαα′ (2π)3 2ωp δ
(3) (~p− ~p ′) .

A state of finite momentum resolution is described by a distribution function ϕ̃(p) in Fourier
space:

| ϕ, λ, ᾱ > .
=

∫
d4p

(2π)4
2π Θ(p0) δ(p2 −m2) ϕ̃(p) | ~p, λ, ᾱ >

=

∫

dµ(p)ϕ̃(p) |, ~pλᾱ >

with normalization

< ϕ, λ, α | ϕ, λ, α > =

∫

dµ(p′) dµ(p) ϕ̃∗(p′) ϕ̃(p) · < ~p ′, λ, α | ~p, λ, α >

=

∫

dµ(p)|ϕ̃(p)|2 = N

as a number of particles in a beam pulse or in a target. In configuration space we then have

ϕ(x) =

∫
d4p

(2π)4
2π Θ(p0) δ(p2 −m2) ϕ̃(p) e−ipx

=

∫
d3p

(2π)3 2ωp
ϕ̃(ωp, ~p ) e−iωpx0ei~p~x

with

|ϕ(x)|2 =

∫

dµ(p′) dµ(p) ϕ̃∗(p′) ϕ̃(p) e−i(p−p
′) x
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and
∫

d3x|ϕ(x)|2 =

∫

dµ(p′) dµ(p) ϕ̃∗(p′) ϕ̃(p) e−i(ωp−ωp′ ) x
0

(2π)3 δ(3) (~p− ~p ′)

=

∫

dµ(p)
|ϕ̃(p)|2

2ωp

=

∫

dµ(p)
|ϕ̃(p)|2

2ωp

' 1

2ω̄p

∫

dµ(p)|ϕ̃(p)|2 =
N

2ω̄p
.

Here, we have made an approximation. We have assumed that the momentum resolution is
sufficiently narrow in momentum space, such that the wave packet approximates to some extent
a plane wave. This assumption will be made also in the following discussion. Thus we have the

Result:

|ϕ(x)|2 =
ρ(x)

2ω̄p
(3.46)

where

ω̄p is the average energy of the beam particles or of the target particles, and

ρ(x) is the particle density function: the probability per unit volume to find

a particle at time t = x0 at the point ~x.

For later use we note that
∫

d4x eipx ϕ(x) = 2π Θ(p0) δ(p2 −m2) ϕ̃(p) .

We now consider a particle collision process

A+B → n− particles

q1, q2 p1, p2, . . . , pn

ϕ̃1(q1), ϕ̃2(q2)

where ϕ̃1(q1), ϕ̃2(q2) are the momentum distributions of the two incoming particles.

The transition matrix element is given by
∫

dµ(q1)dµ(q2)ϕ̃1(q1)ϕ̃2(q2) < p1, p2, . . . , pn, β| (S − I) |q1, q2, α >

where α and β describe the collection of quantum numbers of the in and out states, respectively.
The transition probability for the transition into a state with momenta p1, p2, . . . , pn in the
continuum part of the spectrum reads

P (ϕ1, ϕ2; p1, p2, . . . , pn) =
∫
dµ(q′1)dµ(q′2)dµ(q1)dµ(q2)ϕ̃∗1(q′1)ϕ̃∗2(q′2)ϕ̃1(q1)ϕ̃2(q2)·

< q′1, q
′
2, α| (S − I)+ |p1, p2, . . . , pn, β >< p1, p2, . . . , pn, β| (S − I) |q1, q2, α >

with

< p1, p2, . . . , pn, β| (S − I) |q1, q2, α >= i(2π)4 δ(4)(
∑

pi − q1 − q2) T (p1, p2, . . . , pn, β; q1, q2, α) .
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The transition matrix element T is a continuous function of the momenta, to all orders in per-
turbation theory. As before we assume that the wave packets ϕ̃1(q1), ϕ̃2(q2) are concentrated to
a narrow range of momenta, such that T (. . .) is well approximated by a constant on the support
of the wave functions.

Therefore we obtain

∫
dµ(q1)dµ(q2)ϕ̃1(q1)ϕ̃2(q2) · (2π)4 δ(4)(

∑
pi − q1 − q2) T (p1, p2, . . . , pn, β; q1, q2, α)

' T (p1, p2, . . . , pn, β; q̄1, q̄2, α)× ∫ dµ(q1)dµ(q2)ϕ̃1(q1)ϕ̃2(q2) · (2π)4 δ(4)(
∑
pi − q1 − q2) .

We denote

Tni = T (p1, p2, . . . , pn, β; q̄1, q̄2, α)

and get

P (ϕ1, ϕ2; p1, p2, . . . , pn) = |Tni|2 ×
∫

dµ(q′1)dµ(q′2)ϕ̃∗1(q′1)ϕ̃∗2(q′2)(2π)4 δ(4)(
∑

pi − q′1 − q′2)

×
∫

dµ(q1)dµ(q2)ϕ̃1(q1)ϕ̃2(q2)(2π)4 δ(4)(
∑

pi − q1 − q2)

The distribution factors may be evaluated
∫

dµ(q1)dµ(q2)ϕ̃1(q1)ϕ̃2(q2)(2π)4 δ(4)(
∑

pi − q1 − q2)

=

∫
d4q1

(2π)4
2π Θ(q0

1) δ(q2
1 −m2

1) 2π Θ(q0
2) δ(q2

2 −m2
2) ϕ̃1(q1) ϕ̃2(q2)

∣
∣
∣
∣
∣
q2=
∑

pi−q1

=

∫
d4q1

(2π)4

∫

d4x1

∫

d4x2 e
iq1x1ei(

∑
pi−q1) x2 ϕ1(x1) ϕ2(x2)

=

∫

d4x ei
∑

pi xϕ1(x)ϕ2(x)

and hence

P (ϕ1, ϕ2; p1, p2, . . . , pn) = |Tni|2 ×
∫

d4x d4y ei
∑

pi (x−y)ϕ1(x)ϕ2(x)ϕ∗1(y)ϕ∗2(y) (3.47)

as a probability density.

Our final states are normalized such that the covariant projection

Pn,β =

∫ n∏

i=1

dµ(pi) |p1, . . . , pn, β >< β, p1, . . . , pn|

onto the n–particle states with quantum numbers β and

∑

β

Pn,β = 1

on the n–particle states. Therefore, we have

dP ∝ P (ϕ1, ϕ2, p1, · · · , pn) dµ(p1) · · · dµ(pn) . (3.48)

Note that

dµ(pi) =
d3pi

(2π)32ωpi
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is just the density of states in the relativistically invariant volume element.

So far particles in the beam and in the target have been prepared with a finite resolution. We
therefore have to “sum” over all final states which are compatible with the initial distribution.
The finite spread manifests itself in a distribution in the total c.m. four-momentum

P = q1 + q2

which we have to integrate over. The support properties of our distribution functions thereby
take automatically care that just those final states are integrated over which are compatible with
the given distribution. We first note the identity

n∏

i=1

dµ(pi) ≡
∫

d4P

(2π)4

n∏

i=1

dµ(pi) (2π)4 δ(4)(
∑

pi − P )

If this is inserted in Eq. (3.48), because of the support properties of the distributions ϕ̃i we have
P ' P̄ = q̄1 + q̄2 such that the δ–function can be take out from the integral:

dP =

∫
d4P

(2π)4
(2π)4 δ(4)(

∑

pi − P ) P (ϕ1, ϕ2, p1, · · · , pn) dµ(p1) · · · dµ(pn)

=

∫
d4P

(2π)4
(2π)4 δ(4)(

∑

pi − P ) |Tni|2 dµ(p1) · · · dµ(pn)

×
∫

d4x d4y eiP (x−y)ϕ1(x)ϕ2(x)ϕ∗1(y)ϕ∗2(y)

' (2π)4 δ(4)(
∑

pi − P̄ ) |Tni|2 dµ(p1) · · · dµ(pn)

×
∫

d4P

(2π)4

∫

d4x d4y eiP (x−y)ϕ1(x)ϕ2(x)ϕ∗1(y)ϕ∗2(y) .

The integral over P yields a δ–function in configuration space and we may use Eq. (3.46) to
obtain

∫
d4P

(2π)4

∫

d4x d4y eiP (x−y)ϕ1(x)ϕ2(x)ϕ∗1(y)ϕ∗2(y)

=

∫

d4x |ϕ1(x)|2 |ϕ2(x)|2 =
1

2ω̄q12ω̄q2

∫

d4x ρ1(x) ρ2(x)

in terms of the particle density functions rho(x). As a final result we have

dP ' (2π)4 δ(4)(
∑
pi − P̄ )

2ω̄q12ω̄q2
|Tfi|2

n∏

i=1

dµ(pi) ×
∫

d4x ρ1(x) ρ2(x) (3.49)

This is the differential probability for the scattering into n–particle final states with momenta p i
in the momentum space elements d3pi which are allowed by the resolution of the beam and the
target, integrated over time. The counting rate is in fact given by

dP

dt
' dn =

(2π)4 δ(4)(
∑
pi − P̄ )

2ω̄q12ω̄q2
|Tfi|2

n∏

i=1

dµ(pi) ×
∫

d3x ρ1(t, ~x ) ρ2(t, ~x ) .

The relativistically invariant differential cross section Eq. (3.35)

dσ =
(2π)4δ(4) (Pf − Pi)

2
√

λ
(
s,m2

1,m
2
2

) | Tfi |2 dµ(p′1) · · · dµ(p′n)
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is defined as the ratio of the counting rate and the particle current density j. The latter is given
by

j =
2
√

λ
(
s,m2

1,m
2
2

)

2ω̄q12ω̄q2
·
∫

d3x ρ1(x) ρ2(x)

where ρ1(x) is the beam particle density and ρ2(x) the target particle density.

In the c.m. frame ~q1 = −~q2 = ~q,
√
s = E1 +E2 and λ = 2|~q |√s. Thus the factor 2

√
λ/(2ω̄q12ω̄q2),

with ω̄qi = Ei, reads |~q | ( 1
E1

+ 1
E2

) = vin, which is the relative velocity of the incident particles.
Thus

j = vin

∫

d3x ρ1(x) ρ2(x) .

Interpretation: In the laboratory system Φ(t) = vin ρ1(t, ~x ) is the incoming flux of particles,
the number of particles which hit the target per unit area and per unit time, at position ~x at
time t. In other words, vin ρ1(x)dAdt is the number of beam particles, which hit within the time
interval dt the area element dA.

ρ2(t, ~x) is the target particle density. In other words, ρ2(x)dA d` is the number of target particles
in the volume element dV = dA d`, at position ~x at time t.

Let σfi be the effective area of a target particle for scattering of a beam particle in the process
|i >→ |f > then the number of beam particles per unit time which are scattered by the target
into the state |f > is

dNfi(t)

dt
= nfi(t) = σfi vin

∫

d3x ρ1(t, ~x ) ρ2(t, ~x )

or

nfi(t) = σfi j(t)

Let

Nfi(t) =

∫ t

t0
dt′ nfi(t

′)

be the total number of events during the period (t, t0) into the state |f >, then

σfi =
Nfi(t)

vin
∫ t
t0
dt′ d3x ρ1(t′, ~x ) ρ2(t′, ~x )

or for the differential cross section

dσfi =
dNfi(t)

vin
∫
d4x ρ1(x) ρ2(x)

=
dnfi
j

which is independent on t, because
∫

d4x · · · =
∫ t

t0
dx0

∫

V
d3x · · ·

extends over the duration of the experiment and spatially over the whole target volume. The
only important condition is that

∆x� h̄/∆p

∆t� h̄/∆E .
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In an idealized situation, where the particle densities would be constant in space and time we
would obtain

nfi = σfi vin · V · n1n2 = σfi
vin
V

N1N2 = σfi j

with

j =
vin
V

N1N2

Summary of the relevant assumptions which go into the derivation of the cross-section formulae:

• All particles in the beam have practically the same momentum q̄1 and similarly the target
particles have momenta strongly peaked near q̄2. Consequently, the relative velocity vin is
practically the same for all collisions.

• The total number of events Nfi must be sufficiently large, such that the result is statistically
significant.

• The volume and the duration of the experiment must be sufficiently large, relative to the
quantum fluctuations and range of the interactions.

Note: There are additional conditions, even for short ranged interactions as we have always
assumed in the above derivations. As an example we mention that the target should be very
thin such that multiple scattering is excluded. In colliders beam–beam interaction may lead to
additional complications etc. The theoretician usually leaves these problems to the experimenters
and do not think about them.
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3.6 Dispersion relations, spectral representation

Here we consider some general properties of two–point functions of field operators. By “general
properties” we mean properties which rely on basic features of any QFT, independent of a specific
form of the interaction Lagrangian and which do not require to resort to perturbation theory.
We first derive some results for the simplest case of a scalar field ϕ(x) and its two–point function
W (x − y) =< 0|ϕ(x)ϕ(y)|0 >, which is often called Wightman function. We shall assume the
theory to be regularized in some appropriate way, such that it is well defined. The Hilbert space
associated with the fields may considered to be spanned by a complete set of eigenstates of the
four–momentum operators Pµ

Pµ|p, α〉 = pµ|p, α〉
with α the additional quantum numbers. The basic properties (P) the following considerations
rely on are the following:

P1) completeness:
∑

α
1

(2π)3
∫
d4p|p, α〉〈p, α| = 116

P2) spectral condition: p2 ≥ 0; p0 ≥ 0

P3) translation invariance of the vacuum: Pµ|0 >= 0

P4) translation invariance

P5) L–invariance

P6) parity invariance (optional QED, QCD)

We now consider the above mentioned two–point function and insert a complete set of interme-
diate states:

< 0|ϕ(x)ϕ(y)|0 > =
∑

α

1

(2π)3

∫

d4p < 0|ϕ(x)|p, α〉〈p, α|ϕ(y)|0 >

=
∑

α

1

(2π)3

∫

d4p | < 0|ϕ(0)|p, α〉|2 e−ip(x−y)

where we used translational invariance (2.19) U(a) = eiaµP
µ

the translation operator

eiaµP
µ
ϕ(x) e−iaµP

µ
= ϕ(x + a)

and the transformation law (2.2)

U(a)|p, α〉 = eiap|p, α〉 ; U(a)|0 >= |0 >

of the eigenstates of Pµ.

< 0|ϕ(x)|~p, α〉 = < 0|U(x) ϕ(0)U−1(x)|~p, α〉
= < 0|ϕ(0)|~p, α〉e−ixp

etc.
We define the spectral function

ρ̃(p)
.
=
∑

α

| < 0|ϕ(0)|p, α〉|2 (3.50)

which has the properties

16Since the states in general are not free one particle states the completeness relation (2.13) has to be generalized.

The completeness integral also includes the integration over p0 since we do not have p0 =
√

m2 + ~p 2 any longer.
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1) positivity: ρ̃(p) ≥ 0

2) spectral condition: ρ̃(p) 6= 0 ⇔ p2 ≥ 0 , p0 ≥ 0

3) L–invariance: ρ̃(p) = ρ̃(Λp)

The latter property implies with U = U(Λ) see (2.2)

< 0|ϕ(0)|p, α〉 =< 0|U+Uϕ(0)U+U |p, α〉
= < 0|ϕ(0)|Λp, α′〉Dα′α =< 0|ϕ(0)|p̄, ᾱ〉

where |p̄, ᾱ〉 = |Λp, α′〉Dα′α is a new basis, in which we again have completeness since we per-
formed a unitary transformation (we have used Uϕ(0)U+ = ϕ(0) (scalar field) and U |0 >= |0 >
etc.).

As a consequence ρ̃(p) must be a function of p2 only:

ρ̃(p) = Θ(p0) Θ(p2) ρ(p2) (3.51)

and we may write

Θ(p2) =

∞∫

0

dm2δ(p2 −m2) .

Thus for the Wightman function

W (x− y) =

∞∫

0

dm2
∫

d4p ρ(p2) δ(p2 −m2) Θ(p0) e−ip(x−y) (3.52)

or utilizing the invariant function (3.26)

i∆+(x− y;m2) = (2π)−3
∫

d4pΘ(p0) δ(p2 −m2) e−ip(x−y)

we finally have

W (x− y) = i

∞∫

0

dm2ρ(m2)∆+(x− y;m2) (3.53)

which is the wanted spectral representation for the scalar Wightman function with spectral
density ρ(m2). It generalizes the i∆+(x − y;m2) invariant function of a free field to the corre-
sponding invariant function for an arbitrary interacting field.

Using the following relations between the invariant functions

∆−(x;m2) = −∆+(−x;m2)

∆(x;m2) = ∆+(x;m2) + ∆−(x;m2)

∆F (x;m2) = Θ(x0) ∆+(x;m2)−Θ(−x0) ∆−(x;m2)
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we easily find

< 0|ϕ(x)ϕ(y)|0 > = i

∞∫

0

dm2ρ(m2)∆+(x− y;m2)

< 0| [ϕ(x)ϕ(y)] |0 > = i

∞∫

0

dm2ρ(m2)∆(x− y;m2) (3.54)

< 0| T (ϕ(x)ϕ(y)) |0 > = i

∞∫

0

dm2ρ(m2)∆F (x− y;m2) .

The vacuum expectation value of the commutator < 0| [ϕ(x)ϕ(y)] |0 > for interacting field van-
ishes for space-like separation (x−y)2 < 0. This directly follows from the spectral representation
and by the fact that ∆(x−y;m2) is L–invariant and vanishes at x0 = y0: ∆(x− y;m2)

∣
∣
x0=y0 = 0.

The mass spectrum represented by the eigenvalues of Pµ is displayed in 2.1. Here we assume ϕ(x)
to be a neutral pseudo-scalar field which describes the neutral pion of mass µ. Then automatically
< 0|ϕ(0)|2n >= 0 for n = 0, 1, 2, · · · due to parity mismatch between field and states, i.e., parity
only allows states with an odd number of pions. The continuous part of the spectrum thus starts
at p2 ≥ (3µ)2. The one particle intermediate states which are on the mass shell p2 = µ2 may be
taken into account separately as a contribution to the spectral function ρ which is proportional
to δ(p2 − µ2), thus

ρ(p2) = | < 0|ϕ(0)|p; p2 = µ2〉|2 δ(p2 − µ2) +

∫
∑

α, continuum

| < 0|ϕ(0)|p, α〉|2

= Z3 δ(p
2 − µ2) + σ(p2)

Z3 is the square of the ϕ wave function renormalization constant. The full (interacting) Feynman
propagator thus takes the form

< 0| T (ϕ(x)ϕ(y)) |0 >= i Z3 ∆F (x− y;µ2) + i

∞∫

(3µ)2

dm2σ(m2)∆F (x− y;m2) . (3.55)

If we require the canonical commutation relations to hold

[ϕ̇(x), ϕ(y)]|x0=y0 = −i δ3(~x− ~y)

< 0| [ϕ(x)ϕ(y)] |0 > = i

∞∫

0

dm2ρ(m2)∆(x− y;m2)

∂0 ∆(x− y;m2)
∣
∣
∣
x0=y0

= −δ3(~x− ~y)

implies
∞∫

0

dm2ρ(m2) = Z3 +

∞∫

(3µ)2

dm2σ(m2) = 1 (3.56)

which implies

0 ≤ Z3 ≤ 1 (3.57)
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3.6.1 Bare and physical mass

Here the dynamics comes into play. The equations of motion have the form

(

2 + µ2
0

)

ϕ(x) = j(x)

with a scalar current j(x) describing the interaction. When parity is conserved and ϕ is a
pseudo-scalar field the corresponding Lagrangian term would read Lint = − g0

4!ϕ
4 and hence

j(x) = ∂Lint
∂φ(x) = − g0

3!ϕ
3. In the presence of interactions the parameters are bare parameters in first

palace (see Sec. 3.1). On the other hand, the mass in the spectral representation is the physical
mass, i.e.,

(

2 +m2
)

∆(x;m2) = 0

Applying the equation of motion to

< 0| [ϕ(x)ϕ(y)] |0 >= i

∞∫

0

dm2ρ(m2)∆(x− y;m2)

we obtain

< 0| [j(x)ϕ(y)] |0 >= i

∞∫

0

dm2ρ(m2) (µ2
0 −m2) ∆(x− y;m2)

which does not vanish because of the mismatch between the bare and the physical mass. If we
take the time derivative at x0 = y0 using the property of ∆(x− y;m2) we find

∞∫

0

dm2ρ(m2) (µ2
0 −m2) = 0 (3.58)

Together with ρ(m2) = Z3 δ(m
2 − µ2) + σ(m2) and

∞∫

0
dm2ρ(m2) = 1 we obtain

µ2
0 = Z3µ

2 +

∞∫

(3µ)2

dm2m2 σ(m2)

µ2
0 − µ2 =

∞∫

(3µ)2

dm2 (m2 − µ2) σ(m2)

which implies

µ2
0 > µ2 (3.59)

We may give the following interpretation to the above result:

µ = µ0 +M + ε
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µ the physical mass

µ0 the bare mass

M the contribution of the cloud of virtual excitations

ε the binding energy

By consideration of the full propagator im Fourier space

G̃(k2) =

∞∫

0

dm2 ρ(m2)

k2 −m2 + iε
=

Z3

k2 − µ2 + iε
+

∞∫

(3µ)2

dm2 ρ(m2)

k2 −m2 + iε

we learn that in the region of

• small k: main contributions from k2 ∼ µ2; µ dressed (i.e. physical) mass cloud has time
to follow the motion of the particle.

• large k: using (3.58) and (3.56) we find
∞∫

0
dm2 ρ(m2)

k2−m2+iε =
∞∫

0
dm2 ρ(m2)

k2

{

1 + m2

k2 + · · ·
}

=

1
k2

{

1 +
µ20
k2 + · · ·

}

= 1
k2−µ20+iε

which shows that the bare mass is relevant.

This is similar to the charge screening in QED: at long distances the vacuum polarization causes
the screening of the charge due to virtual pairs (dipoles) adjusting in the field of the charge. If
one pores closer and closer with higher energies one is penetrating the cloud of virtual pairs and
more and more sees the bare charge.

3.6.2 Analyticity and dispersion relations

The analytic behavior of free fields has been discussed earlier in Sec. 3.4.3. Here with the help
of the spectral decomposition (3.55) we may extend the consideration to interacting fields. We
consider the time–ordered product

G(x− y) =< 0| T (ϕ(x)ϕ(y)) |0 >= i

∞∫

0

dm2ρ(m2)∆F (x− y;m2)

and

∆F (z) = (2π)−4
∫

d4q
e−iqz

q2 −m2 + iε
(ε→ +0) .

we get

G̃(k2) =
Z3

k2 − µ2 + iε
+

∞∫

(3µ)2

dm2 σ(m2)

k2 −m2 + iε

which we consider now for arbitrary complex ζ = k2

G̃(ζ) =
Z3

ζ − µ2
+

∞∫

(3µ)2

dm2 σ(m2)

ζ −m2
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µ2 (3µ)2

Pole Discontinuity (Cut)

Figure 3.5: Analyticity domain of the full Feynman propagator of a pseudo scalar field

The domain of analyticity is displayed in Fig. 3.5 17

Apart from a pole at µ2 and a cut staring at (3µ)2 along to positive real axis the function is
analytic in the entire ζ–plane.

Let us look at the decomposition of G̃(ζ) into real and imaginary part: we write ζ = ξ + iη and
use 1

a±ib = a∓ib
a2+b2 to obtain

G̃(ξ + iη) =
Z3 (ξ − µ2)

(ξ − µ2)2 + η2
+

∞∫

(3µ)2

dm2σ(m2) (ξ −m2)

(ξ −m2)2 + η2

−iη







Z3

(ξ − µ2)2 + η2
+

∞∫

(3µ)2

dm2 σ(m2)

(ξ −m2)2 + η2







(3.60)

applying

lim
ε→0

ε

x2 + ε2
= πδ(x)

this explicitely shows that zeros only show up on the real positive axis. The discontinuity (jump)
on the cut is

G̃(ξ + iη)− G̃(ξ − iη) = −2πi
(

Z3 δ(ξ − µ2) + Θ(ξ − (3µ)2) σ(ξ)
)

(3.61)

which means

lim
η→+0

Im G̃(ξ + iη) = −π
(

Z3 δ(ξ − µ2) + Θ(ξ − (3µ)2) σ(ξ)
)

17The perturbation expansion with the P conserving interaction Lagrangian Lint = − g
4!
ϕ4 invariant under

ϕ → −ϕ starts as

G(2) = = + + · · ·

which exhibits the free O(1) one–particle line and as an O(g2) contribution a diagram exhibiting a 3–particle cut
starting at 3µ. In case a P–violating term ∆Lint = − gv

3!
ϕ3 is present which breaks the Z2–symmetry ϕ→ −ϕ the

expected 2–particle cut diagram also is present with a cut starting at 2µ:

G(2) = = + + · · ·
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and therefore

− 1

π

∫

dξ′
Im G̃(ξ′)
ξ − ξ′ + iε

=
Z3

ξ − µ2 + iε
+

∞∫

(3µ)2

dξ′
σ(ξ′)

ξ − ξ′ + iε
= G̃(ξ + iε) .

Thus, utilizing ( P = principal value)

1

x± iε = P
1

x
∓ iπδ(x) (3.62)

we arrive at

G̃(k2) = − 1

π

∫

dk
′2 Im G̃(k

′2)

k2 − k′2 + iε

=
P

π

∫

dk
′2 Im G̃(k

′2)

k′2 − k2
+ iIm G̃(k2)

which leads us to the final result, the wanted dispersion relation (DR)

Re G̃(k2) =
1

π
P

∫

dk
′2 Im G̃(k

′2)

k′2 − k2
(3.63)

which in mathematics is called a Hilbert transformation. It tells us that the analytic function
G̃(ζ) is uniquely determined in terms of its imaginary part along the positive real axis, provided
the dispersion integral converges. Often the integral in fact does not converge because the behavior
of the integral at k

′2 →∞ does not fall off fast enough. We then have a typical ultraviolet problem
and hence one ore more subtractions may be required. Suppose, e.g., the dispersion integral is
logarithmically divergent. Then one subtraction cures the problem:

Re G̃(k2)− G̃(0) =
1

π
P

∫

dk
′2 Im G̃(k

′2)

k
′2 − k2

− 1

π
P

∫

dk
′2 Im G̃(k

′2)

k
′2

=
k2

π
P

∫

dk
′2 Im G̃(k

′2)

k′2 (k′2 − k2)

where the new integral is convergent now. The prize we have to pay is the free subtraction constant
G̃(0) which remains undetermined by the DR, it rather must be fixed by a renormalization
condition.

3.6.3 Causality and analyticity

In the above derivation of the DR one important aspect, namely, the physics origin of analyticity
has not been made very explicite. Here we would like to show that it actually derives from the
classical principle of cause and effect. We consider a physical system

The principle of cause and effect may be put into precise mathematical form by the following
requirements (and the consequences thereof):

[1) internal properties of system constant in time

[2) g(t) causally dependent of f(t′)
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K(t, t′)
cause/input effect/output

f(t′) g(t)

Figure 3.6: The principle of cause and effect.

[3) g(t) linear functional of f(t′)

which translates into:

• 1) 7→ K(t, t′) = K(t− t′)

• 2) 7→ K(t− t′) = 0 for t′ > t

• 3) 7→ g(t) =
∫
dt′K(t− t′) f(t′)

The last assumption seems natural, as it allows for a general consideration. There is no theory
of non-linear systems and only specific examples could be considered otherwise.

The consequences in Fourier space may be easily worked out: [1)] implies that K only depends on
one variable τ = t− t′ such that its Fourier transform reads K̃(ω) =

∫
K(τ)eiωτ . The convolution

integral [3)] then translates into g̃(ω) = K̃(ω) f̃(ω). The crucial property in our context is [2)]
which implies that ω may be analytically continued to complex values ω = ξ + iη! The reason is
that

K̃(ω) =

+∞∫

−∞
dτK(τ) eiωτ =

+∞∫

0

dτK(τ) e−ητ eiξτ

such that K̃(ω) is a regular analytic function in the upper half ω–plane.

C
R

ω ⊗

ω′

C
′

Re ω

Im ω

Figure 3.7: Analyticity domain and Cauchy contour for the causal transmission function K̃(ω)

We then may apply Cauchy’s theorem and write

K̃(ω) =
1

2πi

∫

C
dω′

K̃(ω′)
ω′ − ω +

1

2πi

∫

C′
dω′

K̃(ω′)
ω′ − ω
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with ω a point inside the contour C but outside the second contour C ′. Thus the second integral
does not contribute but it will play a role when we are going to take a limit R, R ′ → ∞ with
the paths parallel to the real axis at the same time approaching the real axis and thus squeezing
ω to become real. Thats what we are going to do now. Suppose K̃(ω) falls off sufficiently fast at
infinity18 in the upper half plane Imω′ > 0, such that we may take the limit R(R′)→∞ and the
contributions from the half–circles are vanishing: then we arrive at

K̃(ω) =
1

2πi

+∞∫

−∞
dω′

K̃(ω′)
ω′ − ω − iε +

1

2πi

+∞∫

−∞
dω′

K̃(ω′)
ω′ − ω + iε

with the iε–prescription such that the path does not cross the ω–pole. As a result the physical
(real ω) transfer function K̃(ω) is a boundary value

K̃(ξ) = lim
ε→+0

K̃(ξ + iε) (3.64)

of a regular analytic function which is analytic in Im ω > 0. Applying now (3.62), which implies

1

x− iε +
1

x+ iε
= 2

P

x

we arrive at (ω real)

K̃(ω) = − i
π

P

+∞∫

−∞
dω′

K̃(ω′)
ω′ − ω

which we may write as our main result as follows:

Re K̃(ω) =
1

π
P

+∞∫

−∞
dω′

Im K̃(ω′)
ω′ − ω

Im K̃(ω) = − 1

π
P

+∞∫

−∞
dω′

Re K̃(ω′)
ω′ − ω

(3.65)

and hence the validity of the dispersion relations reflects the causality of a physical system. The
relations (3.65) say that Re K̃(ω) and Im K̃(ω) are Hilbert transforms of each other.

The heuristic discussion presented above may be made mathematically rigurous and is known as
Titcharsh’s theorem. Losely speaking it states that the following three properties of K̃(ω) are
equivalent:

(a) K̃(ω) obeys the DR (3.65)

(b) K̃(ω) has a Fourier transform K(τ) vanishing for τ < 0

(c) K̃(ω) is holomorphic in Re ω > 0.

18i.e., we assume K̃(ω) to obey an un-subtracted DR, otherwise the appropriate number of subtractions have to
be applied.
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3.6.4 An example from classical optics

Let us consider a polarizable medium in a electromagnetic field. The function f here is the electric
field, the transmission function K is the susceptibility and g is the polarization. We have the
relation

P (ω) = ε0 (ε(ω)− 1) E(ω) ≡ K̃(ω) E(ω)

which identifies the transmission function K. ε0 is the permittivity of the vacuum, ε(ω) = n2(ω)
the dielectric constant of the medium and n is the refraction index. Also here causality implies
the validity of DR’s. They read

Re n2
1(ω)− 1 =

1

π
P

∞∫

−∞
dω′

Im n2
2(ω′)

ω′ − ω

Im n2
2(ω) = −ω

π
P

∞∫

−∞
dω′

Re n2
1(ω′)− 1

ω′ − ω

which exhibits the causality of the polarizability of matter in an electric field.

What causality means may be illustrated by the following reasoning about a light-flash in a dark
room and the possibility to “see in the dark” before the light-flash was on:

Let us consider a light-flash at time t = 0

δ(τ) =
1

2π

∫

dωeiωt

t0−t

all frequencies are contained as ever lasing waves in such a way that they cancel each other except
at the instant t = 0. All the Fourier components are present before t = 0. With the help of colored
glasses it should be possible to see the Fourier components at time -t, say. As a color filter we
consider

x0

A wave traveling along the x–axis has the form

f(x, t) =
1

2π

∫

dωe−iω (t−n(ω)x
c

)

=
1

2π

∫

dω
{

e−ωn2(ω)x
c e−iω (t−n1(ω)x

c
)
}

which is analytic in the upper half ω–plane. What we have to show:

f(x, t) = 0 ∀ t < 0 .
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We may write

f(x, t) = lim
R→∞

1

2π

∫

C
dωeg(x,t;ω)

with a contour as displayed in Fig. 3.7 and

g(x, t;ω) = −iω (t− n1(ω)
x

c
)− ωn2(ω)

x

c
.

We note that g1 ≡ Re g → −∞ for t < 0. Writing ω = R cosφ + iR sinφ (0 ≤ φ ≤ π)for the arc
of the integration path C we have

g1 = R sinφ

(

t− n1(ω)
x

c

)

−R cosφn2(ω)
x

c
.

For the DR the behavior of n1 and n2 for large R is crucial:

n1(ω) ∼ 1 +O(R−2) ; n2(ω) ∼ O(R−1)

such that

g1 ∼ R sinφ

(

t− x

c

)

− cosφ
x

c

and hence we have

lim
R→∞

g1(x, t;ω) = −∞ ∀ t <
x

c
.

This result is even stronger than required. No signal can be obtained at speed faster than light.
Because of causality glasses must have absorption (n2(ω)) in addition to dispersion (transmission)
(n1(ω)).

3.6.5 Vector fields, vector currents

Let Aµ(x) be a contravariant vector field. We first want to find a representation for the two–
point Wightman function < 0|Aµ(x)Aν(y)|0 >. We may proceed as in the scalar case. The basic
assumptions are the same.

We now consider the above mentioned two–point function and insert a complete set of interme-
diate states:

< 0|Aµ(x)Aν(y)|0 > =
∑

α

1

(2π)3

∫

d4p < 0|Aµ(x)|p, α〉〈p, α|Aν(y)|0 >

=
∑

α

1

(2π)3

∫

d4p < 0|Aµ(0)|p, α〉〈p, α|Aν(0)|0 > e−ip(x−y)

where we used translational invariance.

We define the spectral function

ρ̃µν(p)
.
=
∑

α

< 0|Aµ(0)|p, α〉〈p, α|Aν(0)|0 > (3.66)

which has the properties
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1) L–transformations: ρ̃ρσ(p) is a second rank tensor

ρ̃µν
′
(p) = Λµ ρ Λν σ ρ̃

ρσ(p)

and thus must have the form

ρ̃µν(p) = −ρ̃1 g
µν + ρ̃2 p

µpν

where ρ̃1 and ρ̃2 are scalar functions depending on p2 only

2) spectral condition: ρ̃(p) 6= 0 ⇔ p2 ≥ 0 , p0 ≥ 0

3) current conservation/transversality: choose tensor coefficient functions ρ̃1 and ρ̃2 = ρ̃0 +
ρ̃1/p

2 such that ∂µA
µ = 0 implies ρ̃0 = 0

ρ̃µν(p) = Θ(p0)

{[
pµpν

p2
− gµν

]

ρ̃1(p2) + pµpνρ̃0(p2)

}

(3.67)

As before we may write

ρ̃i(p
2) =

∞∫

0

dm2 ρ̃i(m
2) δ(p2 −m2) ,

furthermore pµ = i∂µx when acting on e−ip(x−y) and we obtain (see 3.26)

< 0|Aµ(x)Aν(y)|0 > =
1

(2π)3

∫

d4pΘ(p0)

{[
pµpν

p2
− gµν

]

ρ̃1(p2) + pµpν ρ̃0(p2)

}

e−ip(x−y)

= −i
∞∫

0

dm2
{

ρ̃1(m2)

(

gµν +
∂µ∂ν

m2

)

+ ρ̃0(m2) (∂µ∂ν)

}

∆+(x− y;m2)

and corresponding expressions follow for the commutator (∆+(x−y;m2)→ ∆(x−y;m2)) as well
as for the Feynman propagator (∆+(x− y;m2)→ ∆F (x− y;m2)).

3.6.6 Vacuum polarization, correlator of two electromagnetic currents

The fundamenta electromagnetic fine structure constant α in fact is a function of the energy scale
α → α(E) of a process due to charge screening. The latter is a result of the fact that a naked
charge is surrounded by a cloud of virtual particle–antiparticle pairs (dipoles) which line up in
the field of the central charge and such lead to a vacuum polarization which screens the central
charge. From long distances (classical charge) one thus sees less charge than if one comes closer,
such that one seen an increasing charge with energy.

The vacuum polarization mainly affects the photon propagator. The full or dressed propagator is
given by the geometrical progression of self–energy insertions −iΠγ(q2) (Dyson summation) (for
simplicity we consider the Feynman gauge and omit an overall metric tensor gµν)

= + + +···
γ γ γ

−i Dγ(q2) ≡ −i
q2

+
−i
q2

(−iΠγ)
−i
q2

+
−i
q2

(−iΠγ)
−i
q2

(−iΠγ)
−i
q2

+ · · ·

=
−i
q2

{

1 +

(−Πγ

q2

)

+

(−Πγ

q2

)2

+ · · ·
}

=
−i
q2







1

1 +
Πγ

q2






=

−i
q2 + Πγ(q2)
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By U(1)em gauge invariance the photon remains massless and hence we have Πγ(q2) = Πγ(0) +
q2 Π′γ(q2) with Πγ(0) ≡ 0. As a result we obtain

−i Dµν
γ (q2) = −igµν Dγ(q2) + gauge terms =

−igµν
q2 (1 + Π′γ(q2))

+ gauge terms .

Including a factor e2 and considering the renormalized propagator ( wave function renormalization
factor Z) we have

e2Dµν(q) =
gµν e

2 Z

q2
(

1 + Π′γ(q2)
) + gauge terms

which in effect means that the charge has to be replaced by a running charge

e2 → e2(q2) =
e2Z

1 + Π′γ(q2)
.

The wave function renormalization factor Z is fixed by the condition that at q2 → 0 one ontains
the classical charge (charge renormalization in the Thomson limit). Thus the renormalized charge
is

e2 → e2(q2) =
e2

1 + (Π′γ(q2)−Π′γ(0))
(3.68)

where the lowest order diagram in perturbation theory which contributes to Π ′γ(q2) is the follow-
ing: γ γ

f̄
f

which describes virtual creation and reabsorption of fermion pairs γ∗ → e+e−, µ+µ−, τ+τ−, uū, dd̄,
· · ·→ γ∗

In terms of the fine structure constant α = e2

4π (3.68) reads

α(q2) =
α

1−∆α
; ∆α = −Re

(

Π′γ(q2)−Π′γ(0)
)

.

The various contributions to the shift in the fine structure constant come from the leptons (lep
= e, µ and τ) the 5 light quarks (u, b, s, c, and b and the corresponding hadrons = had) and
from the top quark:

∆α = ∆αlep + ∆(5)αhad + ∆αtop + · · ·

Also W–pairs contribute at q2 > M2
W . While the other contributions can be calculated order

by order in perturbation theory the hadronic contribution ∆(5)αhad exhibits low energy strong
interaction effects and hence cannot be calculated by perturbative means. Here the dispersion
relations play a key role. We thus consider in the following the hadronic contribution

had

1pi blob

Π′

had
(q2) =

The one particle irreducible (1pi) blob (diagrams which cannot be cut into two disconnected parts
by cutting a single photon line) at low energies exhibits intermediate states like π0γ, ρ, ππ, ππγ, ππZ,
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· · · , ππH, · · · (at least one hadron plus any strong, electromagnetic or weak interaction contribu-
tion)

The vacuum expectation value of the time ordered product of two electromagnetic currents has
the form given above for general vector fields

< 0|Tjµem(x)jνem(0)|0 > = −i
∞∫

0

dm2 ρ̃(m2)
(

m2 gµν + ∂µ∂ν
)

∆F (x− y;m2) , (3.69)

however, due to vector current conservation ∂µj
µ
em(x) = 0 only the transversal amplitude is

present: thus ρ̃0 ≡ 0 and we denote ρ̃1 by ρ̃, simply. In Fourier space

i

∫

d4xeiqx < 0|Tjµem(x)jνem(0)|0 > = −
(

q2gµν − qµqν
)

Π′γ(q2) (3.70)

=

∞∫

0

dm2 ρ̃(m2)
(

m2 gµν − qµqν
) 1

q2 −m2 + iε

where Π′γ(q2) defines the photon vacuum polarization function. By taking imaginary parts
we have

Im Π′γ(q2) = π ρ̃(q2) (3.71)

Again causality implies analyticity and the validity of a dispersion relation. In fact the electromag-
netic current correlator exhibits a logarithmic UV singularity and thus requires one subtraction
such that from (3.71) we find

Π′γ(q2)−Π′γ(0) =
q2

π

∞∫

0

ds
Im Π′γ(s)

s (s− q2 − iε) (3.72)

Unitarity (3.19) implies the optical theorem (see Fig. 3.8), which tells us that the imaginary part
of the photon propagator is proportional to the total cross section σtot(e

+e− → γ∗ → anything)
(“anything” means any possible state). The precise relationship reads

Im Π′γ(s) =
1

12π
R(s) (3.73)

where

R(s) =
σtot

4πα2

3s

(3.74)

The shift of the fine structure constant α due to the vacuum polarization effects is thus given by

∆(5)αhad = −αs
3π

(

P

∫ E2
cut

4m2
π

ds′
Rdata
γ (s′)

s′(s′ − s) + P

∫ ∞

E2
cut

ds′
RQCD
γ (s′)

s′(s′ − s)

)

where

Rγ(s) ≡ σ(e+e− → γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)
= 12πImΠ′γ(s) .
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=
∑

n m

=
∑

n

Im
A, p A, p

2→→→
→

Figure 3.8: Optical theorem (3.19) for the photon propagator. The cut lines are on-shell particles
1

q2−m2+iε → −iπδ(q2 −m2) integrated out over phase space. It hence is proportional to |T |2 and

thus the the total cross–sextion σtot(s)

The optical theorem for the propagator is a special case of the more general version valid for
scattering amplitudes depicted in Fig. 3.3.
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4 Quantum Electrodynamics

Quarks and leptons, the constituents of matter, interact via gauge fields. Quantum electrody-
namics (QED) describes the interaction of charged particles with the photon, which is described
by an Abelian gauge field Aµ(x). As we shall see the form of the interaction may be under-
stood as a consequence of a local symmetry: local gauge invariance (Weyl 1929). QED has
been tested with extreme accuracy at its quantum effects level (Lamb shift, anomalous magnetic
moments) and is the prototype of a very successful quantum field theory.

We assume the reader to be familiar with QED. Here we give a short account of its basic features
only. The aim is to remind the reader of some basic problems which one encounters with massless
spin 1 fields and how they are solved. Similar problems will show up in non-Abelian gauge theories
which we will considered at a later stage.

We first consider the free photon field Aµ(x) and a free electron field ψα(x). The independent
free Lagrangian densities read:

L0A = Lfree photon = −1
4 : FµνF

µν :

L0ψ = Lfree electron = : ψ̄α (iγµ∂µ −m)αβ ψβ :

The “: · · · :” prescription means normal ordering (see Sec. 3.4.2) i.e. represent the fields in terms
of annihilation and creation operators and commute (anticommute) all creation operators to the
left of the annihilation operators. The c-number commutator (anticommutator) terms are omitted
(subtracted)19. By this prescription we have subtracted the vacuum density such that now

< 0 | LA,ψ0 (x) | 0 >= 0 .

Notice that the action i
∫
d4xL(x), for the infinite space-time volume, only may exist after sub-

traction of the vacuum density.

The photon field determines the antisymmetric electromagnetic field strength tensor

Fµν(x) = ∂µAν − ∂νAµ , (4.1)

which is gauge invariant – i.e. an Abelian gauge transformation

Aµ → Aµ − ∂µα(x) , (4.2)

where α(x) is an arbitrary scalar function, leaves Fµν(x) invariant. As we know, if we represent
Fµν(x) as a curl of a vector-potential Aµ, Eq. (4.1), the homogeneous Maxwell equation

∂µF̃
µν = 0 with F̃ µν =

1

2
εµνρσFρσ (4.3)

is automatically satisfied. The pseudo-tensor (parity odd) F̃ µν is the dual of F µν .

We now consider the free field equations.

• Field equation for Aµ(x)

19For operators which are bilinear in the (free) fields, the normal ordering prescription is equivalent to the
subtraction of the vacuum expectation value. For higher powers in the fields the relationship between ordinary
products and normal products is discussed in Sec. 3.4.2.
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The free photon is a solution of the free Maxwell equation, which is the Euler Lagrange equation
for the free photon Lagrangian:

∂µ
∂L0A

∂∂µAν
=
∂L0A

∂Aν
⇒ ∂µF

µν(x) = 0

or, in terms of the vector-potential,

2Aµ(x)− ∂µ (∂νA
ν(x)) = (2gµν − ∂µ∂ν) Aν = 0

If we try to solve this latter equation a fundamental problem shows up. This equation of motion
does not determine the field Aµ. The differential operator 2gµν − ∂µ∂ν has no inverse, since
φµ = ∂µα(x) is a solution with eigenvalue zero.

There is a simple reason for the problem. The field Aµ is not an observable and therefore
has unphysical properties. Aµ is supposed to describe a massless spin 1 particle, which has two
physical degrees of freedom only, the two transversely polarized states. Therefore two components
of Aµ must be redundant. In particular, Aµ has a scalar component ∂µA

µ = φ which cannot be
physical and must be required to vanish or to decouple from the physical degrees of freedom.

An idea of how to cure the problem we get if we notice that

L0A = −1

4
FµνF

µν

is a degenerate quadratic form in Aµ, which means that a change of Aµ does not necessarily change
L0A. In particular we know that a gauge transformation of Aµ leaves L0A unchanged. Obviously,
in order to obtain an equation of motion which determines Aµ uniquely we have to break this
degeneracy. This forces us to add a gauge dependent term to the invariant Lagrangian. Doing
so, we fix a particular gauge and loose manifest gauge invariance.

In order to get an idea of what kind of term we may add in order to break the gauge symmetry of
the Lagrangian without affecting the physics, let us consider the the problem on the level of the
field equation. This is a second order linear partial differential equation. Since it is not sufficient
to determine Aµ uniquely we need some supplementary condition C(A) = 0. The latter should be
linear, in order to keep the problem linear, and covariant, both requirements are not mandatory,
however. A possibility, actually the only covariant and linear choice, is the use of the Lorentz
gauge condition

∂µA
µ(x) = 0

as a subsidiary condition. Strictly speaking this condition does not determine uniquely a gauge,
because we still can perform a gauge transformation

∂µA
µ(x) = 0→ ∂µA

µ(x)−2α(x) = 0 if 2α(x) = 0

which respects the Lorentz condition if we choose a restricted class of gauge functions α(x) which
are solutions of 2α(x) = 0. In practice we need not bother about this problem further because
we will see that we get a well defined perturbation expansion if we use the Lorentz condition for
gauge fixing.

Geometrically the gauge condition picks a hyper-surface in the Aµ field space. Each point on the
hyper-surface corresponds to a physically distinct field. Gauge transformations move the field
orthogonal to the surface. Fields connected by gauge transformations are called gauge copies of
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each other. They are physically equivalent and form so called gauge orbits. The gauge condition
selects the cut point of the gauge orbit with the hyper-surface as one particular representative
field from each gauge orbit.

The gauge condition C(A) = 0 may be imposed by adding a Lagrange-multiplier term λ 1
2C(A)2

to L0A where λ is an arbitrary constant. We obtain the gauge dependent Lagrangian

Lξ0A = L0A + LGF ; LGF = − 1

2ξ
(∂µA

µ(x))2 ,

where LGF is the gauge fixing term which lifts the degeneracy of L0A. ξ is called the gauge
parameter and ξ−1 corresponds to the Lagrange multiplier. If we can show that physical pre-
dictions, like scattering matrix-elements, for example, are independent of ξ we also have shown
that ∂µA

µ = 0 for what concerns physics. The gauge fixed Lagrangian Lξ0A is now suitable as a
starting point for the quantization of the vector-potential while the original invariant Lagrangian
was not.

The modified equation of motion following from the Lagrangian

Lξ0A = −1

4
FµνF

µν − 1

2
ξ−1 (∂µA

µ(x))2

is
(

2gµν − (1− ξ−1)∂µ∂ν
)

Aν(x) = 0

obtained by adding the extra term

∂µ
∂LGF
∂∂µAν

= −ξ−1∂ν (∂µA
µ(x))

to the previous form of the equation of motion.

Now the free Maxwell equation

∂µF
µν = ξ−1∂ν (∂ρA

ρ(x)) 6= 0 !

has no longer its classical form unless ∂µA
µ(x) = 0 in some sense. This is in contradistinction to

the Proca field (massive spin 1 field) for which the Proca equation

(

(2 +m2)gµν − ∂µ∂ν
)

Aν = 0

automatically implies ∂µA
µ(x) ≡ 0.

Notice that the ”vacuum” |0 > also makes troubles. Under a gauge transformation

< 0 | Aµ(x) | 0 > → < 0 | Aµ(x) | 0 > −∂µα(x) < 0 | 0 >
=< 0 | Aµ(x) | 0 > −∂µα(x)

which would be a contradiction if Aµ(x) and | 0 > are supposed to have the naive properties, we
except them to have. It turns out that the “vacuum” of the photon states must be considered
as an equivalence class {| 0 >}Aµ and each gauge representative of a gauge orbit has a different
formal vacuum.
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The only clean covariant way to treat the problem is the Gupta-Bleuler formalism. In this
formalism one can show that the physical state space Hphys is characterized by

∂µA
µ(+)(x)Hphys = 0

where Aµ(+)(x) denotes the positive frequency part (annihilation term) of the covariant photon
field. The formal Hilbert space, before imposing this Gupta-Bleuler condition, includes unphysical
states. Only on the physical subspace the physical laws have the “classical” form. For example,
the Maxwell equation

∂µF
µν = −ejνem (4.4)

is only true in the sense

∂µF
µν(+)Hphys = −ejν(+)

em Hphys .

The reason why we need not worry to much about these problems is the fact that we have a
simple check of whether or not the physics is gauge invariant: Physical matrix elements must
turn out to be independent of the gauge parameters ξ ! In this case LGF does not affect physical
predictions and it looks as if ∂µA

µ(x) = 0. Thus gauge invariance is the ”instrument” which
allows to single out physics from technical artifacts.

• Field equation for ψα(x)

The Euler-Lagrange equation for the free electron Lagrangian is the Dirac equation:

∂µ
∂L0ψ

∂∂µψ
=
∂L0ψ

∂ψ
⇒ (iγµ∂µ −m)ψ(x) = 0 .

The electromagnetic current of the electron can be constructed from L0ψ as follows:

L0ψ has a global U(1) symmetry: ψ → e−iαψ where α is an arbitrary constant. Then by the
Noether theorem there exists a conserved current.

δL0ψ = 0 under







ψ → ψ + δψ ; δψ = −iαψ
ψ̄ → ψ̄ + δψ̄ ; δψ̄ = iαψ̄

where

δL0ψ = δψ̄
∂L
∂ψ̄

+ δ(∂µψ̄)
∂L

∂(∂µψ̄)
+
∂L
∂ψ

δψ +
∂L

∂(∂µψ)
δ(∂µψ) .

For global transformations we have δ∂µψ = ∂µδψ and the equation of motion tells us that

∂L
∂ψ

= ∂µ
∂L
∂µψ

;
∂L
∂ψ̄

= ∂µ
∂L
∂∂µψ̄

and hence

δL0ψ = ∂µ

(

δψ̄
∂L
∂∂µψ̄

+
∂L
∂∂µψ

δψ

)

= −iα∂µ
(

ψ̄iγµψ
)

= α∂µj
µ
em = 0
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with

jµem = : ψ̄α(γµ)αβψβ : (4.5)

the conserved electromagnetic current.

Notice: For all interactions which do not exhibit derivations of ψ the form of jµem is determined
solely by L0ψ

• Local gauge invariance and the electromagnetic interaction

We observed that the problems with the photon field Aµ(x) requires local gauge invariance to
hold. For the free electron we have another problem which at first seems not to be related to the
problem of quantization of massless spin 1 particles: We know that in quantum mechanics the
phase of a wave function is not observable. For a Dirac field we would expect therefore invariance
under local phase transformations

ψ(x)→ e−ieα(x)ψ(x) . (4.6)

These transformations, which again are related to some redundancy in the description of a particle
by a quantum field, correspond to the local gauge transformations discussed before for the photon
field and therefore are also called gauge transformations. However, L0ψ is not locally gauge
invariant because

∂µψ(x)→ e−ieα(x)∂µψ(x) − ie e−ieα(x)ψ(x)∂µα(x)

and thus

δL0ψ = e ψ̄(x)iγµ (−i∂µα(x))ψ(x)

= e ψ̄(x)γµψ∂µα(x) = e jµem∂µα(x) .

A free electron cannot be described in a locally gauge invariant way! The requirement of local
gauge invariance implies that “electrons must couple to photons via minimal substitution”. Which
means that we have to replace the troublesome derivative

∂µψ → Dµψ

by a covariant derivative Dµψ defined in such a way that it transforms in the same way as ψ:

Dµψ → e−ieα(x)Dµψ (4.7)

under a local gauge transformation of the electron-photon system20

ψ(x) → e−ieα(x)ψ(x)

Aµ(x) → Aµ(x)− ∂µα(x) . (4.8)

20Note that (4.8) must be a simultaneous transformation of the electron and the photon field with identical local
gauge function α(x). With separate local functions (4.7) [in conjunction with (4.9)] does not hold and the QED
Lagrangian is obviously not manifestly invariant. However, the apparent non–invariance is not real, because once
the photon couples to the electron the non-invariant terms can always be reabsorbed by a gauge transformation of
the photon field which cannot (or should not) affect the physics.
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The requirement (4.7) implies the form

Dµ = ∂µ − ieAµ (4.9)

for the covariant derivative, which thus may be obtained by the so called minimal substitution

∂µ → Dµ = ∂µ − ieAµ (4.10)

to be applied to the free electron Lagrangian. As a consequence

L0ψ → Lψ = L0ψ + ejµemAµ(x) = ψ̄ (iγµDµ −m)ψ

includes automatically a certain type of electron-photon interactions. Thus the principle of local
gauge invariance implies the following specific form of the interaction:

Lint = ejµemAµ(x). (4.11)

Obviously F µν and jµ are gauge invariant objects. Thus one easily checks:

δ (L0ψ + ejµemAµ(x))

= δL0ψ − ejµem∂µα(x)

= ejµem∂µα(x) − ejµem∂µα(x) = 0.

We notice that the form (4.11) of the coupling of photons to the electromagnetic current, which
is prescribed by local gauge invariance, is the crux why it is mandatory to describe the pho-
ton, interacting with the charged particles, by the gauge dependent four–potential Aµ (gauge
potential). Note that the two physical photon states with the fixed helicities ±1 transform
separately as an irreducible representation of the Lorentz group (see Appendix C). The reducible
representation combining the two photon states into one field would have two independent com-
ponents. By the above construction, however, we are forced to describe the photon by a four
component field, which necessarily has two superfluous components. This causes a lot of techni-
cal complications part of which have been addressed above when discussing the free photon field
Aµ(x) (and the need for gauge fixing) and which will be discussed further below in Sec. 4.1. For
a more detailed discussion of the properties of the photon field we refer to Appendices A and C.

The result of our discussion may be summarized as follows:

Local U(1) gauge invariance implies electron-photon interaction according to minimal cou-
pling. The electromagnetic interaction is described by

LQED = −1

4
FµνF

µν − 1

2
ξ−1 (∂µA

µ)2 + ψ̄ (iγµDµ −m)ψ

= Lξ0A + L0ψ + ejµem(x)Aµ(x)

Lint = ejµem(x)Aµ(x) . (4.12)

Correspondingly, the field equations for QED read

(iγµ∂µ −m)ψ(x) = −e : Aµ(x)γµψ(x) :
(
2gµν − (1− ξ−1

)
∂µ∂ν

)
Aν(x) = −e : ψ̄(x)γµψ(x) :

(4.13)
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The minimally coupled electron-photon system has more symmetry than the free electron
system, namely, a local one instead of a global one only. Due to the particular form of the
interaction, resulting from the minimal substitution, the global gauge symmetry is promoted
to a local gauge symmetry.

Let us come back to the simultaneous local gauge transformation (4.8) under which the classical
QED Lagrangian (i.e., discarding the gauge fixing term in first place) is manifestly invariant: it is
important to note that we may relax from the manifest invariance requirement. If we transform
the electron field only, for example, the non-invariant term which shows up may be always elim-
inated by a gauge transformation of the photon field. The latter is required to leave the physics
unchanged, which has to be proven of course. Thus the formal non–invariance of the Lagrangian
not necessarily implies the non–invariance of the physics. We may thus precise the meaning of
(4.8) as follows: to each local gauge transformation of the electron field ψ(x)→ e−ieα(x)ψ(x) there
exists a gauge transformation of the photon field, namely, Aµ(x) → Aµ(x) − ∂µα(x) such that
under the combined transformation the classical part of the Lagrangian is manifestly invariant.

As we shall see nature frequently makes use of the possibility that particles (the electrons) conspire
with other particles (the photon) in order to enhance the symmetry. In this sense local gauge
symmetries are conspirative symmetries which are only possible by conspiracy of particles of
different kind.

Empirical fact: Nature makes use of the principle of local gauge invariance which is similar to
the equivalence principle known from general relativity. Known fundamental elementary particle
interactions are minimal couplings with respect to an invariance principle:

interaction gauge group quantum numbers

QED U(1)em electric charge

QFD SU(2)L ⊗ U(1)Y
broken→ U(1)em

weak isospin and

weak hypercharge

QCD SU(3)c color

Quantum Flavordynamics QFD we call the combination of the electroweak theory, also
called electroweak Standard Model, and QCD, the theory of strong interactions which describes
the strong forces between nucleons and other hadrons. In the sections to follow the basic ideas
behind the construction of these theories will be developed.

4.1 Covariant photon field, Gupta-Bleuler formalism

Let us summarize once more in brief the origin of the problems with non–physical properties
of the photon field and the cure of them by gauge invariance. The photon field Aµ(x) (see
Appendix A.7) and the related polarization vectors ε±(p) are four component quantities which,
however, are assumed to encode two physical degrees of freedom only. Obviously one needs two
subsidiary conditions or something equivalent. Since at the same time we require relativistic
covariance and linearity we have a problem:

i) the only covariant and linear condition available is

∂µA
µ(x) = 0 or equivalently pµε

µ
±(p) = 0
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In fact the standard photon field given in Appendix A.7 is not covariant (see Appendix C.2)
and one could choose as well a non–covariant gauge, e.g., the Coulomb gauge.
The part of the missing “second covariant subsidiary condition” is taken by

ii) the requirement of gauge invariance of physical observables

Aµ(x)→ Aµ(x)− ∂µ α(x)

or equivalently

εµ±(p)→ εµ±(p) = λpµ .

must be satisfied in any case.

The missing covariance of the formalism in calculations beyond the tree level cannot be accepted
for technical reasons. Not only for practical calculations of higher order corrections, also for
formal proofs of properties to all orders in the perturbation expansion a manifestly covariant
formalism is indispensable. Such a formalism has been developed by Gupta and Bleuler long
time ago and we are going to outline its basic elements in the following.

In order to get a clearer idea about the problems mentioned above in connection with the photon
field, we will elaborate here in more detail about the difficulties we have encountered. As already
mentioned, the problem is due to the fact that the following catalog of requirements cannot be
fulfilled simultaneously in a manifest manner:

1. the photon is described by a four-vector field, the vector-potential, as required to be able
to write down a local coupling with the electromagnetic current

2. Lorentz covariance

3. locality

4. positivity of the state space (i.e. Fock space for the physical photons)

5. uniqueness of the vacuum

Since the vector potential is not a measurable physical quantity we may consider this to be a
purely technical problem. In fact only “physics” i.e. the observables must satisfy the physical
principles. The latter are simply not realized manifestly in the formalism. However, the technical
feasibility of controlling physical properties a posteriori to any order in perturbation theory force
us to utilize a formalism which is manifestly covariant and local. We thus insist in preserving
manifestly the first three points listed above, and then have to accept to work in an unphysical
state space HGB , the Gupta-Bleuler state space. The space HGB necessarily has indefinite
metric. One then can prove that HGB has a subspace HP of states with positive definite norm,
which may be characterized in a explicitly L-invariant manner. The physical state space Hphys

of the physical photons will then be defined by the equivalence classes (gauge orbits) of HP .

Construction of HGB
The covariance problem related with the use of the vector-potential may be solved formally,
when one considers Aµ(x) as a field of four degrees of freedom. This means that one has to
introduce unphysical states, the Gupta-Bleuler ghosts (GB–ghosts), and corresponding creation
and annihilation operators in addition to the two physical photons.
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The polarization vectors may be chosen as follows: Let p be a positive light–like vector, p2 = 0,
p0 > 0. Then the polarization vectors ε±(p) of the physical photons are given by two orthogonal
space–like vectors orthogonal to p:

εµr (p) ε∗µ r′(p) = −δrr′ , pµε
µ
r (p) = 0 .

The εr’s may be represented in the complex helicity base, r = (+,−), or in a real Cartesian base,
r = (1, 2). Given p and the εr’s they determine uniquely a vector p̂ with the properties:

p̂2 = 0 , p̂p = 1 , p̂µε
µ
r (p) = 0 .

We now introduce two additional unphysical “polarization vectors”

εµ0 (p) =
αpµ + α−1p̂µ√

2

εµ3 (p) =
αpµ − α−1p̂µ√

2

with α > 0 arbitrary, which together with εµr (p) (r = (+,−) ∼ (1, 2)) form an orthogonal set of
four-vectors:

εµ0ε
ν
0 − εµ1εν1 − εµ2εν2 − εµ3εν3 = gµν = pµp̂ν + p̂µpν − εµ+εν+ − εµ−εν−

The polarization vectors given here stand for a particular representative out of an equivalence
class of polarization vectors obtained by applying Lorentz transformations from Gp, the little
group of p, to the specific ones chosen here.

A covariant photon field is then given by

Aµ(x) =

∫

dµ(p)

{[
∑

±
εµ±(p)a(~p,±) + p̂µb(~p ) + pµc(~p )

]

e−ipx + h.c.

}

(4.14)

which satisfies 2Aµ(x) = 0. The annihilation operators may be represented by

a(~p,±) = −iεµ∗± (p)

∫

d3x eipx
↔
∂ 0 Aµ(x) (4.15)

b(~p ) = ipµ
∫

d3x eipx
↔
∂ 0 Aµ(x) (4.16)

c(~p ) = ip̂µ
∫

d3x eipx
↔
∂ 0 Aµ(x) . (4.17)

Now we require the photon field to be local and covariant, which means, in particular, that the
field commutator must have the form

[Aµ(x), Aν(y)] = −i (−gµν + 2β∂µ∂ν) ∆(x− y; 0) (4.18)

with β an arbitrary gauge parameter. This form determines a family of covariant gauges. If we
insert the above ansatz for Aµ(x) into the last equation we obtain the following commutation
relations for the creation and annihilation operators:

[a(~p, λ), a+(~p ′, λ′)] = (2π)3 2p0δ(3)(~p− ~p ′) δλλ′
[b(~p ), c+(~p ′)] = [c(~p ), b+(~p ′)] = −(2π)3 2p0δ(3)(~p− ~p ′)

[c(~p ), c+(~p ′)] = −(2π)3 2p0δ(3)(~p− ~p ′) 2β

(4.19)
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with p0 = |~p| and all other commutators vanishing. Obviously this algebra is manifestly covariant.

Translation invariance of Aµ(x) means that

[P µ, Aν(x)] = −i∂µAν(x) ,

such that

[P µ, a±(~p,±)] = ±pµa±(~p,±)

[P µ, b±(~p )] = ±pµb±(~p )

[P µ, c±(~p )] = ±pµc±(~p ) ,

which tells us a, b and c destroy, a+, b+ and c+ create quanta of four-momentum pµ. With the
help of the commutation relations one verifies that

P µ =

∫

dµ(p)pµ
{
∑

±
a+(~p,±) a(~p,±)− b+(~p ) c(~p )− c+(~p ) b(~p ) + 2β b+(~p ) b(~p )

}

must hold if we require that for all ~p :

a(~p,±)|0 >= b(~p )|0 >= c(~p )|0 >= 0

< 0|0 >= 1 and P µ|0 >= 0 .

The space HGB is now defined as the linear space of states which may be created by repeated
application of the creation operators a+(~p,±), b+(~p ) and c+(~p ) to the vacuum |0 >.

One easily verifies the following properties of the states in HGB :

a) states which are obtained by application of a+(~p,±) to the vacuum have positive scalar
products and contain transversal photons, but not necessarily exclusively such.

b) if a state contains in addition one or more b–quanta, then it has a vanishing scalar product
with all states which do not contain c–quanta.

c) if a state contains in addition c–quanta, then is has indefinite scalar products.

These statements directly follow from the commutation relations and < 0|0 >= 1.

Restriction to HP
The condition

b(~p ) HP = 0 ∀~p (4.20)

defines a linear subspace of HGB , which by virtue of the commutation relation [b(~p ), c+(~p ′)] =
−(2π)3 2p0δ(3)(~p − ~p ′) is characterized as the subspace of states which do not contain any c–
quanta. Therefore the scalar product on HP is positive semi-definite. States from HP consist
of linear combinations of vectors which apart from photons exhibit none, one or more b–quanta.
Only the part without b–quanta contributes to the scalar product.

The crucial point of this construction is that the operator b(~p ) determined by Eq. (4.17) in terms
of Aµ(x) for given ~p is determined uniquely, in contrast to a(~p,±) and c(~p ), which represent
equivalence classes.
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We may rewrite Eq. (4.17) as follows:

b(~p ) =

∫

d3x
(

∂µe
ipx
) ↔
∂ 0 A

µ(x)

=

∫

d3x ∂µ
(

eipx
↔
∂ 0 A

µ(x)
)

−
∫

d3x eipx
↔
∂ 0 (∂µA

µ(x)) .

The first term of the last equality vanishes since if we write it as

∫

d3x ∂µ
(

eipx
↔
∂ 0 A

µ(x)
)

= ∂0

(∫

d3x eipx
↔
∂ 0 A

0(x)

)

+

∫

d3x ∂i
(

eipx
↔
∂ 0 A

i(x)
)

= 0

we observe that both terms vanish. The first one due to the fact that the integral is time-
independent. This can be inferred by partial integration and using the Klein-Gordon equations
2Aµ = 0 and 2eipx = 0. The second term is zero because it is a spatial integral over a divergence.
Note that the plane wave solution eipx of the Klein-Gordon equation is always thought to stand
for a “wave packet” solution fp(x) i.e. a smooth function which is strongly decreasing towards
spatial infinity.

As a result we have

b(~p ) = −
∫

d3x eipx
↔
∂ 0 ϕ(x) (4.21)

with

ϕ(x) = ∂µA
µ(x) and 2ϕ(x) = 0 .

We conclude that the b–quanta are massless spin 0 bosons, since ϕ describes the scalar part of
Aµ(x) . It will turn out that ϕ ≡ ∂µAµ remains a free field in the interacting theory i.e. in QED.

By the construction of Aµ(x) in terms of the creation and annihilation operators Eq. (4.14) we
have

∂µA
µ(x) =

∫

dµ(p)
(

b(~p )e−ipx − h.c.
)

since pµε
µ
± = 0, pµp

µ = 0 and pµp̂
µ = 1. The positive frequency part is thus given by

∂µA
µ(+)(x) =

∫
dµ(p)b(~p )e−ipx (4.22)

and we may write the Gupta-Bleuler subsidiary condition Eq. (4.20) in the manifestly covariant
form

∂µA
µ(+)(x) HP = 0 . (4.23)

We notice that for the definition of the scalar products in HGB we only needed the covariant
field commutator Eq. (4.18) or the equivalent algebra of the creation and destruction operators
Eq. (4.19), respectively. Therefore the scalar products on HGB are manifestly L-invariant. Be-
cause of the covariant projection, this is also true for the scalar products on HP . The particular
choice of the polarization vectors, respectively, the equivalence classes of them, do not play a role
anymore.

The physical state space Hphys
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The space HP may be completed in an abstract sense to a Pre-Hilbert-space. This space still
exhibits states of norm zero. A vector ψ ∈ HP can be decomposed as ψ = ψ++ψ0 in a unique way
into a vector ψ+ ∈ H+ of positive norm and a vector ψ0 ∈ H0 having zero norm. Unfortunately,
however, this decomposition is not L-invariant! In fact, under a generic Lorentz transformation
a vector ψ+ ∈ H+ acquires a component in H0, while HP and H0 both are L-invariant. In HP
Schwarz’s inequality holds, which implies that H0 is a linear subspace of HP . We therefore can
form the quotient space

Hphys = HP /H0 .

This is the linear space of equivalence classes of vectors from HP , which differ by elements
from H0. As a quotient space of two invariant spaces Hphys is L-invariant, too. This space is in
one-to-one correspondence to the Fock space of the physical transversal photons:

HGB : a+(~p,±), b+(~p ), c+(~p ) acting on |0 >
HP : a+(~p,±), b+(~p ) acting on |0 >
HFock : {a+(~p,±)}Gp−orbit acting on |0 >

where HFock ' Hphys is isomorphic to a Hilbert space.

What is the bottom line?

The operators a+(~p,±) cannot be identified with our naive understanding of creation operators
for physical transverse photons! The reason is that the relationship between the field Aµ(x)
and the creation and annihilation operators involves the polarization vectors and hence cannot
be covariant. Since we insisted to have the field Aµ(x) manifestly covariant the corresponding
a+(~p,±) cannot any longer transform according to a unitary representation of SL(2, C). With
other words, starting from a covariant Aµ(x) , the formulas defining the annihilation and creation
operators Eqs. (4.16), (4.17) and (4.17) in terms of Aµ(x) lead automatically to operators a and
c which are determined in equivalence classes only, while b turns out to be unambiguous.

The equivalence classes of a and c operators are induced by the L-transformations from the little
group Gp of the light-like vector p which are equivalent to substitutions

εµ ∗± (p)→ εµ ∗± (p) + λ pµ .

Accordingly, the vector p̂ must transform as (note that p̂∗ = p̂)

p̂→ p̂+ λ2p+ λ ε∗+(p) + λ ε∗−(p)

The Eqs. (4.16) and (4.17) then tell us that

a(~p,±) → ã(~p,±)λ = a(~p,±)− λ b(~p )

c(~p ) → c̃(~p )λ = c(~p ) + λ2b(~p )− λ a(~p,+)− λ a(~p,−)

which means that a state which contains a c-quantum remains such a state, however a state
which contains only a-quanta does not remain such a state. More precisely, we may summarize
the effect of the application of the different creation operators as follows:

a+(~p,±) : generate transversal photons plus b–ghosts

b+(~p ) : generates b–ghosts, scalar massless unphysical bosons

c+(~p ) : generates unphysical longitudinal photons plus b–ghosts and transversal photons
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Consequently the equivalence classes ã(~p,±)λ, respectively, the states |~p,± >λ the correspond-
ing creation operators create from the vacuum are the objects to be identified with the unique
quantities a(~p,±), respectively, the states |~p,± > constructed as unitary representations of the
Poincaré group. We remind the reader that the problems are unavoidable, due to the fact that
transversal polarization vectors for massless spin 1 (or higher) particles cannot be defined in a
covariant way. The transversality refers to the transformation properties under rotations. In
contrast to the massive case, where the rest frame is invariant with respect to rotations, there
does not exist a rotationally invariant standard frame. In the massless case where we must start
quantization using a light-like vector p we necessarily are lead to consider an equivalence class of
standard frames, related to each other by the L-transformations which leave the chosen light-like
vector invariant. This stability group also called little group Gp is actually equivalent to the group
E(2) of translations in a plane, which is not semi-simple and thus has an Abelian subgroup.

In short: physical basic principles in general cannot be realized in a manifest way, but only
modulo Abelian gauge transformations. Physics must be independent of the gauge i.e. invariant
under Aµ(x) → Aµ(x) + ∂µα(x) where α(x) is an arbitrary scalar field. This is quite similar
to symmetries in quantum mechanics, which need not be realized by true representations of the
symmetry group, it suffices to have representations up to a phase (ray representations).

Final remark: Relationship between the Gupta-Bleuler formulation and the formal argumentation
with the covariant Lorentz condition:

1) Gupta-Bleuler: Aµ(x) covariant and 2Aµ = 0 ! and commutator given by Eq. (4.18).

2) Covariant gauge fixing with gauge condition ∂µA
µ(x) = 0 implemented by adding the gauge

fixing term LGF = −1
2ξ
−1 (∂µA

µ(x))2. The corresponding equation of motion reads

2Aµ − (1− ξ−1)∂µ∂νA
ν(x) = 0

which yields 1) for ξ = 1. In this formalism the Lagrangian has a residual gauge invariance
Aµ(x)→ Aµ(x) + ∂µα(x) with α(x) an arbitrary differentiable function satisfying 2α(x) =
0.

3) Comparison: in a covariant gauge we still expect the commutator to be of the form Eq. (4.18)
for an appropriate choice of β. Applying the equation of motion of 2) to the commutator
yields

2 [Aµ(x), Aν(y)] = −i (−gµν2 + 2β2∂µ∂ν) ∆(x− y; 0)

+i

(

1− 1

ξ

)

(−1 + 2β2) ∂µ∂ν∆(x− y; 0)

= 0 ,

which can only be satisfied for a “singular”, non–c-number β ∝ 2
−1. Since 2∆(x−y; 0) = 0,

but ′′(β2)′′ ∆(x− y; 0) 6= 0 the equation of motion requires 2β2 = 1− ξ or

β =
1− ξ
2

a non–local operator! For ξ = 1 the non locality is absent and we are back in the Gupta-
Bleuler formulation, where β is an arbitrary c-number constant.

The crucial point: ξ–dependent terms always decouple from the dynamics! In order to show this
on has to extend the above consideretion to the ineracting theory.
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4.2 Exercises: Section 4

① Show that the Maxwell equation ∂µF
µν = 0 as a field equation for the vector potential

takes the form

2Aν(x)− ∂ν (∂µA
µ(x)) = 0 .

Show that Aν(x) is not determined by this equation because the operator 2gµν − ∂µ∂ν has
no inverse. Hint.: ϕµ = ∂µα(x), α(x) an arbitrary scalar function, is a solution of the
above equation with eigenvalue 0.

② Show that for a massive spin 1 field the Proca equation

(

2 +m2
)

Aν(x)− ∂ν (∂µA
µ(x)) = 0

implies ∂µA
µ(x) ≡ 0 automatically. Comment on the number of degrees of freedom ! Show

that the Proca equation is the Euler-Lagrange equation of the Lagrangian

L = −1

4
FµνF

µν +
m2

2
AµA

µ ; Fµν = ∂µAν − ∂νAµ .

Discuss the invariance properties of L under gauge transformations.

③ Prove that under local gauge transformations

ψ → e−ieα(x)ψ , Aµ(x)→ Aµ(x)− ∂µα(x)

the covariant derivative Dµ = ∂µ − ieAµ has the property: Dµψ transforms identical to ψ
and ψ̄ΓDµψ is gauge invariant provided Dµ commutes with the 4 by 4 matrix Γ.
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5 Internal symmetry groups

Empirically, physical states are known to often show up in multiplets of symmetry groups. Fa-
miliar examples are the flavor symmetries in strong interaction physics SU(2)flavor (= isospin),
SU(3)flavor (= isospin plus hypercharge), etc. Internal symmetries are to be distinguished from
the space-time symmetries, which are unified in the Poincaré group. The symmetry groups G of
interest here are the groups SU(n), defined by the set of complex n × n-matrices U which are
unitary (U−1 = U+) and unimodular (detU = 1) and with matrix multiplication as the group
operation. The requirement of unitarity ensures that the transition probabilities between states
are preserved:

|< ϕ | ψ >|2=|< ϕ′ | ψ′ >2=|< ϕ | U+U | ψ >|2

of course | ψ >→| ψ′ >= U | ψ > is a symmetry if and only if all group elements U commute
with the total Hamiltonian H of the system:

[U,H] = 0 ∀ U ∈ G.

Since any unitary matrix Ũ can be written as a product Ũ = Ueiϕ of a matrix U with detU = 1
and a phase factor eiϕ, a unitary group U(n) is equivalent to a direct product SU(n) ⊗ U(1).
Therefore we may restrict ourselves to a consideration of the simple groups SU(n). Possible U(1)
factors may be discussed separately.

The groups SU(n) have r = n2− 1 real continuous parameters ωi (i = 1, . . . , r). A complex n×n
matrix has 2n2 real parameters, unitarity implies n2 conditions and detU = 1 yields one further
condition. Therefore, SU(n) is characterized by r infinitesimal generators Ti and a general
SU(n) transformation can be written as

U = U(ω) = exp



i
n2−1∑

i=1

Tiωi





and r is called order of the group.

The generators are Hermitian Ti = T+
i (which guarantees that U is unitary), traceless Tr Ti = 0

(which implies detU = 1) and may be normalized so that Tr (TiTj) = 1
2δij.

A convenient (non unique) basis for the matrices Ti, written conventionally as Ti = λi/2, can be
constructed as follows. For the n− 1 possible diagonal traceless Hermitian λi choose











1
−1

0
. . .

0











,
1√
3













1
1
−2

0
. . .

0













, . . . ,

√

2

n(n− 1)











1
1

1
. . .

−(n− 1)











.

Then form the n(n−1)
2 off-diagonal matrices λi with 1 in a given off-diagonal position above the

diagonal, 1 in the transposed position and zeros elsewhere. Also form the n(n−1)
2 off-diagonal

matrices λi with a −i in a given off-diagonal position above the diagonal, +i in the transposed
position and zeros elsewhere.
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The Lie-algebra (commutation rules)

[Ti, Tk] = iciklTl

determines the structure constants cikl, which are real, totally antisymmetric and satisfy the
Jacobi identity

cikncnlm + cyclic terms in(ikl) ≡ 0.

A Lie group G and its structure constants cikl uniquely determine each other in a neighborhood
of the identity element of G. In a Lie-algebra there is a maximum number l of simultaneously
commuting (i.e. diagonal) elements. l is called the rank of the group. The SU(n) groups have
rank l = n − 1, which is obvious in the basis given above. The states belonging to a SU(n)
multiplet may be labeled, as usual, by the eigenvalues of the simultaneous eigenstates of the l
diagonal matrices which we denote by H1, . . . ,Hl. The structure of a multiplet is characterized
by a weight diagram which displays the eigenvalues of the states on a (H1, . . . ,Hl) plot.

The remaining generators may be combined into pairs of ladder operators (a raising and a
lowering operator) E±α(α = 1, . . . , r−l2 ) which map the different eigenstates of a multiplet into
each other. The E±α’s are non-Hermitian matrices with 1 in a given off-diagonal position and
zeros elsewhere.

For SU(2) and SU(3) we list some basic properties in the following.

a) SU(2) : Order r = 3 , rank l = 1

Structure constants: cikl = εikl the fully antisymmetric permutation tensor.

Generators: Ti = τi
2 ; τi the Pauli matrices 21

τ1 =




0 1

1 0



 , τ2 =




0 −i
i 0



 , τ3 =




1 0

0 −1





Diagonal operators: H1 = τ3
2 = I3 : 3rd component of isospin.

Eigenvectors:



1

0



 ,




0

1





Eigenvalues of I3 : 1
2 ,−1

2
Ladder operators: E±1 = 1

2 (τ1 ± iτ2)

E+1 =




0 1

0 0



 , E−1 =




0 0

1 0





21Properties of the Pauli matrices:

[τi, τk] = 2iεiklτl , {τi, τk} = 2δik

τ+i = τi , τ 2i = 1 , T r τi = 0

τiτk =
1

2
{τi, τk} +

1

2
[τi, τk] = δik + iεiklτl
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Fig. 5.1: Weight diagram for




u

d



 quark doublet.

b) SU(3) : Order r = 8 , rank l = 2

Structure constants : cikl = fikl , where the non-vanishing entries are permutations of the
elements

f123 = 1

f147 = f165 = f246 = f257 = f345 = f376 = 1
2

f458 = f678 =
√

3/2.

Generators: Ti = λi
2 ; λi the Gell-Mann matrices 22

λ1 =






0 1 0
1 0 0
0 0 0




 , λ2 =








0 −i 0

i 0 0

0 0 0







, λ3 =








1 0 0

0 −1 0

0 0 0








λ4 =








0 0 1

0 0 0

1 0 0







, λ5 =








0 0 −i
0 0 0

i 0 0







, λ6 =








0 0 0

0 0 1

0 1 0








λ7 =








0 0 0

0 0 −i
0 i 0







, λ8 = 1√

3








1 0 0

0 1 0

0 0 −2








Diagonal operators:

H1 =
λ3

2
= I3 3rd component of isospin

H2 =
λ8

2
.
=

√
3

2
Y , Y hypercharge

22Properties of the Gell-Mann matrices:

[λi, λk] = 2i fiklλl , {λi, λk} =
4

3
δik + 2diklλl

Tr λi = 0 , T r λiλk = 2δik

Tr λi [λk, λl] = 4i fikl , T r λi {λk, λl} = 4i dikl
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Eigenvectors:





1
0
0




 ,






0
1
0




 ,






0
0
1






Eigenvalues of (I3, Y ) :
(

1
2 ,

1
3

)

,
(

−1
2 ,

1
3

)

,
(

0,−2
3

)

Ladder operators:

E±1 = T1 ± iT2 : E+1 =






0 1 0
0 0 0
0 0 0




 , E−1 =






0 0 0
1 0 0
0 0 0






E±2 = T4 ± iT5 : E+2 =






0 0 1
0 0 0
0 0 0




 , E−2 =






0 0 0
0 0 0
1 0 0






E±3 = T6 ± iT7 : E+3 =






0 0 0
0 0 1
0 0 0




 , E−3 =






0 0 0
0 0 0
0 1 0






d u

I3

s

Y

1
3

−2
3

+ +
−1

2 +1
2

E+1

E+3 E+2

E−1

E−3 E−2

Fig. 5.2: Weight diagram for








u

d

s








quark triplet.

Finite dimensional representations of SU(n)

Given the structure constants cikl of SU(n) any set of Hermite-an traceless N × N matrices
T̃i(i = 1, . . . n2 − 1) satisfying the Lie-algebra

[

T̃i, T̃k
]

= iciklT̃l

is called a representation of the SU(n) Lie-algebra. The unitary unimodular matrices Ũ =

exp(i
∑n2−1
i=1 T̃iωi) then form a representation of SU(n). The smallest non-trivial irreducible rep-

resentation is the fundamental representation of dimension N = n. This is the representation
which defines SU(n). In gauge theories the fundamental spin 1/2 matter fields of quarks and lep-
tons are in this representation. The Jacobi identity implies that there always exists the adjoint
representation of dimension r with generators

(T̃i)kl = −icikl
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In gauge theories the spin 1 gauge fields in any case must be in this representation, as we shall
see below.

The complex conjugate of a representation is also a representation since

(U1U2)∗ = U∗1U
∗
2 .

Two representations are equivalent if we can transform one into the other by a change of basis:

SD1(U)S−1 = D2(U) ∀ U ∈ G.

The conjugate representation n∗ of the fundamental representation n is not a new representation
if it is equivalent to n. In fact for the fundamental representation 2 of SU(2) 2∗ is equivalent to
2. In contrast, the conjugate representations 3∗ of the fundamental representation 3 of SU(3) is
a new (inequivalent) representation. In QCD this crucial property of SU(3) allows to distinguish
color triplets of quarks (which transform according to the 3 representation) from color triplets of
antiquarks (which transform according to the 3∗ representation).

A representation is called irreducible if it cannot be transformed by a change of basis to block-
diagonal form:

D(U) =




D1(U) 0

0 D2(U)



 = D1(U)⊕D2(U) ∀ U ∈ G.

If such a transformation exist, the representation is reducible. The irreducible representations
are the basic building blocks of any representation. Particle multiplets are classified by the
irreducible representations of a symmetry group.

The possible irreducible representations can be constructed by decomposing products of the
fundamental representation into irreducible blocks. In the following we briefly discuss how this
can be done.

Combining representations, reduction

Let ψi(i = 1, . . . n) be a vector transforming under the fundamental representation n of SU(n).
A tensor product ψi1 . . . ψim forms a tensor ψi1...im which transforms according to

ψi1...im → ψ′i1...im = Ui1i′1 . . . Uimi′mψi′1...i′m .

For m > 1 this product representation, denoted by n⊗ n⊗ . . .⊗ n (m factors), is reducible.

One can decompose ψi1...im into a sum of tensors of different symmetry class with respect to
permutations of the indices i1 . . . im as follows:

Choose a set of positive integers n1, n2 . . . , nk with n1 ≥ n2 ≥ . . . ≥ nk which form a partition
of m : n1 + n2 + . . . + nk = m. Then group the indices i1 . . . im into k classes (i11 . . . i1n1),
(i21 . . . i2n2), . . . , (ik1 . . . iknk

) and write them in form of a tableau of k stacked rows where the
first row has n1 boxes containing the indices i11 . . . i1n1 , the second row has n2 boxes containing
the indices i21 . . . i2n2 and so on. The tableau obtained is called a Young tableau (often called
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Young diagram).

2.
antisymmetrize

in columns
↓

1. symmetrize in rows→

i11 i12 · · · · . . . i1n1

i21 i22 · · . . . i2n2

...

ik1 ik2 . . . iknk

With a Young tableau we associate a tensor of a given symmetry class by the following con-
struction. By convention first symmetrize ψi1...im in each group of indices appearing in the
rows. Afterwards anti-symmetrize in the indices appearing in each column. By this a tensor of
a given symmetry class is defined. According to the convention (first symmetrize in rows then
anti-symmetrize in columns) tableaus with indices permuted in columns represent the same ten-
sor. Tableaus with indices permuted in rows represent the same tensor if and only if the indices
are not anti-symmetrized with indices in a different row.

For SU(n) a tensor index can take the values i = 1, . . . , n only. Hence, there cannot be more
than n rows for anti-symmetrization.

One easily verifies that group transformations do not mix tensors from different symmetry classes.
The following central theorem holds:

a) Tensors in a given symmetry class form an invariant irreducible subspace. The group
representation induced (by projection to the invariant subspace) in this subspace by the
fundamental representation is irreducible.

b) The irreducible representations generated through all possible symmetry classes are exhaus-
tive (i.e. there are no irreducible representations which cannot be obtained this way).

Symmetrization and anti-symmetrization obviously reduces the number of independent compo-
nents of a tensor. The number of independent components of a tensor of a given symmetry class
is equal to the dimension of the irreducible representation.

The irreducible representation of highest dimension is represented by the totally symmetric tensor.

i1 i2 . . . im

There is only one such representation in n⊗ . . .⊗ n (m factors)

ψ(i1...im) =
1

m!

∑

permutations p

ψip(1) . . .ip(m) .

A column with n boxes represents a tensor of rank zero i.e. a singlet and corresponds to a
1-dimensional trivial representation:

ϕ = εi1...inψi1 . . . ψin
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Therefore, if a column with n boxes is part of a larger Young tableau it can be omitted!

A n− 1 fold antisymmetric product of ψi’s transforms as a n∗ (complex conjugate of the funda-
mental representation n):

χi = εii1...in−1ψi1 . . . ψin−1

since

ψiχ
i = ϕ = εii1...in−1ψiψi1 . . . ψn−1

is a singlet.

We now present some specific properties of SU(2) and SU(3):

a) SU(2) :
The fundamental representation is 2 . 2∗ is equivalent to 2 . Indices have 2 possible values
i = 1, 2.

A tableau is a singlet. as a part of a larger tableau can be omitted i.e. ≡ etc.
All nontrivial representations are characterized by a row:

Tableau: , , , etc.

Dimension: 2 3 4

Product representations and their reduction follow by combining corresponding tableaus in
all possible ways.

Examples: SU(2) interpreted as spin

1.

2⊗ 2 = × = + = 1⊕ 3

i.e. two spin 1/2 particles can group into a singlet of spin 0 and a triplet of spin1

2.

2⊗ 2⊗ 2 = ( + )× = + +

= + +

= 2⊕ 2⊕ 4

i.e. three spin 1/2 particles can group into two doublets of spin 1/2 and a quartet of
spin 3/2.

b) SU(3) :
The fundamental representation is 3 . 3∗ is inequivalent to 3. Indices have 3 possible values
i = 1, 2, 3.

A tableau is a singlet. as part of a larger diagram can be omitted i.e. ≡ . etc.

All non-trivial representations are characterized by tableaus with one or two columns:

︸ ︷︷ ︸

q
︸︷︷︸

p

Each corresponds to a n∗ i.e. an irreducible representation is characterized by two indices
(p, q) and transforms as a tensor

ψ
j1...jq
i1...ip

symmetrized in (i1 . . . ip) and (j1 . . . jq)

where i1 . . . ip transform under 3 and j1 . . . jq under 3∗.

125



We may write ψj1...i1...
in product form

ψ
j1...jq
i1...ip

= χj1 . . . χjqψi1 . . . ψiq

with χi = εiklψkψl. Together with the symmetrization it can be shown that the trace condition

3∑

j=1

ψ
jj2...jq
ji2...ip

= 0

must hold. This restricts the number of independent components of the tensor, which equals the
dimension of the irreducible representation D(p, q): One finds

D(p, q) =
1

2
(p + 1)(q + 1)(p + q + 2).

The generators T̃i of a given irreducible representation can be worked out from the transformation
law

ψ′j1...jqi1...ip
= U∗j1j′1 . . . U

∗
jqj′q

Ui1i′1 . . . Ujpj′pψ
j′1...j

′
q

i′1...i
′
p

for infinitesimal transformations.

The simplest irreducible representation are given in the following table:

(p, q) D(p, q) tableau tensor

(0, 0) 1 1 singlet

(1, 0) 3 ψi triplet

(0, 1) 3∗ ψi antitriplet

(2, 0) 6 ψik sextet

(0, 2) 6∗ ψik antisextet

(1, 1) adjoint 8 = 8∗ ψik octet

(3, 0) 10 ψikl decaplet

(0, 3) 10∗ ψikl antidecaplet

Application to SU(3)flavor:

Low lying hadronic states may be classified in SU(3)flavor multiplets. The relevant quantum
numbers are the baryon number B, isospin I and strangeness S. We can achieve that multiplets
are centered on the origin if we replace strangeness S by hypercharge Y

Y = B + S.

Empirically, the electric charge of a hadron is given by

Q = I3 +
Y

2
.

In the quark model of hadrons mesons (B = 0) are quark – antiquark states

M = (qq̄)
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baryons (B = 1) are three quark states

B = (qqq)

where q = u, d, s. The quarks (u, d, s) are in the fundamental representation 3, the antiquarks
(ū, d̄, s̄) in the representation 3∗.

d u

I3

s

Y

1
3

−2
3

+ +
−1

2 +1
2

d̄ū

I3

s̄

Y

−1
3

2
3

++
+1

2−1
2

Fig. 5.3: Basic building blocks of the SU(3) quark model.

Direct products of representations may be reduced (decomposed) into irreducible blocks by com-
bining boxes of the corresponding Young tableaux in all possible ways with the restriction that
antisymmetric pairs must be preserved. The latter condition is nontrivial but may be satisfied
by the following construction:

In order to append to the first tableau the second one in all admissible ways which respect the
(anti -) symmetrization, we place in each box of the second tableau letters (in lexicographic order)
with identical letters in each given row (symmetrized). Thus we insert a’s in the first row, b’s in
the second row, etc. All boxes of the second tableau are now appended to the right-hand ends of
the rows of the first one (which represents the upper left-hand corner of the new diagram) in all
possible ways. Thus we first append all a’s to the first tableau (in all admissible ways) with no
more than one a per column (anti-symmetrized). To the such obtained enlarged tableaux append
all b’s (in all admissible ways) with no more than one b per column, etc.

Some of the tableaux such obtained are not admissible because they do not take into account
properly the (anti -) symmetrization of the original boxes and have to be thrown away (also in
order to avoid double counting).

Here we need a definition: a sequence of letters a, b, c, · · · is admissible if at any point of the
sequence at least as many a’s have occurred as b’s, at least as many b’s have occurred as c’s etc.

Examples: a) admissible: abcd, aabcb, ....

b) not admissible: abb, acb, ...

Now consider for each tableau constructed above the full sequence of letters formed by reading
from right to left in the first row, then in the second row etc. The tableaux which we have to
throw away are those which lead to sequences of letters which are not admissible.

The properties of the composed new tableaux may be summarized as follows:

1. Each tableau must be a Young tableau.

2. The number of boxes in the new tableau must be equal to the sum of the number of boxes
in the original two tableaux.
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3. If dealing with SU(n), no tableau has more than n rows.

4. Making a journey through the tableau starting with the top row and entering each row from
the right, at any point the number of b’s encountered in any of the attached boxes must
not exceed the number of previously encountered a’s and the number of c’s encountered in
any of the attached boxes must not exceed the number of previously encountered b’s, etc.

5. The letters must be in anti-lexicographical order when reading across a row from left to
right.

6. The letters must differ and be in lexicographic order when reading a column from top to
bottom.

The first three rules should be obvious. The purposes of the three rules 4) to 6) are to assure
that states which were previously symmetrized are not anti-symmetrized in the product and vice
versa, and to avoid double counting states.

Examples:

1. 3⊗ 3 = × = + = 3∗ ⊕ 6

2. 3⊗ 3∗ = × = + = 1⊕ 8

3. 3⊗ 3⊗ 3 = ( + )× = + + +

= 1⊕ 8⊕ 8⊕ 10

More than two tableaux may be combined by first combining the first two, then combining the
result with the third one and so on.

Exercise: Show that 8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27.

The quantum numbers of quarks are given by:

Quark spin B Q I3 S Y

u 1/2 1/3 2/3 1/2 0 1/3

d 1/2 1/3 −1/3 −1/2 0 1/3

s 1/2 1/3 −1/3 0 −1 −2/3

Exercise: Use the Young tableaux to construct the meson states in

3⊗ 3∗

and the baryon states in

3⊗ 3⊗ 3 .

Notice that the indices of the tensors ψ
j1...jq
i1...ip

, which characterize a irreducible representation (p, q),
in the quark model have two different interpretations. Each upper index has associated either
an antiquark or an anti-symmetrized pair of quarks. For lower indices antiquarks and quarks are
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interchanged: i.e.

Upper index :








ū

d̄

s̄








or








(ds)

(su)

(ud)








B = −1/3 B = 2/3

Lower index :








u

d

s








or








(d̄s̄)

(s̄ū)

(ūd̄)








B = 1/3 B = −2/3

where (ud) etc. denote anti-symmetrized pairs. Which interpretation is to be used is uniquely
fixed if we specify the baryon number B of the state.

5.1 The spectrum of low lying hadrons:

Mesons: q̄q′ bound states
A q̄q′ with orbital angular momentum L has Parity P = (−1)L+1. For q′ = q we have a q̄q bound
state which is also an eigenstate of charge conjugation C with C = (−1)L+S , where S is the spin 0
or 1. The L = 0 states are the pseudoscalar mesons, JP = 0−, and the vectors mesons, JP = 1−.

In the limit of exact SU(3) the pure states would read

π0 = (ūu− d̄d)/
√

2

η1 = (ūu + d̄d + s̄s)/
√

3

η8 = (ūu + d̄d− 2s̄s)/
√

6

ρ0 = (ūu− d̄d)/
√

2

ω1 = (ūu + d̄d + s̄s)/
√

3

ω8 = (ūu + d̄d− 2s̄s)/
√

6

In fact SU(2)flavor breaking by the quark mass difference md−mu leads to ρ−ω–mixing [mixing
angle ∼◦]:

ρ0 = cos θ ρ′ + sin θ ω′

ω = − sin θ ρ′ + cos θ ω′

Similarly, the substantially larger SU(3)flavor breaking by the quark masses, leads to large ω−φ–
mixing [mixing angle ∼ 36◦ close to so called ideal mixing where φ ∼ is a pure s̄s state]:

φ = cos θ ω8 + sin θ ω1

ω = − sin θ ω8 + cos θ ω1
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Figure 5.9:
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Outlook

Nature plays all kind of games with symmetries. There are global and local space-time symmetries
and global and local internal symmetries. The latter determine strong, weak and electromagnetic
interactions by the local gauge group

Gloc = SU(3)c ⊗ SU(2)L ⊗ U(1)Y .

SU(3)c is the color gauge group of the strong interactions (QCD). SU(2)L ⊗ U(1)Y is the elec-
troweak gauge group (SU(2)L the left-handed weak isospin and U(1)Y the weak hypercharge)
which is broken to the Abelian electromagnetic U(1) em of QED. Local space-time symmetry
(general coordinate transformation invariance, general relativity) leads to classical gravity theory.
Gravitational interactions break Poincaré invariance, which “in practice” appears as an absolute
global symmetry due to the extreme weakness of the gravitational force. Global charge-like sym-
metries remain the most mysterious symmetries. The only known exact global symmetries are
Abelian symmetries with the associated quantum numbers being quantized.

Q electric charge U(1)Q

B baryon number U(1)B

L`(` = e, µ, τ) lepton numbers U(1)L`
.

The quantization of these charges is barely understood, notice that U(1) invariance only implies
the conservation of the corresponding charge not its quantization.

Baryon number B is an additive quantum number like the electric charge Q. It derives from a
global U(1)B invariance of all standard model interactions. Empirically it is tested most accu-
rately by the stability of the proton. Proton lifetime limits are

τgeop > 1.6 × 1025 years (geochemical estimate independent on decay modes)

τ labp > 1031 − 3× 1032 years (absence of “main” decay modes)

Possible decay modes which where searched for are:

p → e+γ, e+π0, e+ρ0, e+ω, e+K0, . . . ,

ν̄eπ
+, ν̄eρ

+, ν̄eK
+, . . . , (e→ µ)

p → π+ + π0

By convention B(p) = 1, B(e−) = 0 . All observations support the assignments B(B) = 1 and
B(B̄) = −1 for baryons B and antibaryons B̄, respectively. All other particles have B = 0 .

Excursion on the Baryon Asymmetry Of The Universe: While we have no direct evidence that baryon number is not
strictly conserved we know that at some level, presumably not far from current experimental limits, baryon number
must be violated. Otherwise the observed baryon asymmetry, the asymmetry between matter and antimatter
observed in our universe (galaxies, stars, planets,... but no anti–galaxies,anti–stars, anti–planets,...) could not be
explained from properties of the fundamental interactions of nature. It would (and could) be just an accidental
asymmetry in the initial condition at the moment of the creation of the universe at the big–bang.

In the early very hot universe matter and antimatter was created by the highly energetic photon collisions at
(almost) equal rate. In fact with a tiny asymmetry: per unit density ρB̄=1.000000000 of antimatter a portion

132



ρB=1.000000001 of matter must have been created. The expansion of the universe cooled down the radiation and
matter and antimatter annihilated almost completely into photons with the relict ρB − ρB̄=0.000000001 of matter.
Thus the baryon number in units of the number of photons in the universe is NB/Nγ ∼ 10−9.

A theory which is able of explaining the origin of the baryon asymmetry must satisfy three conditions (Sakharov
1967):

• It must violate B,

• it must violate CP and

• the universe must be out of thermal equilibrium.

The latter condition is satisfied since we know that the universe is expanding and not in a stationary equilibrium
state.

Within the SM B is conserved to all orders in perturbation theory and only violated by extremely tiny non–
perturbative effects. The latter are due to the existence of non–trivial classical solutions of the SU(2) Yang–
Mills equations, the so called instantons (Belavin et al. 1975). Quantum effects due to these four-dimensional
pseudoparticles lead to symmetry breaking via Adler-Bell-Jackiw anomalies (’t Hooft 1976).

While B is practically conserved in the SM, CP violation is naturally incorporated in the SM with three (or more)
families of quarks and leptons (Kobayashi and Maskawa 1973). In fact three families are known to exist, the last
member of the third family the top quark with a mass of about 175 GeV has been found some time ago (CDF
and D0 at Fermilab 1995). More recently CP violation has been established (Babar at SLAC and Belle at KEK
2001) in the B–meson system to be a large effect in accord with the SM prediction given the CP violation in the
K0 − K̄0 system, which has been discovered as a small effect ε ' 2.3 × 10−3 long time ago (Christenson, Cronin,
Fitch and Turlay 1964).

The SM is very unlikely able to predict the correct size of the baryon asymmetry. The latter thus is a clear
indication that the SM is only part of the full story.

The lepton numbers L` (` = e, µ, τ) are other additive quantum numbers which seem to be strictly
conserved at first sight. By convention L`(`

−) = 1 . That Lµ is separately conserved follows from
the non-observations of the decays

µ+ → e+ + γ Γ(µ→ eγ)/Γ(µ→ all) < 1.2 × 10−11

µ+ → e+ + e− + e+ Γ(µ→ 3e)/Γ(µ→ all) < 1.0× 10−12

KL → e + µ Γ(KL → eµ)/Γ(KL → all) < 4.7 × 10−12

K+ → π+ + e+ µ Γ(K+ → π+eµ)/Γ(K+ → all) < 2.1× 10−10

µ− + (Z,A)→ e− + (Z,A) Γ(µ−Ti→ e−Ti)/Γ(µ−Ti→ all) < 4.0 × 10−12

µ− + (Z,A)→ e+ + (Z − 2, A) Γ(µ−Ti→ e+Ca)/Γ(µ−Ti→ all) < 3.6 × 10−11 .

Tests of the separate conservation of Lτ are much less stringent: The best limits are:

Γ(τ → eγ)/Γ(τ → all) < 2.7× 10−6 and Γ(τ → µγ)/Γ(τ → all) < 1.1× 10−6 .

Within the experimentally well established electroweak standard model strict lepton number
conservation is only possible if the neutrinos are strictly massless. Non-vanishing neutrino masses
lead to neutrino-oscillations. Neutrino mixing searches (ν-oscillations ν` ↔ ν`′) have confirmed
the effect recently which implies the existence of non–vanishing neutrino masses. Present direct
upper limits on the neutrino masses are:

mνe < 3.0 eV (from 3H → 3He e− ν̄e)

mνµ < 190 keV (from π → µ νµ)

mντ < 18.2 MeV (from τ− → 3π ντ )
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Lower bounds are not yet so easy to establish at present but observed neutrino mixing phenom-
ena indicate values of about two to three orders of magnitude lower than the above direct upper
limits. In any case this implies corresponding lepton numbers L` (` = e, µ, τ)–violations.

Another important limit is the absence of ∆Le = 2 transitions. The limit from neutrino-less
double beta decay (Z,A) → (Z + 2, A) + e+ + e− is t1/2 > 1.6 × 1025 years for 76Ge . The
observation of such reactions would imply that the electron-neutrino is a massive Majorana
neutrino, a self-conjugate fermion which is its own antiparticle.

Global non-Abelian symmetries are approximate (broken) only and correlated with the hierarchy
of the fundamental interactions. The weaker the interaction the less symmetries it respects.
Strong interaction symmetries are:

Isospin (charge independence of nucleon forces) I SU(2)I

Strangeness S






SU(3)flavor

Charm C







SU(4)flavor

...

The larger the symmetry group the stronger it is broken by growing mass differences of the
states in the multiplets. These symmetries are furthermore broken by electromagnetic and weak
interactions. The latter in addition breaks parity P maximally and CP in accordance with the
Cabibbo-Kobayashi-Maskawa (CKM) mixing scheme of the three quark–lepton family electroweak
SM. CP violation was observed for the first time in K 0 decays in 1964 as a small effect at the
3 ppm level. The corresponding effect in B0 decays has been established 2001 at dedicated
B–factories.

Excursion on the Quantum Chromodynamics (QCD) and the chiral group: The modern theory of strong interaction
is QCD. It views hadrons like the pions, the nucleons etc. as composite objects made out of quarks. Mesons
are quark antiquark bound states, nucleons are three quark bound states etc. The quarks not only carry flavor
quantum numbers like isospin, strangeness, charm, etc. but an additional one called color. More precisely quarks
are color triplets antiquarks are color antitriplets of SU(3)c. Color is a local symmetry (much like the local U(1)em
gauge invariance in QED) and requires the existence of eight colored gauge bosons the gluons which glue together
the quarks in the hadrons. QCD is a unbroken non-Abelian gauge theory, which has the property of asymptotic

freedom, the strength of the interaction becomes weaker and weaker as we look at shorter and shorter distances, i.e.,
inside the hadrons. Complementary it becomes stronger and stronger as we go to larger and larger distances. This
means that we cannot separate the quarks in the hadrons to become free particles. If we try to separate a qq̄–pair
the color field between them get squeezed into flux tubes which at the end form strings which execute a linearly
rising force. In this way quarks and gluons get in fact permanently confined inside the hadrons. This phenomenon is
called confinement. Only objects not carrying net color can become free, these are the hadrons. They have typical
sizes of about 1 fermi (=10−13 cm) and the color forces are screened at distances beyond the size of a hadron. The
remnant forces are what we observe as nuclear forces in atomic nuclei or in low energy hadron scattering. Thus in
spite of the fact the force carriers, the gluons, are massless the strong interaction forces are rather short ranged.
Thus, interestingly, the spectrum of possible states of QCD are not the fields in the Lagrangian, the quarks and
gluons, but the hadrons, and those must be color neutral which means they must be color singlets.

Thus from the point of view of the color SU(3)c the spectrum can be found by determining all possible singlets
which we may form from quarks in 3 or 3∗ and gluons in 8:

3 ⊗ 3∗ = 1 ⊕ 8

3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10

3∗ ⊗ 3∗ ⊗ 3∗ = 1 ⊕ 8 ⊕ 8 ⊕ 10∗

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10∗ ⊕ 27
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Only the singlets play a role here. They correspond to the mesons ψ̄icα(Γ)αβψicβ baryons, antibaryons and the
so called glueballs, respectively. The glueballs, the singlet in 8 ⊗ 8 of gluons, do not contain any valence quarks.
They are expected to show up as broad resonances between 1 and 2 GeV and have not yet been established by
experiments.

A completely different kind of application concern the flavor symmetries, which are approximate global symmetries
of the strong interactions and hence, in modern terminology, of the QCD Lagrangian. Since some of the quarks
are rather light one may look at the approximation where quark masses are switched off. The QCD Lagrangian
then has a huge global flavor symmetry, namely, the chiral group

GF = U(NF )V ⊗ U(NF )A ' SU(NF )V ⊗ SU(NF )A ⊗ U(1)V ⊗ U(1)A (5.1)

with NF the number of quark flavors. In the context of the SM, as we shall see later, this corresponds to the
symmetric phase of the electroweak– or flavor– sector of the SM, i.e., before the local gauge symmetry SU(2)L ⊗
U(1)Y is broken by the Higgs mechanism to the residual exact electromagnetic U(1)em local gauge symmetry. The
unbroken phase may be understood as an asymptotic symmetry which is approached asymptotically at very high
energies, when all masses which are small relative to a given energy scale are negligible. Since as we increase the
number of flavors from NF = 2 to 6, the above symmetry is broken more and more by increasingly heavy quark
masses23

quark flavor u d s c b t

mass (MeV) ∼5 ∼9 190 1650 4750 174200

the chiral symmetry is good only for the light flavors: for NF = 2 we have with very good accuracy the isospin
SU(2) for NF = 3 the slightly more broken SU(3) of isospin plus strangeness, symmetries which manifest themselves
in the hadronic spectrum. One might ask what is the precise sense of a broken symmetry, a symmetry which is
not truly a symmetry? Associated with a symmetry there are currents and generalized charges, the generators of
the symmetry transformations (see next Sec.) of particle multiplets. The point is that in spite of the fact that
the symmetry is not perfect the states may be classified or labeled in terms of corresponding quantum numbers
like isospin and stangeness which satisfy the appropriate Lie algebra. As the symmetry is approximate only, the
corresponding charges are not strictly conserved and thus are time-dependent to some extent.

Surprisingly the chiral symmetry group (5.1) is not just SU(NF ) which is what we observe in the hadron spectrum.
The chiral group is doubled by the axial part, in fact in the massless limit left–handed and right–handed fields
satisfy an SU(NF ) independently and thus we obtain SU(NF )L ⊗ SU(NF )R which is equivalent to vector times
axial-vector SU(NF )V ⊗SU(NF )A (see Sec. 12 for more details). The only explanation for the absence of the parity
doublers in the spectrum is that in fact the SU(NF )A is spontaneously broken, i.e., the symmetry is manifest in
the dynamics, represented by the massless QCD–Lagrangian, but absent in the ground state (vacuum) and hence
in the space of states built up about the non–symmetric vacuum (see Sec. 9). In turn this implies the existence of
a set of Goldstone bosons, which must be massless: for SU(2) we must have 3 Goldstone bosons the three pions
π±, π0, for SU(3) we must have 8 Goldstone bosons the pions plus K±, K0, K̄0 and η. Since in reality quark
masses are non-vanishing the “would be Goldstone bosons” aquire a mass and one calls them preudo Goldstone

bosons. This mechanism explains why the pseudoscalar mesons are the lightest hadrons and why they have masses
substantially lower than the other hadrons.

We finally mention that the U(1)V factor in (5.1) in fact corresponds to the baryon number conservation, while
U(1)A is not a symmetry at all. The latter is broken by quantum corrections, the famous Adler–Bell–Jackiw
anomaly.

For a more detailed discussion we refer to Sec. 12 for the chiral group and to Sec. 9 for the spontaneous symmetry

breaking and the Goldstone phenomenon.

We have seen that we are often dealing with imperfect symmetries in nature. The various possi-
bilities we have encountered may be classified as follows:

23Note the in each doublet the quarks with the larger charge magnitude like c and t have also larger mass than
s and b, respectively. The lightest two quarks are an exception, the u quark is lighter than the d quark which is of
existential importance as it makes the proton to be lighter than the neutron and the neutron to decay into protons
and not vice versa. Thus the inversion is crucial for the stability of the proton and hence for all structure in the
universe.
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• Symmetries broken by weaker interactions: What are the enhanced symmetries we get if
we switch of gravity, the weak forces and the electromagnetic interactions?

• Symmetries broken by mass terms or other terms in the Lagrangian of dimension less than
four. In general such breakings disappear if we go to higher energies only if they are
generated by

• spontaneous symmetry breaking.

• What is barely considered in the literature: symmetries may show up at low energies because
one does not see the short distance details, which means that at high enough energies when
probing short distances symmetries observed at low energy may be violated. Typically,
interaction terms of dimension larger than four (non-renormalizable terms which naturally
arise in low energy effective theories but which are suppressed if the high-energy cut-off
is large enough) could violate symmetries we see at low energies. Low energy here means
present accelerator energies as we expect the Planck scale MPlanck ∼ 1019 GeV to be the
fundamental reference scale. Such non-renormalizable terms are absent in the SM and
possibly only show up when we go much closer to the Planck scale MPlanck. Effects at the 1
ppm level we may expect only at energies E/MPlanck ∼ 10−3, i.e., E ∼MGUT ∼ 1016GeV.

Appendix to Section 5:

Some useful formulae for matrix transformations

1.

eiABe−iA = B + i[A,B] + i2

2! [A, [A,B]] + . . .

+ in

n! [A, [A, . . . , [A, [A,B ]] . . .]
︸ ︷︷ ︸

n

+ . . .

holds for any two operators or matrices A and B .

Proof:

Replace A by λA and perform a Taylor expansion in λ

F (λ) = eiλABe−iλA =
∞∑

n=0

λn

n!

(
∂nF

∂λn

)

|λ=0

and evaluate the Taylor coefficients. Using that A commutes with eiλA we get

∂F

∂λ
= eiA i [A,B]e−iλA

and by repeated differentiation

∂nF

∂λn
= eiλA in [A,A, . . . [A,B ]] . . .]

︸ ︷︷ ︸

n

e−iλA.

For λ = 1 the result follows.
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2.

ei
∑

l
Tlωl Ti e

−i
∑

l
Tlωl = Tk

(

ei
∑

l
tlωl

)

ki

i.e. Ti transforms as a vector under the adjoint representation (tl)ik =
−i clik or (tl)ki = i clik.

Proof:

ei
∑

l
Tlωl Ti e

−i
∑

l
Tlωl

= Ti + i [Tlωl, Ti] +
i2

2!
[Tl2ωl2 [Tl1ωl1 , Ti]] + . . .

+
in

n!
[Tlnωln , [Tln−1ωln−1 , . . . , [Tl1ωl1 , Ti ] . . .]]

︸ ︷︷ ︸

n

+ . . .

= Tkδki + Tk i (tlωl)ki + Tk
i2

2!
(tlωl)

2
ki + . . . + Tk

in

n!
(tlωl)

n
ki + . . .

= Tk
(

ei
∑

l
tlωl

)

ki

We have used 1. and [Tl, Ti] = Tk i clik = Tk(tl)ki such that

[Tlωl, Ti] = Tk(tlωl)ki

[Tl2ωl2 , [Tl1ωl1 , Ti]] = [Tl2ωl2 , Tk1 ] (tl1ωl1)k1i

= Tk (tl2ωl2)kk1 (tl, ωl1)k1i

= Tk(tω)2
ki etc.

where repeated indices have to be summed over.

3.

e−i
∑

l
Tlωl∂µ

(

ei
∑

l
Tlωl

)

= Tk

(

1−e−i
∑

l
tlωl

∑

l
tlωl

)

ki
∂µωi

is a linear combination of the generators and thus an element of the
Lie-algebra

Proof:

e−i
∑

l
Tlωl∂µ

(

ei
∑

l
Tlωl

)

= −i [Tlωl, ∂µ] +
i2

2!
[Tl2ωl2 , [Tl1ωl1 , ∂µ]] + . . .

+
(−i)
n!

n

[Tω, [Tω, . . . , [Tω, ∂µ] . . .]] + . . .

= −i Tk δki (−∂µωi) +
i2

2!
[Tlωl, Ti] (−∂µωi) + . . .

+
(−i)
n!

n

[Tω, [Tω, . . . , [Tω, Ti ] . . .]]
︸ ︷︷ ︸

n−1

(−∂µωi) + . . .

= −Tk
∞∑

n=1

(−i)
n!

n

(tω)n−1
ki ∂µωi

= Tk

(

1− e−i
∑

l
tlωl

∑

l tlωl

)

ki

∂µωi = TkΛki(ω) ∂µωi
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We have used 1. and [Tlωl, ∂µ] = Tlωl∂µ − ∂µTlωl = −Tl(∂µωl) and then proceed as in the
proof of 2.

Exercises: Section 5

① Show that 8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10∗ ⊕ 27.

② Discuss the isospin properties of the triplet of pions (π+, π0, π−) .

The isospin symmetry of the scattering operator S not only leads to relations between
matrix elements but also to selection rules: Suppose

(a) T is a generator of a symmetry transformation such that [T, S] = 0 ,

(b) | α > and | β > are eigenstates of T i.e. T | α >= tα | α >, T | β >= tβ | β >

What does this imply for the S-matrix elements

Sβα =< β | S | α > ?

Find a few examples.

③ Use the Young tableaux to construct the meson states in

3⊗ 3∗

and the baryon states in

3⊗ 3⊗ 3 .

The states in the pseudoscalar meson octet of flavor SU(3) are characterized by the 3rd

component of isospin and by hypercharge Y = B+S (B baryon number B = 0 for mesons,
S strangeness S = 0 for pions). Display the weight diagram (I3 − Y plot) of the meson
states. How are they composed of u, d and s quarks in the SU(3)flavor quark model ?

④ The structure constants cikl of a Lie-algebra [Ti, Tk] = iciklTl satisfy the Jacobi identity.

cikncnlm+ terms cyclic in (ikl) = 0

Use this to show that (T̃i)kl = −icikl also satisfies the Lie-algebra (adjoint representation).

⑤ Lepton number Le is another additive quantum number which is strictly conserved. Le(e
−) =

138



1 by convention. Determine Le for the other particles from the observed reactions:

1. Le(e
+) = −1, Le(γ) = 0 :

p+ e → p+ e + γ

γ∗ → e+ + e−

2. Le(π
0) = Le(π

±) = 0 :

π0 → 2γ, γ + e+ + e−

p+ π− → n+ π0

p+ π0 → n+ π+

3. Le(ν̄e) = −1, Le(νe) = 1 :

π− → e− + ν̄e

π+ → e+ + νe

From the last two reactions we learn the important result νe 6= ν̄e !

⑥ Baryon number conservation is responsible for the stability of the proton. By convention
B(p) = 1, B(e−) = 0 . Determine the baryon numbers of particles from the observation of
the following reactions:

a.) Baryons and mesons:

1. B(π0) = 0 :

p+ p → p+ p+ π0

2. B(n) = B(p), B(π±) = B(π0) = 0 :

p+ p → p+ n+ π+

π− + p → n+ π0

3. B(K±) = B(K0) = 0 :

K± → π± + π0

K0 → π+ + π−, π+ + π− + π0

4. B(Λ), B(Σ) = 1 :

π− + p → Λ0 +K0, Σ− +K+

π+ + p → Σ+ +K+, Σ0 + Λ0

5. B(Ξ), B(Ω−) = 1 :

K− + p → Ξ− +K+, Ξ0 +K0, Ω− +K+ +K0
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b.) Antibaryons:

6. B(p̄) = −1 :

p+ p → p+ p+ p+ p̄

7. B(B̄) = −1 :

p+ p̄ → n̄+ n, Λ̄0 + Λ0, Σ̄0 + Σ0, Σ̄± + Σ∓, Ξ̄+ + Ξ−

c.) Photon:

8. B(γ) = 0 :

p → p+ γ

d.) Leptons: All leptons are produced in pairs, B(e−) = 0 by convention.

9. B(e) = B(µ) = 0 :

γ∗ → e+ + e−, µ+ + µ−

10. B(νe) = B(νµ) = 0 :

n → p+ e− + ν̄e

µ− → e− + ν̄e + νµ

µ+ → e+ + νe + ν−µ

π− → µ− + ν̄µ

π+ → µ+ + νµ
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6 Local gauge invariance, Yang-Mills theories

In QED we learn that a photon field (Abelian gauge field) is required, which minimally couples to
electrons (charged particles), if we “enlarge” the global U(1) gauge symmetry of the free electron
system to a local gauge symmetry (Weyl 1929). Yang-Mills fields (non-Abelian gauge fields)
are needed if we require a global SU(n) symmetry of free matter fields to be promoted to a local
SU(n) gauge symmetry (Yang and Mills 1954).

As we shall see, the presence of global symmetries on the one hand and of local symmetries on
the other hand has very different physical consequences. Astonishingly, according to our present
knowledge, all fundamental interactions of quarks and leptons derive from a gauge principle with
respect to a particular gauge group.

6.1 Global symmetries and Noether currents

We consider a multiplet of n free spin 1/2 matter fields

Ψ(x) := Ψαa(x) =








ψα1

...

ψαn







.

Each ψαa(a = 1, . . . , n) is a Dirac field with spinor index α = 1, . . . , 4. The free Lagrangian of
the field Ψ(x) is given by

LΨ
0 = Ψ̄(x) (iγµ∂µ −m) Ψ(x) ≡

∑

a

Ψ̄αa(x) (iγµ∂µ −m)αβ Ψβa(x)

and the Euler-Lagrange equations of motion

∂µ
∂L
∂∂µΨ̄

− ∂L
∂Ψ̄

= 0 and ∂µ
∂L
∂∂µΨ

− ∂L
∂Ψ

= 0

are equivalent to n uncoupled Dirac equations

(iγµ∂µ −m) Ψa = 0 ; (a = 1, . . . , n) .

This Lagrangian has global U(n) symmetry

Ψ→ Ψ′ = ŨΨ ; Ũ ∈ U(n).

Since Ũ = Ueiφ with U ∈ SU(n) we may restrict ourselves to consider SU(n) transformations
only, because the phase is common to all fields in the multiplet. Accordingly, in the following,
we assume the field Ψ to transform as a vector in the fundamental representation of SU(n). It
will be convenient to write the SU(n) matrices in the form

U = U(ω) = eig
∑n2−1

i=1
Tiωi

with a common real positive scale factor g (it will be identified with the gauge coupling later
on) split off from the group parameters ωi. For global transformations the parameters ωi are
independent of the space-time point x.
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By Noether’s theorem the global SU(n) symmetry of LΨ
0 implies the existence of r = n2 − 1

conserved currents jµi (x) and the “charges” Qi =
∫
d3xj0

i (t, ~x) are time independent and represent
the generators of the SU(n) Lie-algebra [Qi, Qk] = iciklQl. Noether’s theorem and the specific
form of the currents can be obtained by applying an infinitesimal transformation

Ψ→ Ψ′ = Ψ + δΨ ; δΨ = ig
∑

i

TiΨδωi

Ψ̄→ Ψ̄ ′ = Ψ̄ + δΨ̄ ; δΨ̄ = −ig
∑

i

Ψ̄Tiδωi

to the field and by using the invariance of LΨ
0 .

The variations of the fields imply a variation of LΨ
0 by

δLΨ
0 = δΨ̄

∂L
∂Ψ̄

+ δ
(

∂µΨ̄
) ∂L
∂∂µΨ̄

+
∂L
∂Ψ

δΨ +
∂L
∂∂µΨ

δ (∂µΨ) .

Since the transformation is global (x-independent) δ∂µΨ = ∂µδΨ and by the Euler-Lagrange
equation ∂L

∂Ψ = ∂µ
∂L
∂∂µΨ we find

δLΨ
0 = ∂µ

{

δΨ̄
∂L
∂∂µΨ̄

+
∂L
∂∂µΨ

δΨ

}

= −g
∑

i

(

∂µj
µΨ
i

)

δωi

where

jµΨ
i = Ψ̄(x)γµTiΨ(x) ≡ Ψ̄αa(x) (γµ)αβ (Ti)ab Ψβb(x)

are the fermionic SU(n) Noether currents.

Since δLΨ
0 = 0 for arbitrary δωi, we indeed must have the currents being conserved

∂µj
µΨ
i (x) = 0 ; i = 1, . . . , n2 − 1 .

For a multiplet of complex scalar fields

Φa =








φ1

...

φn








and a free Lagrangian

LΦ
0 = (∂µΦ)+ (∂µΦ)− µ2Φ+Φ

we find the Noether currents

jµΦ
i = i Φ+Ti

↔
∂µ Φ

where
f
↔
∂ µ g = f(∂µg)− (∂µf)g .

It is important to notice that the form of the conserved currents does not change if symmetric
interactions without derivatives of fields are present.
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6.2 Local symmetries and gauge fields

While global symmetries give raise to a classification of states according to irreducible representa-
tions of the symmetry group and to conserved quantum numbers, local symmetries have a rather
different physical implication. The requirement of local symmetries is a dynamical principle
which implies that matter fields must be in interaction with massless spin 1 gauge fields in a spe-
cific way. The property of local gauge invariance corresponds to the validity of an equivalence
principle: the n degrees of freedom of the local field Ψa(x) are locally indistinguishable in the
sense that Ψ(x) and U(x)Ψ(x) describe the same physics and

Ψ(x)→ Ψ′(x) = U(x)Ψ(x) , U(x) ∈ SU(n)

is a symmetry of the dynamics. This means that an observer at space-time point x may choose a
coordinate frame for the internal degrees of freedom in the multiplet Ψa(x) independently from
an observer at a different space-time point x′. At first sight this requirement might look quite
natural and harmless. It has dramatic consequences, however. Essentially, it dictates the form of
the dynamics once the local transformation laws of the matter fields are known. The equivalence
principle for internal symmetries is very similar to the classical equivalence principle of gravity,
which implies that gravity emerges as the geometry of space-time.

The freedom to have associated with each space-time point an independent frame for the internal
symmetry space only makes sense if we are able to “synchronize” local frames at different space-
time points. In order to be able to actually perform such a synchronization we need carriers of
physical signals traveling at the universal speed of light, namely, n2 − 1 massless spin 1 bosons
described by a matrix Vµ(x) =

∑

i TiVµi(x) which is an element of the Lie-algebra. A change
of local frames between space-time points x and x + dx must be correlated with a local gauge
transformation of Vµ(x). What we need is a statement saying when “a field Ψ(x) does not change
between x and x+dx”. With other words, we need a definition of parallel displacement. When
there are no internal symmetries and Ψ(x) is a real field we would say that the field does not
change between x and x+ dx if

Ψ(x + dx) = Ψ(x) + ∂µΨ(x) dxµ = Ψ(x)

or ∂µΨ(x) = 0. In QED the complex electron field ψ(x) is coupled to the photon field Aµ(x), a
U(1) gauge field, and in the coupled electron-photon system the phase ψ(x) = eieα(x) | ψ(x) | has
no physical significance. However, the statement that | ψ(x) | is constant over dx:

∂µ | ψ(x) |= ∂µ
(

e−ieα(x)ψ(x)
)

= 0

or (∂µ − ie∂µα(x))ψ(x) = 0 is not gauge invariant and must be replaced by the condition that
the covariant derivative

Dµψ(x) = (∂µ − ieAµ(x))ψ(x) = 0

vanishes. For the non-Abelian SU(n) gauge symmetry this generalizes to

(DµΨ(x))a = (∂µ − igVµ(x))ab Ψb(x) = 0

In Fig. 6.1 we have illustrated the geometrical meaning of the covariant derivative. For infinites-
imal dx we compare the fields Ψ(x) at point x and Ψ(x + dx) at point x + dx. Consider the
covariant expansion Ψ(x + dx) = Ψ(x) + DµΨ(x) dxµ . If Ψ(x) satisfies DµΨ(x) = 0 the field is
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“parallel”. We denote by Ψ
||
(dx)(x) the field Ψ(x+dx) which has been shifted parallel from x+dx

to x along the path dx. Then DµΨ(x) dxµ = Ψ
||
(dx)(x)−Ψ(x) .

x

x+ dx

Ψ(x)

Ψ
||
(dx)(x)

Ψ(x+ dx)

DµΨ(x) dxµ

Fig. 6.1: Geometrical interpretation of the parallel displacement.

We now discuss in more detail how locally gauge invariant field theories can be constructed.

6.2.1 Minimal couplings of the matter fields

Global G (= SU(n)) invariance of LΨ
0 follows from the fact that with Ψ(x) also ∂µΨ(x) transforms

as a vector:

Ψ(x) → Ψ′(x) = UΨ(x)

∂µΨ(x) → ∂µΨ′(x) = U∂µΨ(x)

when ∂µU = 0. Under local transformations ∂µU 6= 0

∂µΨ(x)→ ∂µΨ′(x) = U(x)∂µΨ(x) + (∂µU(x)) Ψ(x)

= U(x)
(

∂µ + U−1(x) (∂µU(x))
)

Ψ(x)

6= U(x)∂µΨ(x)

does no longer transform vector-like because of the extra term

U−1(x) (∂µU(x)) = ig
∑

i

TiṼiµ ∈ G′.

As indicated, this term is an element of the Lie-algebra G′ of the symmetry group G and a
four-vector under Lorentz transformation. Neglecting higher order terms, for infinitesimal trans-
formations U = 1 + ig

∑

i Tiωi we easily calculate

U−1(x) (∂µU(x)) = ig
∑

i

Ti∂µωi(x)

such that Ṽiµ(x) = ∂µωi(x). For finite transformations we may write Ṽiµ(x) =
∑

l Λil(ω)∂µωl(x)
where the matrix Λil(ω) is given in the Appendix.

When applied to LΨ
0 local gauge transformations induce a non-invariant term:

LΨ
0 → LΨ

0 + Ψ̄iγµU−1 (∂µU) Ψ

= LΨ
0 − g

∑

i

Ψ̄γµTiΨṼiµ(x)

= LΨ
0 − g

∑

i

jµi (x)Ṽiµ(x) .
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This term describes the coupling of a set of r = n2 − 1 real vector fields Ṽiµ(x) to the Noether
currents jµi (x), which are conserved under global transformations.

In order to obtain a locally gauge invariant extension of the free system we must introduce a set
of r real vector fields Viµ(x) as dynamical variables (physical degrees of freedom) which couple to
the Noether currents:

LΨ
0 → LΨ = LΨ

0 + g
∑

i

jµi (x)Viµ(x)

= LΨ
0 + g

∑

i

Ψ̄γµTiViµ(x)Ψ

= Ψ̄ (iγµDµ −m) Ψ .

The fields Viµ(x) are called Yang-Mills fields or non-Abelian gauge fields.

Formally LΨ follows from LΨ
0 by minimal substitution

∂µ → Dµ = ∂µ − ig Vµ

where

Vµ =
∑

i

TiViµ(x) ∈ G′

is an element of the Lie-algebra.

Dµ defines the covariant derivative. LΨ is locally gauge invariant provided DµΨ transforms
as a vector

Ψ(x) → Ψ′(x) = U(x)Ψ(x)

DµΨ(x) → (DµΨ)′ = U(x)DµΨ(x)

and hence

D′µU(x) = U(x)Dµ .

This condition fixes the transformation law of the fields Viµ(x):

D′µ = ∂µ − igVµ ′ = U(x)DµU
−1(x)

= U(x) (∂µ − igVµ)U−1(x)

= ∂µ − igU(x)VµU
−1(x) + U(x)∂µU

−1(x)

= ∂µ − igU(x)

(

Vµ −
i

g
U−1(∂µU)

)

U−1(x) .

Here, we have used ∂µ
(
UU−1

)
= (∂µU)U−1 + U

(
∂µU

−1
)

= 0 or U
(
∂µU

−1
)

= − (∂µU)U−1.

Consequently, we find

Vµ → Vµ
′ = U(x)

(

Vµ −
i

g
U−1(∂µU)

)

U−1(x) .

Like ∂µΨ(x), Vµ(x) does not transform as a vector since the local transformation law is different
from the global one. In fact Vµ has been required to produce a compensating term for the
non-covariant term obtained for ∂µΨ, in order that (∂µ − igVµ)Ψ is a vector.
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For infinitesimal transformations U = 1 + ig
∑

i Tiωi(x) we obtain to linear order in ωi(x):

Vµ
′ =

∑

i

TiV
′
iµ(x) =

∑

i

Ti (Viµ(x) + ∂µωi(x)) + ig
∑

k, l

[Tk, Tl]ωkVlµ

=
∑

i

Ti (Viµ(x)− gciklVlµωk + ∂µωi)

or

V ′iµ = Viµ − gciklVlµ ωk + ∂µωi .

Since (T̃k)il = icikl represent the generators in the adjoint representation we have

δViµ = −gciklVlµ ωk + ∂µωi

= ig(T̃k)ilVlµ ωk + ∂µωi

which compares to

δΨa = ig(Tk)abΨbωk

for the matter fields. We notice that Viµ(x) transforms under the adjoint representation up to a

divergence term24. Accordingly the fields Viµ(x) carry SU(n) charge, which is obvious also from
their coupling to the charged Noether currents.

As a result, local gauge invariance requires the matter fields to interact with n2 − 1 massless
gauge fields via minimal coupling

LΨ = Ψ̄ (iγµDµ −m) Ψ = LΨ
0 + g

∑

i

Ψ̄γµTiΨViµ .

The gauge coupling constant g is a free parameter. The interaction vertex is depicted in Fig. 6.2.

Ψ̄

Ψ

V
g

Fig. 6.2: Matter field couplings of a gauge theory.

6.2.2 Non-Abelian field strength tensor

Because the gauge fields Viµ(x) must be dynamical variables (i.e. describe physical degrees of
freedom) the complete Lagrangian density must include a kinetic term for these fields. By their
Lorentz structure the Viµ(x) are gauge potentials describing massless spin 1 fields. Therefore, the
Lagrangian must include a term

LV0 = −1

4

◦
Giµν

◦
Gµνi

24As we know from QED, massless four–component gauge fields necessarily exhibit non–physical degrees of
freedom because there are only two physical states the transversal one’s. Hence, the gauge potentials describe
among the physics also redundant stuff. Thats why the transformation laws of the gauge fields under local gauge
transformations are anomalous (by the disturbing divergence term). Attempts to describe gauge interactions
directly in terms of the more physical field strength tensor (see below) seem not to be possible. By the construction
presented before somehow the gauge potentials are quantities which show up in a natural way. As in QED, at the
end one has to show that the physical transition matrix elements are gauge invariant and do not depend on the
redundancies of the formalism
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with
◦
Giµν= ∂µViν(x)−∂νViµ(x) . Like for free matter fields the free Lagrangian LV0 is not locally

gauge invariant, however. A gauge invariant generalization of LV0 is obtained if we substitute
◦
Giµν by a non-Abelian field strength tensor Giµν which is a 2nd rank antisymmetric Lorentz
tensor, transforming as a vector under the adjoint representation of SU(n). This means that

Gµν =
∑

i

Ti Giµν(x) ∈ G′

has to transform like

Gµν → Gµν
′ = U(x)GµνU

−1(x)

without a divergence term! Since Dµ is a Lorentz vector and satisfies D′µ = U(x)DµU
−1(x) the

commutator [Dµ, Dν ] satisfies all the properties required for Gµν .

It is now easy to calculate Gµν . Using

(Dµ)ik = ∂µδik − ig
∑

j

(Tj)ikVjµ(x)

we have

(Dµ)ik(Dν)kl = ∂µ∂νδil − ig
∑

j

(Tj)il (Vjµ∂ν + Vjν∂µ)

− ig
∑

j

(Tj)il∂µVjν − g2
∑

j, j′
(Tj)ik(Tj′)klVjµVj′ν

and hence (the symmetric terms drop)

[Dµ, Dν ]il = −ig
∑

j

(Tj)il (∂µVjν − ∂νVjµ)

−g2
∑

j′, j′′

[
T j′ , Tj′′

]

il Vj′µVj′′ν

= −ig
∑

j

(Tj)ilGjµν = −ig (Gµν)il

where, using
[
Tj′ , Tj′′

]
= icj′j′′jTj ,

Giµν = ∂µViν − ∂νViµ + gcijkVjµVkν .

This is indeed the gauge covariant generalization of
◦
Giµν . In absence of matter fields the La-

grangian density

LYM = −1

4

∑

i

GiµνG
µν
i

defines the so called pure Yang-Mills theory .

If Vµ = i
gU
−1(x) (∂µU(x)) the field is called a “pure gauge” field. For a pure gauge field

Gµν ≡ 0 .

In contrast to the Abelian case (QED), the fields Viµ and Giµν transform nontrivially under gauge
transformations because they carry nontrivial SU(n)-charge. As charged fields they must couple
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to themselves in order to allow for a locally gauge invariant action. The self-interactions have the
following prescribed form:

LYM = −1

4

◦
Giµν

◦
Gµνi

−1

2
gcikl (∂

µV ν
i − ∂νV µ

i ) VkµVlν

−1

4
g2ciklcik′l′V

µ
k V

ν
l Vk′µVl′ν

The corresponding interaction vertices are shown in Fig. 6.3.

g
g2

Fig. 6.3: Yang-Mills couplings

If we include the matter fields we have the complete locally gauge invariant Lagrangian density

Linv = −1

4

∑

i

GiµνG
µν
i + Ψ̄ (iγµDµ −m) Ψ

with one coupling constant g as a free parameter. The strengths of the three different interaction
vertices are fixed by the same gauge coupling constant.

Let me add a remark about the geometrical interpretation of the field strength tensor which derives
from the one of the covariant derivative (see Fig. 6.1). To this end we consider an infinitesimal
parallelogram of points x, x + dx, x + dy and x + dx + dy and a field Ψ(xi) at the different
points. In order to shift Ψ(x + dx + dy) parallel to the point x we have two possible paths to
follow along the sides of the parallelogram. We denote these paths by (dx, dy) and (dy, dx). The

parallel displaced fields are Ψ
||
(dx,dy)(x) and Ψ

||
(dy,dx)(x) . We now calculate the difference of these

two fields. To this end we perform a covariant expansion along the two paths:

Ψ(x+ dx+ dy) = Ψ(x+ dy) +DµΨ(x+ dy) dxµ

= Ψ(x) +DνΨ(x) dyν +DµΨ(x) dxµ +DµDνΨ(x) dxµ dyν

Ψ(x+ dx+ dy) = Ψ(x+ dx) +DνΨ(x+ dx) dyν

= Ψ(x) +DµΨ(x) dxµ +DνΨ(x) dyν +DνDµΨ(x) dxµ dyν

For the difference we obtain

Ψ
||
(dy,dx)(x)−Ψ

||
(dx,dy)(x) = [Dµ, Dν ]Ψ(x) dxµ dyν = −igGµνΨ(x) dxµ dyν

exhibiting the field strength tensor as a curvature tensor . If the field strength is non-vanishing
the parallel-displacements of a vector along different paths yield a different result. For infinitesi-
mal shifts the difference vector is proportional to the original vector to the field strength and to
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the area of the parallelogram. The curvature is illustrated in Fig. 6.4.

x x + dx

x+ dy x + dx+ dy

Ψ
||
(dx,dy)(x)

Ψ
||
(dy,dx)(x)

Ψ(x+ dx+ dy)

[Dµ, Dν ]Ψ(x) dxµ dyν

Fig. 6.4: Geometrical interpretation of the field strength tensor.

6.2.3 Equations of motion and currents

Given the invariant Lagrangian

Linv = −1

4

∑

i

GiµνG
µν
i + Ψ̄

(

iγµ
(

∂µ − ig
∑

i

TiViµ

)

−m
)

Ψ

the Euler-Lagrange equations

∂µ
∂L
∂∂µΨ̄

=
∂L
∂Ψ̄

and ∂µ
∂L

∂∂µViν
=

∂L
∂Viν

read

(iγµ∂µ −m) Ψ = −gγµTiViµΨ

and

∂µG
µν
i = −g

(

jνΨ
i + jνVi

)

= −gjνi

with

jνΨ
i = Ψ̄γνTiΨ Noether current of the matter field

jνVi = ciklG
νρ
k Vlρ current of the gauge field

The total current jνi = jνΨ
i + jνVi is obviously conserved

∂νj
ν
i = −1

g
∂ν∂µG

µν
i = 0

because ∂ν∂µ is symmetric whereas Gµν
i is antisymmetric in (µν).

The equations of motion may be written in a manifestly gauge invariant form

(iγµDµ −m) Ψ(x) = 0

DµG
µν
i (x) = −gJνi (x)
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where

DµG
µν
i = ∂µG

µν
i − gciklVkµGµνl .

The gauge invariant form is simply obtained by adding the appropriate terms on both sides of
the equations of motion given before. Notice that DµG

µν
i and hence Jνi , given by

Jνi = jνi − ciklVkµGµνl = jνΨ
i = Ψ̄γνTiΨ,

are vectors under local gauge transformations.

The covariant current coincides with the matter field current which is not conserved: ∂νJ
ν
i 6= 0.

On the other hand the conserved current

jνi = Ψ̄γνTiΨ + ciklVkµG
µν
l = −1

g
∂µG

µν
i

is obviously not covariant because it is the ordinary derivative of a vector. We then arrive at the
conclusion:

In a locally gauge invariant theory a covariant conserved current with respect to the
gauge symmetry does not exist.

This tells us that local symmetries are not symmetries in the usual global sense, like Poincaré
invariance, Isospin invariance etc. . Local symmetries are dynamical symmetries and a conse-
quence of the validity of an equivalence principle. Global symmetries describe algebraic properties
of a system, only.

Summary (of subsection (6.2))

1. If we require n matter fields (ψ1, . . . ψn) to be locally indistinguishable, such that

Ψ(x) =








ψ1

...

ψn







→ Ψ′(x) = U(x)Ψ(x) ; U(x) = exp ig

∑

i

Tiωi(x) ∈ SU(n)

is a local symmetry of the system, the matter fields must couple minimally to a set of
r = n2 − 1 massless spin 1 gauge fields Viµ(x):

LΨ
inv = Ψ̄(x) (iγµDµ −m) Ψ(x)

with covariant derivative

Dµ = ∂µ − ig
∑

i

TiViµ(x) .

All matter fields ψ1 . . . ψn must have identical mass and spin.

2. The locally gauge invariant Lagrangian of the gauge fields must be of the form

LYM = −1

4

∑

i

GiµνG
µν
i

150



with covariant field strength tensor

Giµν = ∂µViν(x)− ∂νViµ(x) + gciklVkµ(x)Vlν(x)

The non-Abelian gauge fields must be self-interacting in the specific way as prescribed by
LYM . A mass term

M2

2

∑

i

Viµ(x)V µ
i (x)

for the gauge bosons is not admitted.

3. Under infinitesimal gauge transformations the fields transform as

δΨa = ig (Ti)abΨbδωi , δΨ̄a = −ig Ψ̄b(Ti)baδωi

with (Ti)ab the generators of SU(n) in the fundamental representation.

δVkµ = ig
(

T̃i
)

kl
Vlµδωi + ∂µδωi , δGkµν = ig

(

T̃i
)

kl
Glµνδωi

with
(

T̃i
)

kl
= −icikl the generators of SU(n) in the adjoint representation.

A final remark concerns the generalization of the Yang-Mills construction to other gauge groups
G. The necessary and sufficient conditions for the Yang-Mills construction to be possible are that
the structure constants cikl

i) satisfy the Jacobi-identity

ii) are fully antisymmetric.

Whereas i) is automatic for finite matrices (finite dimensional representations) but may not hold
for infinite matrices, the condition ii) is more restrictive. It holds for compact semi-simple Lie
groups. Compact mean that the parameter space has a finite volume

∫ ∏

i dωi = Vω <∞. Semi-
simple means G is a product of simple Lie-groups e.g. G = SU(3) ⊗ SU(2) ⊗ U(1). Simple
Lie-groups are those which cannot be decomposed into invariant subgroups. For each simple
subgroup of a non-simple group G there would be a set of non-Abelian or Abelian (U(1)) gauge
fields and an independent coupling constant.

Notice that the conditions i) and ii) are really non-trivial. As an example the Poincaré group is
non-compact and has no finite dimensional unitary representation.

Outlook: For a long time, after Yang and Mills had proposed to extend local gauge invariance
from Abelian to non–Abelian symmetry groups, non–Abelian gauge theories were considered
to be unphysical, because they required the existence of multiplets of massless spin 1 bosons,
which were known not to exist in Nature. At that time it was not known that there are two
ways out of the dilemma. One is the Higgs mechanism where the gauge bosons acquire a mass
by “spontaneous symmetry breaking of the local gauge symmetry”. Today we know that the
electroweak gauge group SU(2)L ⊗ U(1)Y , of weak isospin and weak hypercharge Y , is broken
down to the Abelian electromagnetic gauge group U(1)em. Three out of the 3+1 gauge bosons
acquire a mass and the remaining massless state is the photon. The weak gauge bosons W ±

and Z in fact turned out to be very heavy (about 80 GeV and 91 GeV, respectively) and were
discovered in 1983 at the CERN pp̄ collider. The LEP e+e− storage ring at CERN, in operation
since 1989, is a Z factory and produces millions of Z’s.
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The other “solution” is confinement. Unbroken non-Abelian gauge theories are asymptotically
free (Politzer, Gross and Wilzcek 1973), which means that they have small effective coupling at
high energies (short distances) but strong effective coupling at low energies (large distances). We
know that the strong interactions of hadrons are described by an unbroken color SU(3)c local
gauge theory, called quantum chromodynamics (QCD) (Gell-Mann, Fritzsch and Leutwyler 1973).
The matter fields are the colored quarks triplets which interact through the octet of massless gauge
fields, called gluons. Quarks and gluons are permanently confined inside of the hadrons. This is
another mechanism which hides massless gauge bosons from the physical spectrum.

Obviously the earlier conclusion that Yang-Mills theories are not of relevance for physics was
premature.

Exercises: Section 6

① If Vµ = i
gU
−1(x) (∂µU(x)) the field is called a “ pure gauge” field. Show that in this case

Gµν ≡ 0 .

② Show that a mass term M2

2

∑

i ViµV
µ
i cannot be locally gauge invariant.

③ Show that LYM can be written in the form of a trace

LYM = −1

2
Tr (GµνG

µν)

④ Prove the validity of the “homogeneous Maxwell equation” or “Bianchi-identity”:

DρGµν + terms cyclic in (ρµν) ≡ 0
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7 Path integral quantization

The prescription how to quantize properly a non-Abelian gauge theory and how to obtain the
correct Feynman rules is described in the next section. Thus the reader interested more in
applications may skip this somewhat technical section.

The path integral quantization was originally invented by Feynman and it was the main tool to
quantize fields. Later path integral quantization was displaced by canonical quantization, which
is more closely related to ordinary quantum mechanics with states and operators as basic objects.
While being conceptually simple and having a direct physical interpretation, the disadvantage
of the canonical quantization is its reliance on the “interaction picture”, i.e., on the splitting of
the Lagrangian into a free part L0 and an interaction part Lint. In particular for the correct
quantization of non-Abelian gauge theories this necessary splitting is not gauge invariant and the
control of gauge invariance remained obscure for a long time. The break–through came with the
rejuvenation of the path integral formalism by Faddeev, Popov, Fradkin, Tyupkin, ’t Hooft and
others. The advantages of the path integral formulation will be discussed in more detail below.
The most important fact is that the path integral representation provides a non–perturbative
definition of quantum field theory and is the starting point for investigating phenomena like
confinement and bound states in QCD, or non–perturbative effects like instantons, sphalerons
etc. The path integral formulation of field theory provides a much more general framework, than
the scattering theory inspired canonical quantization approach.

7.1 Functional integral for bosons

Our aim here is to reformulate a canonically quantized theory in terms of a “path integral”. Let
ϕ(x) be a quantized free real scalar field of mass m. The corresponding Lagrangian reads:

L =
1

2
∂µϕ(x) ∂µϕ(x) − m2

2
ϕ2(x) .

Since the dynamics of a system is governed by the principle of least action the physically relevant
quantity is actually the action

∫
d4xL(x). We are thus free to perform a partial integration and

write the free Lagrangian as a quadratic form in the field with the Klein-Gordon operator as a
kernel:

L = −1

2
ϕ(x) ( 2x +m2) ϕ(x) . (7.1)

The time ordered two point function, the Feynman propagator, is given by

< 0 | T {ϕ(x), ϕ(y)} | 0 > = i∆F (x− y;m2) (7.2)

with

∆F (z;m2) =
1

(2π)d

∫

ddq e−iqz
1

q2 −m2 + iε
, (7.3)

or, in Fourier space,

∆̃F (q) =
1

q2 −m2 + iε
. (7.4)

The space–time dimension is taken to be d. Note that due to translation invariance ∆F (x−y;m2)
is a function of x − y only. Since the Feynman propagator is a solution of the inhomogeneous
Klein-Gordon equation with a point source term

( 2x +m2) ∆F (x− y;m2) = −δ(d)(x− y) (7.5)
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we note that up to a sign (our convention) the Feynman propagator is the inverse of the kernel
of the bilinear Lagrangian written in the form Eq. (7.1).

We define a scalar product by

(f1,∆F f2)
.
=

∫

ddx ddy f1(x) ∆F (x− y) f2(y)

where fi(x) are suitable test functions, e.g., from the space S(Rd) of functions which are smooth
(infinitely differentiable) and fall off at infinity faster than any power. In physics terms the test
functions are smooth localized wave packets.

7.1.1 Generating functional for bosons

A generating functional is then defined by

< 0 | T ei
∫
ddx ϕ(x) J(x) | 0 > .

=
∞∑

n=0

in

n!

∫

ddx1 . . .

∫

ddxn J(x1) . . . J(xn) ×

< 0 | T {ϕ(x1) . . . ϕ(xn)} | 0 > . (7.6)

The ordinary function J(x) is a classical external field, which allows us to represent the Green
functions as “moments” with respect to J(x) (r.h.s. of Eq. (7.6)). The generating functional
allows us to extract all time–ordered Green functions and these allow us to reconstruct the whole
quantum field theory. For a free theory, i.e., ϕ(x) a free field, we may easily calculate all Green
functions: By Wick’s theorem (see Sec. 3.4.2)

< 0 | T {ϕ(x1) . . . ϕ(xn)} | 0 >=
∑

all possible complete contractions .

A contraction means a pairing of two fields which represents a Feynman propagator. Non van-
ishing contributions require n to be even.

From the n fields we chose successively a pair and replace it by a Feynman propagator until
all fields are used up. Given the ordered set of points (x1, x2, . . . , xn) the number of choices in
performing the pairings are given by

1st pair (n2 ) possibilities

2nd pair
(
n−2

2

)

possibilities
...

last pair
(
2
2

)
possibilities ,

which yields,



n

2








n− 2

2



 · · ·




2

2



 =
n!

(n− 2)!2!

(n− 2)!

(n− 4)!2!
· · · 2!

0!2!
=

n!

(2)n/2
.

The number of propagators is n/2. So far we have over counted the (n/2)! permutations of the
n/2 propagators as different and we have to correct for that by dividing the above result by
this factor. The n! permutations of (x1, x2, . . . , xn) are equivalent because of the permutation
symmetry (as integration variables the xi’s are indistinguishable). We obtain

< 0 | T {ϕ(x1) . . . ϕ(xn)} | 0 >= (i)n/2
n!

(2)n/2(n/2)!
∆F (x1 − x2) ∆F (x3 − x4) · · · ∆F (xn−1 − xn)
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for n even, and zero for n odd. We thus find

Z0 {J} = < 0 | T ei
∫
ddx ϕ(x) J(x) | 0 >

=
∑∞
n=0

(−i)n/2

(n/2)! [1
2(J,∆F J)]n/2 = exp− i

2(J,∆F J) .
(7.7)

This is a (free) Gaussian functional :

Z0 {J} = e−
i
2

∫
ddx ddy J(x) ∆F (x−y) J(y)

Z0 {0} = 1 normalization .

The time ordered Green functions may be obtained from the generating functional by taking
functional derivatives with respect to the source function J(x):

−i δ
δJ(x1) Z0 {J} |J=0 = < 0 | T {ϕ(x1)} | 0 >= 0

“mean” = 0

(−i)2 δ2

δJ(x1) δJ(x2) Z0 {J} |J=0 = < 0 | T {ϕ(x1)ϕ(x2)} | 0 >
“covariance” = i∆F (x1 − x2)

... .

(7.8)

These relations are immediately derived from the basic property

δ

δJ(x)
J(y) = δ(d)(x− y) or equivalently

δ

δJ(x)

∫

ddy F (y)J(y) = F (x) (7.9)

of the functional derivative.

7.1.2 Wick rotation, imaginary time, Euclidean functional

The momentum space representation of the Feynman propagator Eq. (7.4) is an analytic function
in q0 with poles at q0 = ±( ωp − iε) where ωp =

√

~q 2 +m2 (see Sec. 3.4.3). This allows us to
rotate by π

2 the integration path in q0, going from −∞ to +∞, without crossing any singularity.
In doing so, we rotate from Minkowski space to Euclidean space

q0 → −iqd ⇒ q = (q0, q1, . . . , qd−2, qd−1)→ q = (q1, q2, . . . , qd−1, qd) where q2 → −q2 . (7.10)

This rotation to the Euclidean region is called Wick rotation .

⊗

⊗

⊗

⊗

Im q0

Re q0

C

R

Fig. 7.1: Wick rotation in the complex q0–plane. The poles of the Feynman
propagator are indicated by ⊗’s.

More precisely: analyticity of a function f̃(q0, ~q ) in q0 implies that the contour integral
∮

C(R)
dq0 f̃(q0, ~q ) = 0
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for the closed path C(R) in Fig. 7.1.2 vanishes. If the function f̃(q0, ~q ) falls off sufficiently fast
at infinity, then the contribution from the two “arcs” goes to zero when the radius of the contour
R→∞. In this case we obtain

∞∫

−∞
dq0 f̃(q0, ~q ) +

−i∞∫

+i∞
dq0 f̃(q0, ~q ) = 0

or

∞∫

−∞
dq0 f̃(q0, ~q ) =

+i∞∫

−i∞
dq0 f̃(q0, ~q ) = −i

+∞∫

−∞
dqd f̃(−iqd, ~q ) ,

which is the Wick rotation. At least in perturbation theory, one can prove that the conditions
required to allow us to perform a Wick rotation are fulfilled.

We notice that the Euclidean Feynman propagator obtained by the Wick rotation

1

q2 −m2 + iε
→ − 1

q2 +m2
(7.11)

has no singularities (poles) and an iε–prescription is not needed any longer.

In configuration space a Wick rotation implies going to imaginary time x0 → ix0 = xd such
that qx→ −qx and hence

x0 → −ixd ⇒ x2 → −x2 , 2x → −∆x , i

∫

ddx · · · →
∫

ddx · · · . (7.12)

While in Minkowski space x2 = 0 defines the light–cone x0 = ±|~x|, in the Euclidean region x2 = 0
implies x = 0. Note that possible singularities on the light–cone like 1/x2, δ(x2) etc. turn into
singularities at the point x = 0. This simplification of the singularity structure is the merit of
the positive definite metric in Euclidean space.

All quantities considered above have their Euclidean versions. The Lagrangian (7.1) takes the
form

L = −1

2
ϕ(x) (−∆x +m2) ϕ(x) . (7.13)

For the Euclidean two–point function we obtain

i∆F (x− y;m2) =
i

(2π)d

∫

ddq e−iq (x−y) 1

q2 −m2 + iε

=
1

(2π)d

∫

ddq eiq (x−y) 1

q2 +m2

= G0(x− y) . (7.14)

Note that G0 is the inverse of (−∆ +m2), thus

(−∆x +m2)G0(x− y) = δ(d)(x− y) .

The Euclidean Green functions are also called Schwinger functions.

With

−i (J,∆F J) =

∫

ddx ddy J(x)G0(x− y) J(y) = (J,G0 J)

156



we may write

ZE0 {J} = exp
1

2
(J,G0 J) (7.15)

for the generating functional of the Euclidean Green functions.

In the following, unless stated otherwise, we work in Euclidean space and denote d–dimensional
Euclidean vectors by simply x, y, z, p, q, . . . In Fourier space we obtain the following representation:
The scalar product

(J,G0 J) =

∫

ddx ddy J(x) G0(x− y) J(y)

upon Fourier decomposition of the source function

J(x) =

∫
ddq

(2π)d
e−iqx J̃(q)

reads

(J,G0 J) =
∫ ddq

(2π)d
ddp

(2π)d
J̃(q) J̃(p) × ∫

ddx ddy e−iqx e−ipy G0(x− y)

= · · · × ∫
ddz ddy e−iqz ei(p+q)y G0(z)

= · · · × G̃0(q) (2π)d δ(d)(p + q)

and hence

(J,G0 J) =

∫
ddq

(2π)d
ddp

(2π)d
(2π)d δ(d)(p + q)J̃(q) J̃(p) G̃0(q)

=

∫
ddq

(2π)d
J̃(q) J̃(−q) G̃0(q)

=

∫
ddq

(2π)d
|J̃(q)|2 G̃0(q) .

Here we have used the reality property of the source

J(x)∗ = J(x)

which implies

J̃(q) =

∫

ddx e iqx J(x)

J̃(q)∗ =

∫

ddx e−iqx J(x) = J̃(−q) .

We notice that in momentum space (J,G0 J) is diagonal and manifestly positive, and we have
the result that ZE0 {J} is a Gauss functional with positive kernel G0.

7.1.3 Gauss integrals and Gauss functionals

The basic Gauss integral reads

∫ +∞

−∞
dx e−(ax2+2bx+c) =

√
π

a
e

b2−ac
a ; a > 0 ,
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and with c = 0 and 2b = J we obtain

F{J} =

∫ +∞

−∞
dx e−(ax2+Jx) =

√
π

a
e

J2

4a ; a > 0 ,

which is the generating function of the moments

∫ +∞

−∞
dx xn e−ax

2
= (−1)n

dn

dJn
F{J}|J=0 .

The generalization to the multidimensional case is obvious: Let Kij be a positive N ×N matrix
and let its inverse K−1

ij be the kernel of the quadratic form
∑

i,j ϕiK
−1
ij ϕj . We may then consider

the multi–integral

∫ +∞

−∞
dϕ1 . . . ϕN e

− 1
2

∑

i,j
ϕiK

−1
ij ϕj+

∑

i
ϕiJi (7.16)

which can be calculated in a simple way, by diagonalizing the quadratic form. Thus, let S be the
orthogonal transformation S−1 = ST which is diagonalizing the kernel K−1:

(SK−1S−1)ij = λiδij .

Since SST = 1 we have det(SST ) = detS detST = (detS)2 = 1. We may chose detS = 1. A
change of integration variables

Sijϕj = ϕ′i ; ϕ = S−1ϕ′ , J = SJ ′

∏

dϕi =

∣
∣
∣
∣
∣

∂ϕi
∂ϕ′j

∣
∣
∣
∣
∣

∏

dϕ′j = detS−1
∏

dϕ′i =
∏

dϕ′i

leads to
∫ +∞

−∞

∏

i

dϕ′ie
− 1

2

∑

j
ϕ
′2
j λj+

∑

j
ϕ′
jJ

′
j

=

∫ +∞

−∞

∏

i

dϕ′ie
− 1

2
λiϕ

′2
i +ϕ′

iJ
′
i =

∏

i

√

2π

λi
e

∑

j

J
′2
j

2λj

=
(2π)N/2

√

det(K ′−1)
e

1
2

∑

i,j
J ′
iK

′
ijJ

′
j =

(2π)N/2
√

det(K−1)
e

1
2

(J,KJ) (7.17)

where we used

K ′ij =
1

λi
δij and detK−1 =

∏

i

λi .

The last step, transforming back to the original variables, makes use of the invariance of the
scalar product (J,KJ) and of the determinant detK under orthogonal transformations.

7.1.4 Minkowski space and Fresnel integrals

In Minkowski space, where we usually work in relativistic physics, the Gaussian integrals encoun-
tered for the Euclidean boson fields turn into oscillatory Fresnel integrals. We list a few results
for illustration:
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For real variables we have:

+∞∫

−∞
dϕ√
2πi

e
i
2
ϕAϕ = A−1/2 ; A > 0

+∞∫

−∞

∏

x
dϕx√
2πi

e
i
2

∑

x
ϕxAxϕx = (

∏

xAx)−1/2 ; Ax > 0 , diagonal

+∞∫

−∞

∏

x
dϕx√
2πi

e
i
2

∑

x,y
ϕxAxyϕy = (detA)−1/2 ; Axy symmetric, positive definite.

(7.18)

The last result follows from the previous one by performing an orthogonal transformation of A
to diagonal form.

For complex variables the corresponding result reads:

+∞∫

−∞

∏

x
dϕx√
2πi

dϕ∗
x√

2πi
e
i
∑

x,y
ϕ∗
xAxyϕy = (detA)−1 , (7.19)

where Axy is hermitian and positive definite. Again, this last result can be obtained by diagonal-
izing A by an appropriate unitary transformation.

7.1.5 Lattice field theory.

We now consider the N variables of the previous example as N variables associated with the
points x of a d–dimensional Euclidean “space–time” lattice VL,a (see the Figure)

x
a

L

By a we denote the lattice spacing and ` is the number of points in one direction. Thus, ` a = L
is the size and Ld = V is the volume. The number of points is N = `d, which corresponds to the
number of variables. We then consider the generating function

ZE0 {J} = const

∫
∏

x∈VL,a

dϕx e
−a2d

2

∑

x,y
ϕxG

−1
a x,yϕy+ad

∑

x
ϕxJx

= exp
1

2
(J,GaJ) . (7.20)

The only difference relative to (7.16) are some factors, powers of the lattice spacing a, chosen
such that the continuum limit exists trivially. For example, we have

(J,GaJ) = a2d
∑

x,y

JxGa x,yJy (7.21)
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and, with the correspondence a↔ dxi (i = 1, . . . , d), the Riemann sums converge to the integral

(J,G0J) =

∫

dx1 . . . dxd
∫

dy1 . . . dydJ(x)G0(x− y)J(y)

when a→ 0. The “unity operator” in Euclidean configuration space on the lattice is

a−d δ(d)
x,y

a→0→ δ(d)(x− y) (7.22)

with δ
(d)
x,y =

∏d
i=1 δxi,yi the Kronecker identity. Thus

∑

x′
G−1
a x,x′Ga x′,y = a−d δ(d)

x,y .

Finally, we chose the normalization constant “const” in (7.20) such that

const =̂ adN
√

G−1
a

(2π)N/2
⇔ ZE0 {0} = 1 .

Divergence and Laplace operator on the lattice:

In relating a continuum field theory to a field theory on a lattice the differential operators, like
the Laplace operator appearing in the Euclidean Lagrangian (7.13), must be replaced by finite
difference operators.

The partial derivative on a discrete lattice is defined by the nearest neighbor difference operator

∇±a,i
.
= ±1

a
{fx±aei − fx}

where ei is a unit vector in the direction i. Obviously, in the continuum limit

lim
a→0
∇±a,ifx =

∂f

∂xi
.

The discrete Laplace operator is defined by

∆a
.
=

d∑

i=1

∇+
a,i∇−a,i

such that

∆afx = −a−2






2dfx −

∑

|x−y|=a
fy






, (7.23)

with the limit

lim
a→0

∆afx = ∆f(x) =
d∑

i=1

∂2f

∂xi2
.

We are ready, now, to consider the lattice version of the Euclidean Lagrangian Eq. (7.13). We
choose G−1

a in (7.20) such that

ad
∑

y

G−1
a x,yϕy = (−∆a +m2 )ϕx (7.24)
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and thus obtain

−a
2d

2

∑

x,y

ϕxG
−1
a x,yϕy = −a

d

2

∑

x

ϕx(−∆a +m2 )ϕx . (7.25)

For a→ 0 this goes to

∫

ddx LE0 (ϕ) with LE0 (ϕ) = −1

2
ϕ(x)(−∆ +m2 )ϕ(x) . (7.26)

We thus have constructed a finite–dimensional lattice approximation in Euclidean space for the
free real scalar field theory defined by the Lagrangian (7.1). The generating functional for the
correlation functions is given by Eq. (7.20) with the identification Eq. (7.24). Noting the identity

e−
ad

2

∑

x
ϕx (−∆a+m2 ) ϕx =

∏

x

e−
ad

2
ϕx (−∆a+m2 ) ϕx

we obtain
∫

∏

x∈VL,a

dϕx e
−a2d

2

∑

x,y
ϕxG

−1
a x,yϕy

=

∫
∏

x∈VL,a

dϕx e
−ad

2
ϕx (−∆a+m2 ) ϕx =

(2π)N/2

adN
√

detG−1
a

. (7.27)

This gives raise to the definition of the normalized measure

∏

x

dµN,a(ϕx)
.
=

∏

x e
−ad

2
ϕx (−∆a+m2 ) ϕxdϕx

∫ ∏

x e
−ad

2
ϕx (−∆a+m2 ) ϕx dϕx

(7.28)

with mean zero and covariance (−∆a + m2 )−1. With the help of this Gaussian measure we
finally obtain the representation

ZE0 {J} =

∫
∏

x∈VL,a

dµN,a(ϕx) ea
d
∑

x
ϕxJx

= exp
1

2
(J,GaJ) . (7.29)

for the generating functional. Here, Ga denotes the Euclidean Feynman propagator on the lattice,
satisfying

(−∆a,x +m2 )Ga x,y = a−d δ(d)
x,y . (7.30)

Explicit form of the lattice propagator

Before we are going to construct the continuum limit let us explicitly calculate the Euclidean
Feynman propagator on the lattice: We consider a system in a finite box and fields satisfying
periodic boundary conditions

ϕx+`ei = ϕx , i = 1, . . . d , ` integer .

We perform a Fourier transformation

ad
∑

x∈VL,a

ϕxe
−iqx .

= ϕ̃q . (7.31)
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By the periodicity of ϕx the momenta q take values on the reciprocal lattice, which is obtained
as follows: Periodicity requires x = ~n · a with ni integer. If we denote by ~ei the basis vectors
in x–space, furthermore periodicity implies ~q · ~ei · a = 2πmi with mi integer. We may introduce
basis vectors in q–space by

~fi · ~ei =
2π

a
δij

such that

~q = ~fimi with |qi| ∈
[

−π
a
,+

π

a

]

.

This region in q–space is called Brillouin zone and we denote it by ΛL,a. The inverse Fourier
transformation the may be written as

1

Nad

∑

q∈ΛL,a

ϕ̃qe
iqx = ϕx (7.32)

which we may easily check to be true. In Fourier space Eq. (7.25) takes the form

1

2

1

Nad

∑

q∈ΛL,a

|ϕ̃q|2 G̃−1
aq

where

G̃−1
aq = m2 + 4a−2

d∑

i=1

sin2 aqi
2

a→0→ m2 + q2 +O(a2q4) (7.33)

is the free lattice propagator for Euclidean bosons. As it should be, this propagator
approaches the free Euclidean propagator in the continuum limit. This result follows from

ad
∑

x∈VL,a

(−∆a,x +m2 ) e−iqx = a(d−2)
∑

x∈VL,a






[(ma)2 + 2d]e−iqx −

∑

|x−y|=a
e−iqy







= a(d−2)
∑

x∈VL,a

{

[(ma)2 + 2d]e−iqx −
d∑

i=1

2 cos(aqi) e
−iqx

}

= ad
∑

x∈VL,a

{

m2 +
d∑

i=1

4

a2
sin2 aqi

2

}

e−iqx

where we have used (7.23) and in the last step cos θi = 1− 2 sin2 θi
2 .

7.1.6 Addendum: Euclidean field theory and statistical mechanics

A simple typical model in statistical mechanics is the Ising–model of a ferromagnet. The atoms
of a solid are located on a regular lattice, which we assume to be d–dimensional cubic, and carry
spins σx which may point into ± z–direction: σx = ±1 ∈ Z2

25. Only nearest neighbor spins
interact with each other, parallel spins are attractive while anti-parallel spins are repulsive. Thus
the Ising–Hamiltonian reads

HN(σ) = −k
∑

x,y∈VL,a

|x−y|=a

σxσy .

25Zn denotes the discrete multiplicative group of the n-th unit roots ei
2π
n in the complex plane
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The partition sum from which all statistical and thermodynamic properties of the model may be
derived, reads

ZN =
∑

{σ}
e−HN (σ) =

∫
∏

x∈VL,a

dσx δ(σ
2
x − 1) e−HN (σ) .

Here we have absorbed the Boltzmann factor β = 1/(kBT ) into the definition of the nearest
neighbor coupling k. We may write the discrete distribution, described by the δ–function, by a
limit of starting from smooth continuous spin distributions

δ(σ2
x − 1) = lim

u0→∞

√
u0

π
e−u0(σ2x−1)2 .

For finite but sufficiently large u0, this provides model with smearing of the sharp values σ = ±
of the spins. We may write the Hamiltonian in terms of the Laplace operator on the lattice

HN (σ) =
1

2
σKσ = a−2k

∑

x

{

2dσ2
x + σx∆aσx

}

and we obtain for finite u0:

ZN =

(
u0

π

)N/2

eu0N
∫

∏

x∈VL,a

dσx e
−H̄N (σ)

where

HN (σ) =
Za
2
ad
∑

x

σx (−∆a +m2) σx + uZ2
aa

d
∑

x

σ4
x

Za = 2ka2−d > 0

m2 = −2a−2
(
u0

k
+ d

)

< 0

u =
u0

4k2
ad−4 > 0

We now perform a field renormalization

ϕx =
√

Zaσx

and obtain

Z {J} =

∫
∏

x∈VL,a

dϕx e
−H̄N (ϕ)+ad

∑

x
ϕxJx/

∫
∏

x∈VL,a

dϕx e
−H̄N (ϕ)

as the generating function for the correlation functions of the Ising–model. We have

H̄N (ϕ) = H̄0(ϕ) + H̄int(ϕ)

H̄0(ϕ) =
1

2
ad
∑

x

ϕx (−∆a +m2) ϕx

H̄int(ϕ) = uad
∑

x

ϕ4
x .

In the continuum limit

H̄0(ϕ) =
a→0→

∫

ddx L0(ϕ)

H̄int(ϕ) =
a→0→

∫

ddx Lint(ϕ)
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with

L0(ϕ) =
1

2
(−∂ϕ∂ϕ +m2ϕ2) (x)

Lint(ϕ) = uϕ4(x)

we obtain the familiar ϕ4 self–interacting Euclidean field theory, which by a Wick rotation is
identical to a local relativistic quantum field theory! We note that in QFT language and in
statistical mechanics language the terms interaction part and free part of the Hamiltonian are
essentially exchanged

statistical mechanics quantum field theory

−1
2σKσ ⇔ L0(ϕ)

δ(σ2
x − 1) ⇔ Lint(ϕ)

On can show that the Ising model has a critical point, which corresponds to vanishing renormalized
mass, where the long range behavior of the Ising model |x| >> a is indeed precisely described by
an Euclidean ϕ4 field theory.

7.1.7 Continuum limit, infinite volume limit

Starting from the Gaussian (free) measure
∏

x dµN,a(ϕx) we may construct in the standard fashion
the function space of square integrable functions:

L2

(

RN (VL,a),
∏

x

dµN,a(ϕx)

)

and ϕx is called Gaussian random variable labeled by x ∈ VL,a. How do these well–defined
finite dimensional approximants relate to a continuum field theory?

Originally the problem with taking limits is the following: Formal starting point is the Lebesgue
measure

∏

x

dϕx

which does not make sense in both, the thermodynamic limit or infinite volume limit
L→∞ with a fixed, and/or, the continuum limit a→ 0 with L fixed.

The way out is to include into the integration measure the Gaussian factors which damp the
Lebesgue measure at ±∞ exponentially. This is how we obtained the measure Eq. (7.28). For
this measure on a suitable function space the limits exist. The limiting space is Feynman’s “path
space” “R∞(Rd)” . More precisely, we shall see that the space of tempered distributions S ′(Rd)
is a suitable space for defining the continuum limit. Which means that the limits

dω(ϕ) = lim
a→0
L→∞

∏

x

dµN,a(ϕx) (7.34)

exist as Gaussian measures over S ′(Rd), i.e., for all ϕx ∈ S ′(Rd).

In order to show this we note that

L2

(

RN (VL,a),
∏

x

dµN,a(ϕx)

)

⊂ L2
(

S ′(Rd), dω
)

=

{

F (ϕ) ;

∫

|F (ϕ)|2 dω(ϕ) <∞
}

(7.35)
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such that all finite dimensional “approximations” are contained in a fixed space.

This can be seen as follows: consider the functional Fourier transformation of the Gauss
measure

Z0 {J = ig} = < eiϕ(g) >=

∫
∏

x

dµN,a(ϕx)eiϕ(g)

= e−
1
2
||g||2 . (7.36)

We observe that the inverse Fourier transform exists because it is exponentially damped, too.
The norm suitable for our purpose is given by

||g||2 = a2d
∑

x,y

g(x)Ga x,y g(y) ; g(x) ∈ S(Rd) (7.37)

and we used the scalar product

ϕ(g) = ad
∑

x

ϕxg(x) ; g(x) ∈ S(Rd)

in performing the Fourier transform. S(Rd) is the test function space of C∞–functions (differen-
tiable of infinite order) falling off stronger than any power at ±∞. Note the difference between
the scalar product in Eq. (7.21), where Jx is an external field on the lattice, and the norm in
Eq. (7.37), where g(x) ∈ S(Rd) is a test function in the continuum, already before taking the
continuum limit.

We first note that ||g||2 and ϕ(g) have well defined limits a→ 0/L→∞

||g||2 =

∫

ddx ddy g(x)G0(x− y)g(y) and ϕ(g) =

∫

ddx ϕ(x)g(x)

∀g(x) ∈ S(Rd). G0(x− y) is the Euclidean free field propagator in the continuum, and we may
easily check directly that ||g||2 exists in this limit. The existence of the limit for ϕ(g) is ascertained
provided ϕ(x) ∈ S ′(Rd). This is just by the definition of the distribution space S ′(Rd) which is
the dual space to S(Rd).

Note that the representation formally defined by Eq. (7.34) looses its meaning in the limit. How-

ever, dω(ϕ) still makes sense as a functional Fourier transform of e−
1
2
||g||2. The Green functions

exist as tempered distributions

< ϕ(x1) . . . ϕ(xn) >=

∫

dω(ϕ)ϕ(x1) . . . ϕ(xn) ∈ S ′(Rd)n (7.38)

and the polynomials are dense in the function space L2
(

S ′(Rd), dω
)

. This implies that for the

purpose of perturbation theory everything is well under control.

With this in mind, we may perform the following formal steps leading to the continuum form of
the path integral: Starting from the Gauss measure Eq. (7.28) we may write

∏

x

e−
ad

2
ϕx (−∆a+m2 ) ϕx dϕx =

∏

x

dϕxe
−ad

2

∑

x
ϕx (−∆a+m2 ) ϕx

∼ Dϕ(x) e−
∫
ddx 1

2
ϕ(x) (−∆+m2 ) ϕ(x) ,

and rewrite the exponent as follows:

−
∫

ddx
1

2
ϕ(x) (−∆ +m2 ) ϕ(x) =

∫

ddx LE0 (ϕ) = i

∫

ddx L0(ϕ) .
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In the last step we changed back from Euclidean to Minkowski space by setting xd = ix0. As a
result we obtain the well–known suggestive formal expression

Z0 {J} =
∫ Dϕ(x) ei

∫
ddx (L(ϕ)+ϕ(x) J(x))/

∫ Dϕ(x) ei
∫
ddx L(ϕ)

(7.39)

which is the path integral representation of the generating functional, we were looking for. The
denominator serves to normalize to Z0 {0} = 1. Often we will also use the equivalent notation

Dϕ(x) ≡
∏

x

dϕ(x) , (7.40)

because, we think that the second kind of notation is more suggestive; as it is indicating that, the
precise meaning is always that of a limit, starting from finite dimensional lattice approximants.

The existence of the Gaussian measure dω(ϕ) in the abstract sence, as a Fourier transform, is not
very convenient from the point of view of practical calculations. For the latter purpose only the
finite dimensional approximations are suitable. In fact, all numerical studies of non-perturbative
phenomena in quantum field theory which are based on the path integral representation are
starting from lattice approximations.

One might wonder about states and operators in the path integral formulation of field theory.
We are not going to develop in more detail how the canonical quantization is related to path
integral quantization, however, we briefly mention how contact can be made with the Hilbert
space structure.

As we have mentioned already, the (smeared) polynomials in the field are dense in the func-

tion space L2
(

S ′(Rd), dω
)

. We may define Wick monomials, corresponding to normal ordered

products of fields (see Sec. 3.4.2), with the help of the generating functional

etϕ(g) = e−
1
2
t2<ϕ(g)2> : etϕ(g) : .

One obtains the orthogonality relations

< : ϕn(f) : : ϕm(g) :>= n! δnm < ϕ(f) ϕ(g) >n

which means that the subspace Hn ⊂ L2 spanned by

“ : ϕn(f) :> ” = Hn

when f runs over all of S, are orthogonal

Hn ⊥Hm ; n 6= m .

Thus: L2 has Fock space structure

L2
(

S ′(Rd), dω
)

=
∞⊕

n=0

Hn ,

and this provides the bridge back to canonical quantization!
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7.1.8 The principle of least action

Generally, a functional F{J} is a quantity F which depends on a space-time function J(x). The

functional derivative δF{J}
δJ(x) is defined by the infinitesimal variation of F{J} as a result of an

infinitesimal variation of J(x):

δF =

∫

d4x
δF{J}
δJ(x)

δJ(x)

which is equivalent to

δF{J}
δJ(x)

= lim
ε→0

F{J ′} − F{J}
ε

with J ′(y) = J(y) + ε δ(4)(y − x) or, equivalently,

∫

d4x f(x)
δF{J}
δJ(x)

= lim
ε→0

F{J + ε f} − F{J}
ε

for smooth test functions f(x) . Note that F{J + εf} is an ordinary function of ε and provided
it is sufficiently differentiable may be expanded in ε

F{J + εf} = F{J}+ ε

(
∂F{J + εf}

∂ε

)

ε=0
+ · · ·

= F{J}+ ε

∫

d4x f(x)
δF{J}
δJ(x)

+ · · · .

Let L{ϕ}(x) be the Lagrangian density depending on some dynamical classical variables ϕ(x),
then

S(ϕ)
.
=

∫

ddx L{ϕ}(x) (7.41)

is the classical action. The dynamical behavior of a system is determined by the principle
of least action, which requires the physically acceptable values of a dynamical variable to have
stationary action:

δS

δϕ(x)
= 0 . (7.42)

Each solution of this “equation of motion” corresponds to a classically allowed “history”, i.e., a
time evolution.

Remark: The explicit form of L{ϕ}(x) is highly non–unique. One may replace ϕ(x) by an
arbitrary functional of ϕ(x) without changing the dynamics (stationary points). This fact is
usually referred to as the equivalence theorem.

We are now ready to present the functional derivation of the equation of motion. Consider the
generating functional

Z0 {J} =

∫

⊗

∏

dϕ(x) ei
∫
ddx L(ϕ)+i

∫
ddx ϕ(x) J(x)

where ⊗ indicates normalization. We now perform an infinitesimal transformation of the integra-
tion variables

ϕ(x)→ ϕ′(x) = ϕ(x) + δϕ(x)
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with

det

(
∂ϕ(x)

∂ϕ′(x)

)

= 1 ⇒
∏

dϕ′(x) =
∏

dϕ(x) .

The variation of the action is given by

S(ϕ′) =

∫

ddx L(ϕ′) = S(ϕ) + δS(ϕ)

with

δS(ϕ) =

∫

ddx

(

∂L
∂ϕ

δϕ +
∂L
∂∂µϕ

δ∂µϕ

)

=

∫

ddx

(

∂L
∂ϕ

δϕ− ∂µ
∂L
∂∂µϕ

δϕ

)

where we have performed a partial integration, and assumed that δ∂µϕ = ∂µδϕ. For the source
term we have

ϕ′(x)J(x) = ϕ(x)J(x) + J(x)δϕ(x) .

Since the value of the functional integral does not depend on the choice of the integration variable
its value remains constant and hence:

∂µ
∂L
∂∂µϕ

− ∂L
∂ϕ

= J(x) (7.43)

up to a total divergence. Since the Lagrangian itself is determined only up to a divergence one
can chose the latter appropriately. For the self–interacting λϕ4–theory considered in Sec. 3 (see
Eq. (3.5)) the Lagrangian reads

L(x) =
1

2

(

∂ϕ∂ϕ +m2ϕ2
)

(x) +
λ

4!
ϕ4(x)

and we obtain the known field equation Eq. (3.6)

∂µ
∂L
∂∂µϕ

− ∂L
∂ϕ

= J(x) = ( 2 +m2 ) ϕ(x) +
λ

3!
ϕ3(x)

As a result we note the equivalence statement:

The dynamical variable ϕ(x) satisfies the classical equation of motion (with source) ⇔ the prin-
ciple of least action holds.

Functional form of the equation of motion:

The generating functional Z {J} may be understood as the vacuum functional in the presence
of an external source. We therefore write

Z {J} = < 1 >J

and similarly

δZ{J}
δJ(x) = i < ϕ(x) >J

etc.
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The equation of motion then may be written in the form

( 2 +m2 )
δZ {J}
δJ(x)

= i ( 2 +m2 ) < ϕ >J = i J(x) < 1 >J −i <
∂Lint

∂ϕ
(x) >J (7.44)

The free functional satisfies

( 2 +m2 )
δZ0 {J}
δJ(x)

= − i
2
Z0 {J} ( 2 +m2 )

δ

δJ(x)
(J,∆FJ)

= i J(x) Z0 {J} . (7.45)

This may be checked easily. Using

δ

δJ(x)

∫

ddy1 d
dy2 J(y1) ∆F (y1 − y2) J(y2)

= 2

∫

ddy ∆F (x− y) J(y)

and Eq. (7.5) we have

( 2 +m2 )
δ

δJ(x)
(J,∆FJ) = 2

∫

ddy ( 2 +m2 ) ∆F (x− y)

= −2 J(x) ,

which verifies Eq. (7.45).

The field equation (7.44) may be rewritten in the form of an integral equation

δZ{J}
δJ(x) = −i ∫ ddy ∆F (x− y)

{

J(x) Z {J}+ < ∂Lint
∂ϕ (y) >J

}

. (7.46)

The original form (7.44) is obtained by applying the Klein–Gordon operator to the integral
equation and by using (7.5). Expanding (7.46) into a power series in J and matching powers of
J , yields the equations of motion for all Green functions.

7.1.9 Path integral quantization of an interacting theory

In canonically quantized quantum field theory we are mostly dealing with S–matrix elements

< k1α1, . . . , knαn | S | k′1α′1, . . . , k′n′α′n′ >

which are related to the time–ordered Green functions

< 0| T{ϕ(x1) · · · ϕ(xm)}|0 >

as inferred by the LSZ reduction formula. The Gell-Mann–Low formula,

< 0| T{ϕ(x1) · · · ϕ(xm)}|0 >= in < 0|T {ϕin(x1) · · · ϕin(xm) S}|0 >in⊗

with

S = Tei
∫
ddx L(in)

int (ϕin)

the scattering matrix represented in terms of the free in–fields, then allows us to calculate Green
functions and hence S–matrix elements perturbatively, by expanding the exponential form of S
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into a power series in Lint. Here we note that one treated the free part L0 and the interaction
part Lint of the Lagrangian on unequal footing.

We now consider the generating functional for the time–ordered Green functions of the interacting
theory: By definition and applying the Gell-Mann–Low formula we obtain in a first step

Z {J} = < 0 | T ei
∫
ddx ϕ(x) J(x) | 0 >

= in < 0 | T ei
∫
ddx ϕin(x) J(x) S | 0 >in

= in < 0 | T ei
∫
ddx L(in)

int
(ϕin) ei

∫
ddx ϕin(x) J(x) | 0 >in⊗ . (7.47)

We then may use the fact that, any functional of the free field ϕin, except for the free functional
itself, may be evaluated by replacing the free field by the functional derivative with respect to the
source −i δ

δJ(x) . For non-polynomial functionals we may easily show this to be true by expanding
the functional into a series of polynomials. We thus may write

Z {J} = e
i
∫
ddx Lint(−i δ

δJ(x)
)

in < 0 | T ei
∫
ddx ϕin(x) J(x) | 0 >in⊗ (7.48)

and then use the representation of the free functional as a path integral

in < 0 | T ei
∫
ddx ϕin(x) J(x) | 0 >in⊗= Z0 {J} = e−

i
2

(J,∆FJ) =

∫

⊗
Dϕ(x) ei

∫
ddx (L0(ϕ)+ϕJ) .

In doing so, we find

Z {J} = e
i
∫
ddx L(in)

int (−i δ
δJ(x)

)
∫

⊗
Dϕ(x) ei

∫
ddx (L0(ϕ)+ϕJ)

=

∫

⊗
Dϕ(x) ei

∫
ddx (L0(ϕ)+Lint(ϕ)+ϕJ)

=

∫

⊗
Dϕ(x) ei

∫
ddx (L(ϕ)+ϕJ) (7.49)

the promised path integral for the interacting theory. Most remarkably, only the total Lagrangian
appears in the path integral. The splitting into a free and an interacting part of the Lagrangian
is not necessary any more. The derivation presented above showed at the same time how the
path integral is used in perturbation theory, where the complete equivalence of both schemes are
manifest. The prescription ⊗ again indicates the normalization Z {0} = 1 to be imposed. The
time–ordered Green functions are now given by

(−i)n δn

δJ(x1) . . . J(xn)
Z {J} |J=0 = < ϕ(x1) . . . ϕ(xn) >

=

∫

⊗
Dϕ(x) ϕ(x1) . . . ϕ(xn) ei

∫
ddx (L(ϕ))

≡ < 0 | T{ϕ(x1) · · · ϕ(xm)}| 0 > (7.50)

which is our final result for the path integral quantization of scalar fields. Of course in the inter-
acting case we will encounter the same renormalization problems, as in the canonical quantization.
The finite dimensional lattice approximation

Z {J}reg =

∫

⊗

∏

x∈VL,a

dϕx e
iad
∑

x
(L(ϕ)x+ϕxJx) (7.51)

with

iad
∑

x

L(ϕ)x = −ad
∑

x

(
1

2
ϕx (−∆a +m2 ) ϕx + Lint(ϕ)x

)

(7.52)
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(rotated to Euclidean space) is a regularization for both ultraviolet singularities showing up in
continuum limit and infinite system divergences which are related to taking the thermodynamical
limit. This regularization is called lattice regularization. The “lattice theory” usually is the
starting point for investigations beyond perturbation theory.

Advantages of the Feynman path integral representation:

❶ Only classical fields appear, everything commutes, there is no time ordering etc. The role
of non–trivial classical solutions of the field equations, like instantons, for example, within
the path integral formulation is much more transparent, than in the canonical quantization
approach. They are just particular contributions to the path integral in accord with the
action principle.

❷ Only the full Lagrangian L = L0 +Lint enters the path integral representation for the gen-
erating functional of the Green functions. This representation is therefore intrinsically non-
perturbative! In particular, it does not depend on the splitting into a free and an interaction
part. For non–abelian gauge theories this will be crucial for controlling gauge invariance,
which is a property of the full invariant Lagrangian, only (see Sec. 6).

✘ A related observation is that the path integral does not refer to LSZ interpolating fields,
which bridge to the free scattering states of the physical spectrum. Such a “particle inter-
pretation” of fields used to parametrize the Lagrangian need not be a priori known. The
path integral formulation thus is more flexible as a starting point. QCD is the prototype
example of an intrinsically non–perturbative theory. We know that quarks and gluons, in
terms of which the QCD Lagrangian must be written, do not relate to scattering states in
any simple way. Rather we know that quarks and gluons are permanently confined inside
the hadrons and only the latter appear as scattering states in Nature. In a restricted sense
perturbation theory may still apply. Due to asymptotic freedom quarks and gluons “show
up” as jets of hadrons in highly energetic processes.

Problems with the path integral:

➊ In Minkowski space the integration over the time component x0 is not a priori well–defined
(oscillatory integrals) and one has to apply an iε–prescription, at least. In fact one is
dealing with distributions and not with functions. This problem may be circumvented by
using analyticity in x0 and to Wick rotate from Minkowski to Euclidean space, where one
works with positive definite metric. At the end results have to be analytically continued back
to Minkowski space. For numerical methods this may be an unsurmountable obstacle since
errors usually run out of control when we try to do the analytical continuation numerically.

➋ For interacting theories the existence of the continuum limit is a serious problem. Either
the continuum limit is defined in a purely formal manner, like for example in perturbation
theory, where one defines the objects order by order in perturbation theory. Or, one starts
from the finite dimensional approximants (finite elements, lattice) where one cannot avoid
to violate basic principles like Poincaré covariance, chiral symmetry etc. One must prove
that the violated properties are restored in the continuum limit. In Wilson’s formulation
of lattice gauge theories gauge invariance is preserved if there are no chiral fermions.

➌ The “path integral” formulation of fermions is a notorious problem as we shall see below.
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Perturbation theory based on the path integral:

In the canonical quantization formulation the perturbation expansion is based on the Gell-Mann–
Low formula, which reads, in the expanded form,

< 0 | T{ϕ(x1) · · · ϕ(xm)}| 0 >=
∑∞
n=0

in

n!

∫
d4y1 . . . d

4yn ×
in < 0 | T

{

ϕin(x1) · · · ϕin(xm) L(in)
int (y1) . . . L(in)

int (yn)
}

| 0 >in⊗

and expresses the Green functions in terms of free quantized fields ϕin(x). The time-ordered
Green functions of free fields can be evaluated by using Wick’s theorem: which is based upon
representing the fields and the states in terms of creation and annihilation operators ain(p, r) and
a+
in(p, r) and using the canonical commutation relations together with the vacuum annihilation

property ain(p, r) |0 >= 0. This is the way we derived the Feynman rules previously in see Sec. 3.

In the functional formulation the analogous expansion takes the form:

< 0 | T{ϕ(x1) · · · ϕ(xN )}| 0 >=< ϕ(x1) . . . ϕ(xn) >

= (−i)N δN

δJ(x1) . . . J(xN )
Z {J} |J=0 = (−i)N

∞∑

n=0

in

n!

∫

d4y1 . . . d
4yn ×

δN

δJ(x1) . . . J(xN )
Lint(−i

δ

δJ(y1)
) . . . Lint(−i

δ

δJ(yn)
) e−

i
2

(J,∆F J)
∣
∣
∣
J=0,⊗

(7.53)

=
∑

Γ
⊗

Γ

y1, . . . , yn

x1

x2

. . . . . . xN

where the sum extends over all non-vacuum (⊗) Feynman diagrams Γ with external vertices
, internal vertices all lines contracted pairwise by propagators (see Sec. 3.4.4).

The evaluation is purely a matter of differentiating the Gauss functional and setting J = 0 .
Evaluating the non–vanishing contributions in the perturbation expansion leads to Feynman
rules which are identical to the one’s obtained in the canonical quantization approach.

Exercises: Subsection 7.1

① Show that the free functional

Z0 {J} = exp− i
2

(J,∆F J)

can be defined as a generalized Gauss integral in Minkowski space provided we replace
the mass m2 by m2 − iε with ε > 0, infinitesimal, and then perform the limit ε→ 0 after
integration.

② Let ϕ(x) be a complex classical field and

Z {J∗, J} =

∫ +∞∫

−∞ ⊗

∏

x

dϕ∗x dϕx e
i
∫
ddx (L0(ϕ,ϕ∗)+J∗ϕ+Jϕ∗)
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the corresponding free functional. Transform this to a functional integral for the two real
fields Reϕ and Imϕ. Write down the appropriate lattice regularization.

③ Describe your own understanding of how the functional integral

∫

Dϕ(x)ei
∫
ddx (L0(ϕ)+Jϕ)

can be given an unambiguous meaning.

④ Investigate, in the context of the action principle, the “Lagrangian densities” L(x) = ϕ(x)
and L(x) = 1

2

(
∂ϕ∂ϕ +m2ϕ2

)
(x) + λ

3!ϕ
3(x). Compare the latter with the λϕ4–theory.

⑤ Derive the Feynman rules for the λϕ4–theory with the help of the functional method. Use

exp− i
2

(J,∆FJ) =
∞∑

m=0

(− i
2)m

m!
(J,∆FJ)m

and evaluate the terms which do not vanish for J = 0. For N external fields and n interaction
vertices we have to take N + 4n derivatives. Hence, only the term with m = (N + 4n)/2 in
the above sum gives a non-vanishing term.

⑥ Using Eq. (7.53), evaluate explicitly the contributions for N = 0, 1, 2, 3, 4 and n = 0, 1, 2 in
λϕ4–theory. Draw all corresponding Feynman diagrams.

7.2 Functional integral for fermions

7.2.1 Generating functional for fermions

The analogue of the generating functional for time ordered Green functions for Bose fields, in the
case of fermions takes the form:

Z0
{
ζ̄ , ζ

}
= < 0|Tei

∫
ddx (ζ̄(x)ψ(x)+ψ̄(x)ζ(x))|0 >

=
∑∞
n=0

i2n

(n!)2
∫
dz1 . . . dzndy1 . . . dyn ×

×ζ̄(zn) . . . ζ̄(z1) < 0|T {ψ(z1) · · ·ψ(zn)ψ̄(yn) · · · ψ̄(y1)
} |0 > ζ(yn) . . . ζ(y1) .

(7.54)

Here ψ(x) is a quantized free Dirac field and satisfies Fermi statistics and corresponding anti-
commuting rules. The time ordered Green functions < 0|T {ψ(x) · · · ψ̄(y) · · ·} |0 > are totally
antisymmetric , since under the time ordering prescription the fields are strictly anticommut-
ing. Therefore, the classical external sources ζ̄(x) and ζ(x) must be anticommuting classical
variables, which are called Grassmann variables. A simple mnemonic rule for dealing with
anticommuting fields and variables is the following: Consider ζ and ζ̄ to be free Dirac fields in
the classical limit h̄→ 0, where

{ζ(x) , ζ(y)} = 0 ;
{
ζ̄(x) , ζ̄(y)

}
= 0 and

{
ζ(x) , ζ̄(y)

}
= O(h̄)→ 0 .

It is a useful conventions to take Fermi fields describing different particles (electrons, muons,
protons,....) anticommuting relative to each other. Consequently, it is natural and convenient to
also consider the source functions ζ (as Dirac fields in the classical limit) to be anticommuting
with the field operators ψ. Note that the source terms

ζ̄ψ and ψ̄ζ
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appearing in the generating functional are written as Lorentz scalars.

Grassmann algebras:

We first consider the algebra of the ζ’s and ζ̄’s for a finite number of variables: The 2N algebraic
quantities ζi and ζ̄i , i = 1, . . . , N are required to satisfy the anti commutation relations

{ζi , ζk} = 0 ;
{
ζ̄i , ζ̄k

}
= 0 ;

{
ζi , ζ̄k

}
= 0 .

Therefore, they satisfy:
ζ2
i = 0 = ζ̄2

i .

The elements ζi, ζ̄i are the generators of the Grassmann algebra, the elements of which are
polynomials in the ζi’s and ζ̄i’s with complex antisymmetric tensor coefficients Tm,n(i1 . . . im|i′1 . . . i′n):

F (ζ, ζ̄) =
∑

m,n

ζ̄im · · · ζ̄i1Tm,n(i1 . . . im|i′1 . . . i′n)ζi′1 · · · ζi′n .

As usual in tensor calculus we will adopt the summation convention: doubly curing indices are
summed over if not stated otherwise.

Elements of the Grassmann algebra can be added and multiplied with scalars (∈ C) and hence
form a vector space of dimension:

22N =





N∑

m=0




N

m







 ·





N∑

n=0




N

n









An element is called even if it commutes and odd if it anticommutes, respectively, with all
generators. By the anticommutation relation also products

F1(ζ, ζ̄) · F2(ζ, ζ̄)

are defined. A list of simple monomials in the ζi’s is:

1, ζ1, . . . , ζN , ζ1ζ2, . . . , ζN−1ζN , . . . , ζ1ζ2 . . . ζN .

The differentiation of Grassmann variables is defined algebraically as follows: For generating
elements we have the left–derivatives :

∂
∂ζi
ζk = δik ; ∂

∂ζ̄i
ζ̄k = δik

∂
∂ζi
ζ̄k = 0 ; ∂

∂ζ̄i
ζk = 0

∂
∂ζi

1 = 0 s; ∂
∂ζ̄i

1 = 0

and as a consequence

(
∂

∂ζi

)2

= 0 =

(
∂

∂ζ̄i

)2

on the entire Grassmann algebra. For products of monomials F1 · F2 the product rule reads:

∂

∂ζi
(F1 · F2) =

∂F1

∂ζi
· F2 ± F1 ·

∂F2

∂ζi
, for







F1 even

F1 odd .

The set of elements ζi, ζ̄i,
∂
∂ζi
, ∂
∂ζ̄i

defines a Grassmann algebra of 2×2N elements, the extended

algebra. A right–derivative may be defined accordingly.
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In the continuum limit N →∞ we have the correspondence
∑

···ik···
· · · ζ̄ik · · · Tm,n(· · · ik · · · | · · ·) · · · ⇒

∫

ddzk · · · ζ̄(zk) · · · Tm,n(· · · zk · · · | · · ·) · · ·

∂

∂ζi
⇒ δ

δζ(y)
with

δ2

δζ(x1)δζ(x2)
= − δ2

δζ(x2)δζ(x1)

δ

δζ(x)
ζ(x1)ζ(x2) = δ(x− x1)ζ(x2)− δ(x− x2)ζ(x1)

After this short digression to Grassmann algebras we turn back to our original problem the

Calculation of the free generating functional Z0
{
ζ̄ , ζ

}
:

For free Dirac fields we can calculate

< 0|T {ψ(z1) · · ·ψ(zn)ψ̄(yn) · · · ψ̄(y1)
} |0 >

easily. All ψ’s have to be contracted with ψ̄’s in pairs in all possible ways. To each contraction
there corresponds a Feynman propagator i SF (zi − yk) up to a sign. The sign is obtained by
noting that ζ̄ψ and ψ̄ζ commute with fermionic variables. For convenience one therefore writes
the sources always together with the fields and performs the contractions:

1st pair n possible z’s, n possible y’s

⇒ n2 × iζ̄(zn)SF (zn − yn)ζ(yn)

2nd pair n− 1 possible z’s, n− 1 possible y’s

⇒ (n− 1)2 × iζ̄(zn−1)SF (zn−1 − yn−1)ζ(yn−1)
...

with integration over all z’s and y’s. This yields

(n!)2 (i
(
ζ̄, SF ζ

))n

where
(
ζ̄, SF ζ

)
=

∫

ddx ddy ζ̄(x)SF (x− y)ζ(y) .

So far we have counted the n! equivalent permutations of the n factors as different such that we
still have to divide by n!. We thus obtain for the generating functional the following

Result:

Z0

{

ζ̄ , ζ
}

= < 0|Tei
∫
ddx (ζ̄(x)ψ(x)+ψ̄(x)ζ(x))|0 >

=
∑∞
n=0

(i)2n

(n!)2
(i)n(n!)2

n! (ζ̄ , SF ζ)n = exp−i(ζ̄, SF ζ) .
(7.55)

This is again an exponential of a bilinear form, however, with the crucial difference that the form
is antisymmetric and not symmetric as in the Bose case. Nevertheless, it seems suggestive to
ask the question whether we can write the generating functional as an integral

“ Z0
{
ζ̄ , ζ

}
=

∫

⊗

∏

x

dψ̄xdψxe
i
∫
ddx (L0(ψ̄,ψ)+ζ̄ψ+ψ̄ζ) ”

and if yes, it is obvious that ψ̄x and ψx must be Grassmann variables, classical anticommuting
c–number fields, which satisfy the same algebra as the ζ̄x and ζx and must anticommute with
them.
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7.2.2 Matrices, integral representations of determinants

The main problem in dealing with fermions is the calculation of functional determinants. We
therefore have to study first some general properties of n× n matrices.

Properties of square matrices:

1.

Let A be an arbitrary n×n matrix, then there exists a unitary transformation S: SS+ = S+S = 1
such that

S−1AS = ∆A

has trigonal form

A =








a11 · · · a1n

... · · ·
an1 · · · ann








; ∆A =








a′11 · · · a′1n

0
. . .

0 · · · a′nn








.

2.

We note that

detA = det
(

S−1AS
)

= det (∆A) =
∏

i

a′ii

is a simple consequence of det(AB) = det(A) det(B) and detS−1 = (detS)−1 for detS 6= 0.

3.

Similarly,

Tr (A) = Tr (S−1AS) = Tr (∆A) =
∑

i

a′ii

follows from the property Tr (AB) = Tr (BA) of a trace.

4.

For triangular matrices we have

(∆A ∆B)ii = (∆A)ii (∆B)ii

as may be easily checked.

5.

If ∆ is trigonal then also I ±∆ is a triangular matrix, with I the n× n unit matrix.

6.

The exponential mapping

B = eA =
∞∑

n=0

1

n!
An

exists and is one–to–one and invertible for ||A|| sufficiently small. As a norm we may take
||A|| .= n×maxi,k |aik| and it is sufficient to have ||B|| < ||I|| = n in order to obtain

A = lnB =
∞∑

m=1

(−1)m+1

m
(B − I)m .
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Furthermore we easily verify the properties:

BT = eA
T
, B∗ = eA

∗
, B+ = eA

+
, B−1 = e−A

S−1BS = eS
−1AS

Theorem 1: For any square matrix A the identity

det eA = eTr A (7.56)

holds and det eA is never singular.

Proof: There exists a unitary transformation S of A to trigonal form: S−1AS = ∆A. By the
properties listed above we have: det(eA) = det(S−1eAS) = det(eS

−1AS) = det(e∆A) =
∏

i e
a′ii =

e
∑

i
a′ii = eTr ∆A = eTrA. Note that

∆B = e∆A =
∞∑

n=0

∆n
A

n!

is a trigonal matrix with ∆B ii = e∆A ii q.e.d.

Theorem 2: For any square matrix L the identity

det(I + L) = eTr ln(I+L) (7.57)

holds, for ||L|| sufficiently small. Equivalently,

detM = eTr lnM

for ||M || < ||I|| = n. By the latter condition we have

lnM = ln(I + (M − I)) = −
∞∑

m=1

(I −M)m

m
.

Proof: Let M = I+L such that lnM =
∑∞
m=1

(−1)m+1

m Lm. There exists a unitary transformation
such that S−1MS = ∆M is triangular. Now we have

Tr ln ∆M = Tr ln(S−1MS) = Tr ln(I + S−1LS)

= Tr
∞∑

m=1

(−1)m+1

m
S−1LmS =

∞∑

m=1

(−1)m+1

m
TrS−1LmS

= Tr ln(I + L) = Tr lnM .

Also, we note that

Tr ln ∆M = Tr ln(I + ∆L) =
∞∑

m=1

(−1)m+1

m
Tr ∆L .

Since ∆M is triangular, also ∆L = ∆M − I is triangular. In addition: (∆m
L )ii = (∆L ii)

m such
that

Tr ln ∆M =
∞∑

m=1

(−1)m+1

m
[(∆L 11)m + (∆L 22)m + · · ·+ (∆L nn)m]

= ln(I + ∆L 11) + · · · + ln(I + ∆L nn)

= ln ∆M 11 + · · · + ln ∆M nn

= ln
∏

i

∆M ii = ln det ∆M

= ln detM q.e.d.
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This closes our digression to general properties of square matrices. We now consider how a
determinant may be represented by Feynman diagrams.

Determinants versus diagrams: bosons

We consider the vacuum to vacuum transition amplitude in the path integral representation for
a complex scalar field in interaction with an external potential V (x) (see Eq. (7.19)):

< 1 >V =

+∞∫

−∞

∏

x

dϕx√
2πi

dϕ∗x√
2πi

ei
∫
ddx ϕ∗(x)(−(2+m2)+V (x))ϕ(x) = (detM(x, y))−1

with

M(x, y) =
(

−(2 +m2) + V (x)
)

δ(d)(x− y)

in terms of which the action reads
∫

ddx ddy ϕ∗(x) M(x, y) ϕ(y) .

The perturbation expansion with respect to V (x) yields:

< 1 >V =
∞∑

m=0

im

m!

∫

dx1 · · · dxn V (x1) · · · V (xm) < ϕ∗ϕ(x1) · · ·ϕ∗ϕ(xm) >0

The correlation functions < · · · >0 are expectation values with respect to the free field, with
kernel

M0(x, y) = −(2 +m2) δ(d)(x− y) .

The elements of the Feynman rules of our potential model are:

propagators : i∆F (x− y)

vertices :  V 
∫
ddx V (x) .

The connected graphs are generated by the logarithm of the normalized vacuum functional:

G(V ) = ln < 1 >V − ln < 1 >0

where

G(V ) = V +  V  V +  V 
 V 

 V 
+ · · ·

The direct perturbative evaluation proceeds as follows: Start at x1. We have (m−1) possibilities
and a representative term is i∆F (x1 − x2). Continuing at x2 we have (m− 2) possibilities and a
representative is i∆F (x2 − x3) and so on. This yields

(m− 1)! im ∆F (x1 − x2) · · ·∆F (xm − x1)

and hence

G(V ) =
∞∑

m=1

(−1)m

m

∫

dx1 · · · dxm V (x1) · · · V (xm) ∆F (x1 − x2) · · ·∆F (xm − x1)
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The same result we may obtain from the non–perturbative result for (detM(x, y))−1 by expanding
detM(x, y) in powers of V (x). To this end we write

M(x, y) =

∫

dx′M0(x, y)
(

δ(d)(x′ − y) + ∆F (x′ − y) V (y)
)

= M0 ∗ (I + L)

as a convolution integral. This is an identity, since
∫

dx′
(

−(2x +m2)
)

δ(d)(x− x′) δ(d)(x′ − y) = −(2x +m2) δ(d)(x− y)

and
∫

dx′
(

−(2x +m2)
)

δ(d)(x− x′) ∆F (x′ − y) V (y) = −(2x +m2) ∆F (x− y) V (y)

= V (x) δ(d)(x− y) .

We thus have

(detM(x, y))−1 = (detM0(x, y))−1 ·
(

det(δ(d)(x− y) + ∆F (x− y) V (y))
)−1

where for the second factor we can apply the formula

det(I + L) = eTr ln((I+L)

with

Tr ln((I + L) =
∞∑

m=1

(−1)m+1

m
TrLm .

For our specific form of L we obtain

TrLm =

∫

dx1 · · · dxm V (x1) · · · V (xm) ∆F (x1 − x2) · · ·∆F (xm − x1)

which represents a loop with m interaction points:

TrLm =

In matrix notation this reads:

TrLm = Li1i2Li2i3 · · ·Limi1
and we observe that Tr ln((I +L) is precisely given by the sum of all connected one–loop graphs.
Thus

G(V ) = ln < 1 >V − ln < 1 >0

= − ln(detM(x, y)) + ln(detM0(x, y))

= −Tr ln((I + L) =
∞∑

m=1

(−1)m

m
TrLm

=
∞∑

m=1

(−1)m

m

∫

dx1 · · · dxm V (x1)m · · · V (xm) ∆F (x1 − x2) · · ·∆F (xm − x1)
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which is identical with the result obtained above.

We now are prepared to consider the fermions:

Determinants versus diagrams: fermions

We now consider the vacuum to vacuum transition amplitude in the path integral representation
for a free Dirac field in interaction with an external potential V (x):

< 1 >V,ψ=< 0|Tei
∫
ddx ψ̄(x) V (x) ψ(x) |0 >

which can be easily calculated as a perturbation expansion in V . We obtain analogue expressions
as in the case of bosons with the replacement ∆f (x) → SF (x) and each loop has a factor (−1)
due to Fermi statistics. Hence we have

G(V )ψ
.
= ln < 1 >V − ln < 1 >0

= −
∞∑

m=1

(−1)m

m

∫

dx1 · · · dxm V (x1) · · · V (xm) SF (x1 − x2) · · ·SF (xm − x1)

and since all connected graphs are one-loop diagrams the Fermi statistics just yields an overall
sign.

Corresponding matrices read

Mψ(x, y) = (−(iγµ∂mu−m) + V (x)) δ(d)(x− y)

M0,ψ(x, y) = −(iγµ∂mu−m) δ(d)(x− y) .

and

I + Lψ = δ(d)(x− y) + SF (x− y) V (x)

With the change in sign we have

G(V )ψ = ln(detMψ(x, y)) − ln(detM0,ψ(x, y))

= Tr ln((I + Lψ) = −
∞∑

m=1

(−1)m

m
TrLmψ

We thus can conclude that a functional integral representation for a fermionic system, if it exists,
must read

< 1 >V,ψ =

+∞∫

−∞

∏

x

dψx√
2πi

dψ̄x√
2πi

ei
∫
ddx ψ̄(x)(iγµ∂µ−m+V (x))ψ(x)

= (detMψ(x, y))

= (detM0,ψ(x, y)) · exp Tr (I + SFV )

7.2.3 Path integral for fermions

For Fermions, being described by spinors, the Wick rotation to Euclidean space is not completely
trivial. We therefore prefer to stay in Minkowski space. Hence our consideration will directly
compare to the integral representations in terms of Fresnel integrals Eqs. (7.18,7.19).

The above consideration lead us to the conclusion that integration over the anticommuting fields
(Grassmann variables), in case of the Dirac field, must have the property

+∞∫

−∞

dψ√
2πi

dψ̄√
2πi

eiψ̄Aψ = A
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which compares to the Fresnel integral

+∞∫

−∞

dϕ√
2πi

dϕ∗√
2πi

eiϕ
∗Aϕ = A−1

obtained for a complex scalar field.

Since ψ and ψ̄ are anticommuting we have (ψ̄Aψ)n = 0 ; n > 1! and hence

eiψ̄Aψ = 1 + iψ̄Aψ .

In order to obtain the required result we must define the “integration” as follows:

Integration over Grassmann variables

∫ dψ√
2πi

dψ̄√
2πi

1 = 0 ,
∫ dψ√

2πi

dψ̄√
2πi

iψ̄Aψ = A
∫ dψ√

2πi

dψ̄√
2πi

(ψ̄Aψ)n = 0 ; n > 1 .

Since normalization factors are uninteresting, they are normalized away in any case, we may define
“integration over Grassmann variables” (Berezin 1966), which we will call “Berezin–integration”
in the sequel, as follows:

Let ψi and ψ̄i be the generating elements of a Grassmann algebra. Then integration over this
algebra is defined algebraically by:

∫
dψiψk = δik ;

∫
dψ̄iψ̄k = δik

∫
dψiψ̄k = 0 ;

∫
dψ̄iψk = 0

∫
dψi 1 = 0 ;

∫
dψ̄i 1 = 0

and we notice that these rules are algebraically isomorphic to differentiation of Grassmann vari-
ables. Thus for Grassmann variables we have

integration ≡ differentiation

The elements ψi, ψ̄i,
∂
∂ψi

, ∂
∂ψ̄i

, dψi and dψ̄i are all anticommuting and form an extended algebra.

Which properties does the Grassmann variable integration have in common with normal inte-
gration? Not too much! It is in no way related to Riemann integrals or measure theory. Finite
integration boundaries are not defined, one has always to understand improper integrals

∫ +∞
−∞ · · ·.

However it is

1. linear

2. the integral of a derivative vanishes

∫

dψi
∂

∂ψi
F (ψ) ≡ 0

3. it allows us to perform partial integration provided integration goes over the whole algebra

∫
∏

k

dψk F1(ψ)

(
∂

∂ψi
F2(ψ)

)

= ∓
∫
∏

k

dψk

(
∂

∂ψi
F1(ψ)

)

F2(ψ)
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Otherwise the integration rules are identical to differentiation rules. For example: for one variable
F (ψ) = F0 + F1ψ is the general element with F0 and F1 complex numbers. We have

d

dψ
F (ψ) = F1 =

∫

dψF (ψ) .

Similarly, under a transformation of variables: ψ ′ = aψ we obtain

d

dψ
· · · = a

d

d(aψ)
· · · and

∫

dψ · · · = a

∫

d(aψ) · · · ,

which means that the integral over Grassmann variables transforms with the inverse of the
Jacobian!

The multidimensional case reads:

∫
∏

x

dψx√
2πi

dψ̄x√
2πi

ei
∑

x
ψ̄xAxψx =

∏

x

∫
dψx√
2πi

dψ̄x√
2πi

eiψ̄xAxψx

=
∏

x

∫
dψx√
2πi

dψ̄x√
2πi

1 +
(
iψ̄xAxψx

)
=
∏

x

Ax

in the diagonal case and

∫ ∏

x
dψx√
2πi

dψ̄x√
2πi

e
i
∑

x,y
ψ̄xAxyψy = detA (7.58)

where A is hermitian and positive definite. With this property A may be transformed to diagonal
form by a unitary transformation. This representation is the direct analogue of Eq. (7.19) for
charged bosons, with the crucial difference that the determinant is replaced by its inverse value.

So far we have not considered the external sources. For a “conjugate” pair of variables we have

∫
dψ√
2πi

dψ̄√
2πi

ei(ψ̄Aψ+ζ̄ψ+ψ̄ζ) = A e−iζ̄A
−1ζ .

A shift of variables (quadratic completion)

ψ → ψ +A−1ζ , ψ̄ → ψ̄ + ζ̄A−1

yields

ψ̄Aψ + ζ̄ψ + ψ̄ζ = (ψ̄ + ζ̄A−1)A(ψ +A−1ζ)− ζ̄A−1ζ

and with
∫

dψdψ̄ · · · =
∫

dψ′dψ̄′ · · ·

the result follows.

In the multidimensional case we obtain

∫ ∏

x
dψx√
2πi

dψ̄x√
2πi

e
i

(
∑

x,y
ψ̄xAxyψy+

∑

x
ζ̄xψx+ψ̄xζx

)

= detA e
−i
∑

x,y
ζ̄xA

−1
xy ζy . (7.59)

Note that since

∫
dψ√
2πi

dψ̄√
2πi
· · · transforms as

∂2

∂ψx∂ψ̄x
·
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a non-unitary transformation (ψ̄, ψ) = A(ψ̄′, ψ′) transforms with the inverse Jacobian!

F (ψ̄, ψ) = F (Aψ̄′, Aψ′) = F ′(ψ̄′, ψ′)

∂2

∂ψ∂ψ̄
= det

(

∂(ψ̄′, ψ′)
∂(ψ̄, ψ)

)

∂2

∂ψ′∂ψ̄′
=
(

detA−1
) ∂2

∂ψ′∂ψ̄′

∫

dψdψ̄F (ψ̄, ψ) =
(

detA−1
) ∫

dψ′dψ̄′F ′(ψ̄′, ψ′)

Result:

The path integral representation for free fermions reads

Z0
{
ζ̄ , ζ

}
=

∫

⊗

∏

x

dψ̄xdψxe
i
∫
ddx (L0(ψ̄,ψ)+ζ̄ψ+ψ̄ζ)

= exp−i(ζ̄ , SF ζ) (7.60)

where integration is understood as Berezin–integration. For an interacting theory by virtue of
the properties of functional differentiation we obtain

Z
{
ζ̄ , ζ

}
= < 0|Tei

∫
ddx (ζ̄ψ+ψ̄ζ) |0 >

= in < 0|Tei
∫
ddx L(in)

int (ψ̄,ψ) ei
∫
ddx (ζ̄ψin+ψ̄inζ) |0 >in⊗

= e
i
∫
ddx Lint(−i δ

δζ
,−i δ

δζ̄
)
Z0
{
ζ̄ , ζ

}

=

∫

⊗

∏

x

dψ̄xdψxe
i
∫
ddx (Ltot(ψ̄,ψ)+ζ̄ψ+ψ̄ζ) (7.61)

as our final result.

Comment on the Berezin–integration:

❶ The terminology and the formal way of writing the “Berezin–integration” only serves a
formally analogue representation of fermions and bosons. Properties, which we usually
associate with the notion of integration or in particular with a “definite integral” do not
carry over to Berezin–integration. This becomes immediately clear as integration over
Grassmann variables in defined algebraically for discrete algebras.

❷ To consider Berezin–integration actually to mean differentiation comes closer to standard
associations.

✘ The key property needed is not “integration”, but the representation of a determinant as
an exponential of a trace:

det(I + L) = exp(Tr ln(I + L))

which opens the way to a perturbative calculation of det(I + L) provided ||L|| < ||I||.

✙ Nevertheless, the representation of the generating functional for time ordered Green func-
tions for Fermi fields as a path integral does not lack formal elegance. The main reason
are the equal properties for fermions and bosons of the path integral under unitary or or-
thogonal transformations and under shifts (translations) of variables, where in any case the
functional determinant is unity!.
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Exercises: Subsection 7.2

① Calculate the integral

∫
∏

x

dψx√
2πi

e
i
∑

x,y
ψxAxyψy

where ψx are the generators of a real Grassmann algebra. Hint: Axy may be assumed
to be antisymmetric. If Axy is hermitian antisymmetric, then A = iAR with AR real
antisymmetric. Furthermore, by an orthogonal transformation S we may transform AR to
a standard matrix C, where C has 2× 2 matrices

C = iσ2 =




0 1

−1 0





along the diagonal and zero elsewhere. Thus we may assume A = iSTCS where STS = 1
and detC= −1. Remark: C is the standard form of the metric of a simplectic space (see
Sec. B).

② a). Show that

ei(ζ̄ψ+ψ̄ζ) = eiζ̄ψ eiψ̄ζ

= 1 + iζ̄ψ + iψ̄ζ − i2ψ̄ψζ̄ζ

b). Check the validity of the result obtained by performing a shift variable, with the one
obtained by a direct calculation, i.e., by expanding the exponential and integration.

c). Verify the rule integration≡differentiation

∫

dψ̄dψ ei(ψ̄Aψ+ζ̄ψ+ψ̄ζ) ∝ ∂2

∂ψ∂ψ̄
ei(ψ̄Aψ+ζ̄ψ+ψ̄ζ)

③ Prove that the value of the functional integral does not depend on the splitting of the
Lagrangian into a free and an interacting part. Hint: compare one splitting L = L0 + Lint

with another one L = L′0 + L′int with L′int = Lint + L0 −L′0.

④ Derive the equation of motion for ψ by utilizing the formal translational invariance of the
Lebesgue measure.

7.3 Path integral for non-Abelian gauge fields

The proper quantization of non-Abelian gauge theories can be understood best in the path integral
approach, as discussed earlier.

We consider a non–Abelian gauge theory with matter fields ψ(x) transforming under a represen-
tation of the group SU(n) and the Yang–Mills fields Vµi, the invariant Lagrangian reads

Linv = −1

4

∑

i

GiµνG
µν
i + ψ̄ (iγµDµ −m) ψ (7.62)
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In this section we need consider the pure Yang–Mills part only. As in the Abelian case discussed in
Sec. 4, the equations of motion which derive from Linv, due to gauge degeneracy, do not determine
the non–Abelian gauge potentials Vµi (i = 1, . . . , r) in a unique manner. This is obvious, since a
gauge transformation changes Vµi, while Linv remains the same. The problem is, as we already
know, that the Vµi’s include unphysical degrees of freedom. Massless spin 1 bosons have two
physical degrees of freedom, while Vµi has four independent components. As a consequence the
formal “path integral”

“

∫

DVµiei
∫
ddx Linv =∞ ”

is infinite, because we try to integrate form −∞ to +∞ over variables on which the integrand
does not depend. Apparently we attempt to integrate along directions in the space of the gauge
potentials, which are physically equivalent. We thus have to distinguish, among the variables
Vµi, between a subset of variables V̄µi which cannot be transformed into each other by a gauge
transformation and a complementary set of variables which correspond to the pure gauge degrees
of freedom. For this second set of variables we may choose the parameters ωi which parametrize
the gauge group.

The physical variables V̄µi may be chosen to lie in a surface Σ the complementary space is spanned
by the gauge orbits of physically equivalent fields. This is illustrated in the following Figure:

V̄

Σ Σg

↙
OV ≡ gauge orbit

C(V ) = 0

↘

A gauge orbit is formally defined by

OV =
{

V ′g | V ′g ∼ V ; g ∈ G
}

and we have
LYM = constant on OV

and Σ is the hyper-surface ⊥ to the gauge orbits. Σ is determined by the gauge fixing condition

Σ : Ci(V ) = 0 , i = 1, . . . , r

In order that the gauge function Ci(V ) fixes the gauge uniquely we must require it to be a strictly
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monotonic function along the gauge orbits as shown in the Figure:

V̄ Vg Vg′ OV

C(V )

This suggests to define the path integral by integration over the hyper-surface Σ only:
∫
∏

x,i

dVµi e
i
∫
ddx Linv

∏

x,i

δ (Ci(V )(x))

or equivalently by integration with a Gaussian damping factor along the gauge orbit directions

I(C) =

∫
∏

x,i

dVµi e
i
∫
ddx Linv e

− i
2ξ

∫
ddx

∑

i
Ci(x)2

The two forms are equivalent in the sense that

e−
i
2ξ

∫
ddx

∑

i
Ci(x)2 = e−

1
2ξ

∫
ddx

∑

i
Ci(x)2 =

∏

x,i

e−
1
2ξ
Ci(x)2

δ (Ci(V )(x)) = lim
ξ→0

1√
2πξ

e−
1
2ξ
Ci(x)2

such that for gauge invariant and hence ξ–independent quantities the equivalence is obvious.
Since only the normalized measure is of interest the extra factors in front of the exponential is
taken care of by properly normalizing the path integral. Note that

∫ +∞

−∞
dCi(V )(x) e−

1
2ξ
Ci(x)2 =

√

2πξ .

The path integral proposed cures the problem of the infinities from integration along the gauge
orbits, however, in the non–Abelian case the result depends on the gauge fixing function in an
essential way such that gauge invariance of observables is definitely lost. This is not acceptable
and the above result cannot be the answer we where looking for.

In order to get an idea about how the “path integral” can be modified such that gauge invariance
gets restored in an appropriate way we write symbolically

I(C) =

∫

Σ
DV̄µi ei

∫
ddx Linv

∫

OV

Dωi e−
i
2ξ

∫
ddx

∑

i
Ci(x)2

.

This makes clear that we must arrange the second integral to be independent of the choice of Ci.
This can be achieved easily if we introduce the Jacobian determinant as follows:

∫

OV

Dωi det

(
∂C

∂ω

)

e−
i
2ξ

∫
ddx

∑

i
Ci(x)2

Then, since the determinant is the Jacobian of the transformation ωi → Ci, we indeed obtain the
integral

∫

DCi e−
i
2ξ

∫
ddx

∑

i
Ci(x)2

=
(√

2πξ
)N
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over all possible Ci obtained from a particular one, the original Ci, by a gauge transformation,
parametrized by ωi. Here we have to resort to a finite dimensional approximation of N degrees
of freedom. This integral is trivially independent of a particular choice of Ci. The correct path
integral for a non-Abelian gauge theory therefore reads:

∫

DV̄µi
∫

Dωi ei
∫
ddx
(
Linv− i

2ξ

∑

i
C2

i

)

det

(
∂C

∂ω

)

=

∫

DVµi det

(
∂C

∂ω

)

ei
∫
ddx (Linv+LGF)

where det
(
∂C
∂ω

)

is the Faddeev–Popov determinant. The crucial trick is to write this determinant

as an exponential, see Eq. (7.57), which allows us to perform a perturbative treatment. Equiva-
lently, according to Eq. (7.58), the Faddeev–Popov determinant may be written as a path integral
over Grassmann fields, the so called Faddeev–Popov ghost fields:

det

(
∂C

∂ω

)

=

∫

dη̄idηi e
i
∫
ddx LFP

where

LFP = η̄iMikηk , Mik =
∂Ci
∂ωk

.

As already mentioned, this kind of representation is absolutely crucial because it allows us to
treat the Faddeev–Popov determinant in perturbation theory. The bilinear part defines a FP–
ghost propagator, while the exponential containing the interaction part can be expanded into a
perturbation series (see Sec. 8).

Result:

One can prove that the following ansatz for the path integral of a non-Abelian gauge theory
provides the proper quantization of such a theory and yields gauge invariant observables:

• Leff = Linv + LGF + LFP is the quasi invariant effective Lagrangian

• LGF = − 1
2ξ

∑

i (∂µV
µ
i (x))

2
is the simplest (bilinear) manifestly Lorentz invariant gauge

fixing term. This so called Lorentz gauge, in spite of the fact that it does not fix the gauge
uniquely (Gribov ambiguity), serves all practical purposes in perturbation theory.

• the Faddeev-Popov term which corresponds to this choice of the gauge fixing term, is
constructed as follows: consider a gauge transformation of Vµi:

Vµi → Vµi + ∂µωi − gciklVµlωk

the gauge function

Ci(V ) = −∂µV µ
i

changes to

Ci → Ci −2ωi + gcikl∂
µ (Vµlωk)

such that

Mik =
∂Ci
∂ωk

= −2δik + gcikl∂
µ (Vµl

which uniquely fixes the Faddeev–Popov Lagrangian LFP = η̄iMikηk for the Lorentz gauge,
generally utilized in perturbative calculations.
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• The generating functional now reads (Faddeev–Popov, ’t Hooft 1971)

Z
{

J, ζ̄, ζ, β̄, β
}

=
∫

⊗
DVµiDψ̄DψDη̄iDηi ×

ei
∫
ddx {Leff(V,ψ̄,ψ,η̄,η)+Jµi Vµi+ζ̄ψ+ψ̄ζ+β̄η+η̄β} (7.63)

where we have included the fermions according to Eq. (7.61), and added source terms for
the Faddeev–Popov ghosts.

The perturbation expansion and the corresponding Feynman rules follow as usual by separation
of the bilinear part L0 = Lbilinear

eff and the interaction part Lint = Leff −L0. Accordingly, we have
a free functional

Z0
{
J, ζ̄, ζ, β̄, β

}
=

∫

⊗
DVµiDψ̄DψDη̄iDηi ei

∫
ddx {L0(V,ψ̄,ψ,η̄,η)+Jµ

i Vµi+ζ̄ψ+ψ̄ζ+β̄η+η̄β}

= exp
i

2
(J,∆V J) · exp−i(ζ̄ , SF ζ) · exp−i(β̄,∆FP β) (7.64)

and the perturbation expansion follows from

Z
{

J, ζ̄, ζ, β̄, β
}

= = < 0|Tei
∫
ddx (JV+ζ̄ψ+ψ̄ζ+β̄η+η̄β) |0 >

= in < 0|Tei
∫
ddx L(in)

int (V,ψ̄,ψ,η̄,η) ei
∫
ddx (JVin+ζ̄ψin+ψ̄inζ+β̄ηin+η̄inβ) |0 >in⊗

= e
i
∫
ddx Lint(−i δ

δV
,−i δ

δζ
,−i δ

δζ̄
−i δ

δβ
,−i δ

δβ̄
)
Z0
{
J, ζ̄, ζ, β̄, β

}
. (7.65)

For further details we refer to Sec. 8.
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8 Quantization, perturbation expansion, Feynman rules

The starting point for the quantization of a non–Abelian gauge theory is the invariant Lagrangian
density

Linv = −1

4

∑

i

Giµν G
µν
i + ψ̄ (iγµDµ −m) ψ .

We shall restrict ourselves to discuss the perturbative approach. Thus phenomena related to
instantons (Belavin, Polyakov, Shvarts and Tyupkin 1975) and the Gribov ambiguity (Gribov
1978) are not considered here. We split Linv into a free part L0 and an interaction part Lint

which is taken into account as a formal power series expansion in the gauge coupling g. The
perturbation expansion is an expansion in terms of the free fields described by L0. Notice that
this splitting of Linv is not gauge invariant, a fact which causes technical problems in controlling
gauge invariance and renormalizability. At this stage we are confronted with another serious
problem: The problem of quantizing massless spin 1 fields, which is familiar from QED. Since
LYM is gauge invariant, the gauge potentials Viµ cannot be uniquely determined from the gauge
invariant field equations. Again one has to break the gauge invariance, now, by a sum of r = n2−1
gauge fixing conditions

Ci(V ) = 0 , i = 1, · · · , r .

It is known from QED that the only relativistically invariant condition linear in the gauge potential
which we can write is the Lorentz condition. Correspondingly we require

Ci(V ) = −∂µ V µ
i (x) = 0 , i = 1, · · · , r .

It should be stressed that a covariant formulation is mandatory for calculations beyond the tree
level. We are thus lead to break the gauge invariance of the Lagrangian by adding the gauge
fixing term

LGF = − 1

2ξ

∑

i

(∂µ V
µ
i (x))

2

with ξ a free gauge parameter. Together with the term LV0 from Linv we obtain for the bilinear
gauge field part

LV,ξ0,i = −1

4
(∂µ Vi ν − ∂ν Vi µ)2 − 1

2ξ
(∂µ V

µ
i (x))

2

which now uniquely determines a free gauge field propagator. Unlike in QED, however, LGF

breaks local gauge invariance explicitly. Scattering matrix elements are now gauge dependent
(depend explicitly on ξ) and renormalizability and unitarity are lost. This can be shown be
explicit calculations. In order to cure these unacceptable diseases one has to add another term
to the Lagrangian which restores gauge invariance somehow. That this is possible at all was
a surprise. The term which does this job has been found by Faddeev and Popov and is called
Faddeev-Popov term (Faddeev and Popov 1967). We first remember that in a relativistically
covariant quantization the field Viµ(x) describes besides the two physical transversal modes also
longitudinal and scalar ghost “particles”. In non-Abelian gauge theories these ghosts carry SU(n)
charge and thus transform nontrivially under gauge transformations. The Faddeev-Popov trick
consists in adding further charged ghost fields η̄i(x) and ηi(x), the so called Faddeev-Popov
ghosts, which conspire with the other ghosts in such a way that physical matrix elements remain
gauge invariant. Unitarity and renormalizability are then restored. The FP–ghosts must be
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massless spin 0 fermions. For the unphysical ghosts this wrong spin–statistics assignment is
no obstacle. The Faddeev-Popov term must be of the form

LFP = η̄i(x)Mikηk(x)

where

Mik =
∂Ci(V )

∂Vjµ(x)
(Dµ)jk

= −∂µ (∂µδik − gcikjVjµ(x))

= −2δik + gcikjVjµ(x) ∂µ + gcikj (∂µVjµ(x)) .

By partial integration of SFP =
∫
d4x LFP(x) we may write

LFP = ∂µη̄i∂
µηi − gcikj (∂µη̄i) Vjµηk

which describes massless scalar fermions in interaction with the gauge fields.

The complete Lagrangian for a quantized Yang–Mills theory is

Leff = Linv + LGF + LFP .

The free (bilinear) part

L0 = L0(V ) + L0(ψ) + L0(η)

with

L0(V ) =
1

2
Viµ

[(

2gµν −
(

1− 1

ξ

)

∂µ∂ν
)

δik

]

Vkν

L0(ψ) = ψ̄αa
[(

(iγµ)αβ ∂µ −mδαβ
)

δab
]

ψβb

L0(η) = η̄i [(−2) δik] ηk

determines the free propagators, the differential operators in the square brackets being the inverses
of the propagators. By Fourier transformation the free propagators are obtained in algebraic
form (i.e. the differential operators are represented by c-numbers) in momentum space. Using
the convention

φ(x) =
1

(2π)4

∫

d4p e−ipx φ̃(p) , φ = V, ψ, η

the partial derivative ∂µ goes into −ipµ and hence
(

2gµν −
(

1− 1

ξ

)

∂µ∂ν
)

δik → −
(

gµν −
(

1− 1

ξ

)
pµpν

p2

)

p2 δik

(iγµ∂µ −m)αβ δab → (p/−m)αβ δab

(−2) δik → p2 δik .

Inverting these c-number matrices we obtain the results depicted in Fig. 8.1.

The interaction part of the Lagrangian is given by

Lint = gψ̄γµTiψViµ −
1

2
gcikl (∂

µV ν
i − ∂νV µ

i ) VkµVlν

− 1

4
g2ciklcik′l′V

µ
k V

ν
l Vk′µVl′ν − gcikj (∂µη̄i) Vjµηk

with a single coupling constant g for the four different vertices. In momentum space the vertices
are represented by the following expressions: (For convenience we have symmetrized by permu-
tations of the summation indices of the V –vertices. All momenta have been chosen incoming)
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a). Massive fermion propagator

: ∆̃ψ
F (p)αβ, ab =

(
1

/p−m+iε

)

αβ
δab

b). Massless gauge boson propagator

: ∆̃V
F (p, ξ)µνik = −

(

gµν − (1 − ξ)pµpν
p2

)
1

p2+iε
δik

c). Massless FP–ghost propagator

: ∆̃η
F (p)ik = 1

p2+iε
δik

d). Fermion gauge field coupling

:= g (γµ)αβ (Ti)ab

e). Triple gauge field coupling

:= −igcijk {gµν (p2 − p1)ρ + gµρ (p1 − p3)ν + gνρ (p3 − p2)µ}

f). Quartic gauge field coupling

:= −g2







cnijcnkl (gµρgνσ − gµσgνρ)
+cnikcnjl (gµνgρσ − gµσgνρ)
+cnilcnjk (gµνgρσ − gµρgνσ)

g). FP–ghost gauge field coupling

:= −igcijk (p3)µ

p

α, a β, b

p

µ, i ν, k

p

i k

µ, i, p1

α, a, p3

β, b, p2

µ, i, p1

ρ, k, p3

ν, j, p2

µ, i ν, j

ρ, kσ, l

µ, i, p1

k, p3

j, p2

Fig. 8.1: Feynman rules for Leff . Momenta at vertices are chosen ingoing.

Here and in the following we do not explicitly write the iε-prescription for the Feynman propa-
gators and include it in the mass. Thus m always stands for m− iε.
Given the set of well-defined propagators together with Lint we are able to calculate S-matrix
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elements and Green functions in perturbation theory. The S-matrix elements are obtained using

< out p′1, j
′
1, λ
′
1, . . . | p1, j1, λ1, . . . in >

= < in p′1, j
′
1, λ
′
1, . . . | S | p1, j1, λ1, . . . in >

where the S–operator is represented in terms of the free in–fields

S = Tei
∫
d4x Lint(V (in),ψ(in),···)(x)

by expanding the exponential into a power series. Since the states and the the fields appearing in
Lint may be represented in terms of the free in-state creation and annihilation operators formally
we in principle know how to calculate the S-matrix elements to any order of the perturbation
expansion. It is convenient however to work at an intermediate step with the closely related time
ordered Green functions

< 0|T {φi1(x1) φi2(x2) · · ·} |0 >
=in< 0|T

{

φ
(in)
i1

(x1) φ
(in)
i2

(x2) · · · S
}

|0 >in⊗
=
∑∞
n=0

in

n!

∫
d4y1 · · · d4yn in< 0|T

{

φ
(in)
i1

(x1) φ
(in)
i2

(x2) · · · L(in)
int (y1) · · · L(in)

int (yn)
}

|0 >in⊗

and using the LSZ reduction formulae discussed in Sec. 3.3. The vacuum expectation values
appearing in the last equation can be evaluated using Wick’s theorems (see Sec. 3.4): Express
all (free) fields in terms of the creation and annihilation operators and commute (anticommute)
all annihilation operators to the right until they act onto the vacuum |0 >in and yield zero. The
only non-vanishing contributions are those where all pairs of operators have been contracted i.e.
replaced by a corresponding c-number commutator (anticommutator).

The bookkeeping for the non-vanishing contributions may be organized diagrammatically using
the following Feynman rules:

Each contribution at n-th order perturbation theory is characterized by a Feynman diagram with
N external and n internal vertices (drawn as points in a plane) which are completely contracted
i.e. connected by propagators:

➊ Lines:

q k p

∆̃ψ
F (p)αβ, ab ∆̃V

F (p, ξ)µνik ∆̃η
F (p)ik
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➋ Vertices:

a) external:

q q k p p

ψ ψ̄ V η η̄

b) internal:

g (γµ)αβ (Ti)ab igV αβγ
abc −g2Tαβγδabcd −igcabc (p3)α

➌ Integrals: All external momenta by convention are chosen incoming. At each vertex we have four-
momentum conservation which allows to eliminate dependent momenta, the remaining in-
ternal momenta are loop momenta which must be integrated over

1

(2π)d

∫

ddli · · ·

d is the space–time dimension.

➍ Factors: Multiply the integrals over the products of propagators and coupling matrices obtained so
far by the following factors:

total four-momentum conservation : (2π)dδ(d) (
∑
pi ext)

each interaction vertex : i

each propagator : i

each fermion loop : −1

each FP–ghost loop : −1

combinatorial factors : see below

For the combinatorial factors the rules are as follows: Take out a permutation symmetry factor
1
n! from the vertex for any n identical fields in that vertex. These symmetry factors are omitted
in the Feynman rules. Then multiple lines have the weight factors
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: 1
2!

: 1
2!

: 1
3!

The proof is the same as to one given for the ϕ4 theory at the end of Sec. 3.4.

Note that following the conventional assignment of the fermion wave functions Table 3.1, the
product of spinors and γ–matrices which corresponds to an open string or to a closed loop of
fermion lines are ordered from left to right, in opposite direction of the fermion line arrows, which
show the flow of fermion number.

The correct Feynman rules for a non–Abelian gauge theory were derived for the first time using
the Faddeev–Popov trick by G.’t Hooft in 1971.
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9 Spontaneous symmetry breaking and Goldstone bosons

In many cases symmetries are not ideally realized in nature. As an example, isospin invariance
of strong interactions is not exact. It is broken by small mass-splittings among the members
of isospin multiplets. For the nucleon doublet one has (mn − mp)/mp ' 1.29/938.27, for the
pion triplet (mπ± −mπ0)/mπ0 ' 4.59/134.97 and so on. In addition, electromagnetic and weak
interactions violate the isospin symmetry of the strong interactions. Isospin is not conserved, for
example, in decays like π0 → γγ (electromagnetic) or n→ p+ e− + ν̄e (weak).

Besides such explicit breaking one distinguishes spontaneous breaking of symmetries. A sym-
metry is said to be spontaneously broken if the ground state exhibits less symmetry than the
Lagrangian (or Hamiltonian) of the system. In fact it may happen that symmetric equations
of motion have non-symmetric solutions representing states of lower energy than the symmetric
ones. Though the ground state exhibits non-trivial structure, in the spontaneously broken case,
we still call it vacuum.

The phenomenon of spontaneously broken symmetries is well known from condensed matter
physics. Let us consider the Heisenberg model of a ferromagnet, as an example. The model
assumes nearest neighbor spin-spin interactions of spins ~S~r =

(
Sx~r , S

y
~r , S

z
~r

)
attached to the sites ~r

of a cubic lattice. The corresponding interaction Hamiltonian

H = −J
∑

<~r,~r ′>

~S~r · ~S~r ′

is rotationally symmetric. Since parallel spins are favored energetically, below the critical tem-
perature, the system exhibits “spontaneous” magnetization. We may choose it to point in the
direction of the z-axis. The magnetization is the ground state expectation value of the spin
variable ~S

< Sz~r >=< Sz~0 >= M 6= 0 or < ~S~0 >= (0, 0,M) 6= 0

Generally, a local variable which has a non-vanishing ground state expectation value is called
order parameter. In a state with non-zero magnetization the symmetry of the system is reduced
to rotations around the magnetization axis. The original symmetry is “spontaneously broken”.
Of course, the magnetization may point in any direction, which means that there are infinitely
many physically equivalent ground states. The different possible ground states are related to each
other by rotations. Once we have chosen a particular ground state to describe the system the
symmetry is spontaneously broken.

9.1 The Goldstone theorem

In abstract terms, we may characterize the situation as follows: Let the Lagrangian of a system
be symmetric with respect to a group G of transformations. If a unique vacuum | 0 > exists,
then it must be invariant under G, meaning that | 0 > is a singlet, and the symmetry is exact.
In general, however, the ground state may be degenerate such that there exists more than one
state of lowest energy. The set of ground states then must transform as a multiplet of G. For a
continuous symmetry group a continuous “orbit” of vacua is obtained. Each ad hoc choice of one
of the ground states as the “physical vacuum” of the system breaks the symmetry spontaneously.
Typically, there exists a local field which transforms non-trivially under G and which has a non-
vanishing vacuum expectation value (order parameter):

< 0 | ϕa(x) | 0 >= Fa 6= 0.
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Since the symmetry is spontaneously broken, there is no symmetry principle which forces a field
(or any operator) which has the quantum numbers of the vacuum to have vanishing vacuum
expectation value. Of course we require the vacuum to be symmetric under translations and
Lorentz transformations. Therefore, the field ϕa(x) must be scalar and Fa must be a constant
vector in the internal symmetry space. Let us suppose that ϕa transforms according to the
fundamental representation of G = SU(n). By a global transformation

ϕa → ϕ′a = ei
∑

i
Qiωiϕae

−i
∑

i
Qiωi =

(

ei
∑

i
Tiωi

)

ab
ϕb

we may arrange things such that only the real part of the nth component has non-vanishing
vacuum expectation value:

< 0 | ϕa(x) | 0 >= 0 , a = 1, . . . , n− 1 ; < 0 | ϕn(x) | 0 >6= 0 .

Since we assume the Lagrangian to have global SU(n) symmetry, we have n2 − 1 conserved
Hermitian currents jµi (x):

∂µj
µ(x) = 0 ; j+

µ = jµ

and the generators of the group are represented by the charge operators

Qi =

∫

d3x j0(~x, t) ,
dQi
dt

= 0.

For infinitesimal transformations the transformation law for the field, given above, takes the form
of a set of commutation relations

[Qi, ϕa] = (Ti)ab ϕb.

The Ti’s are the generators in the n×n fundamental matrix representation given in Sec. 5. If we
take the vacuum expectation value we obtain

< 0 | [Qi, ϕa] | 0 >= (Ti)ab < 0 | ϕb(x) | 0 >= (Ti)an v.

If the symmetry is not broken spontaneously v = 0 the vacuum must be invariant Qi | 0 >= 0
for i = 1, . . . , n2 − 1. Otherwise < 0 | [Qi, ϕa] | 0 >6= 0 for some i. We denote the subset of Qi’s
for which < 0 | [Qi, ϕa] | 0 >6= 0 by Q̃i. Since < 0 | Q̃iϕa | 0 > − < 0 | ϕaQ̃i | 0 >6= 0 we must
have Q̃i | 0 >=| 0′ >i 6= 0. On the other hand, by the symmetry of the Lagrangian, the generators
commute with the Hamiltonian

[Qi , H] = 0 , i = 1, . . . , n2 − 1.

This implies
[

Q̃i,H
]

| 0 >= Q̃iH | 0 > −HQ̃i | 0 >= 0

i.e. if | 0 > is an eigenstate of H then Q̃i | 0 >=| 0′ >i must be an eigenstate of H with the
same eigenvalue if Q̃i | 0 >6= 0. The vacuum must be degenerate in this case. Another important
consequence follows if we consider

< 0 |
[

Q̃i,H
]

| p > = < 0 | Q̃iH | p > − < 0 | HQ̃i | p >
= p0 < 0 | Q̃i | p >= p0

i< 0′ | p >= 0.
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for a complete set of eigenstates | p > of P µ.

This implies that the new vacuum | 0′ >i= Q̃i | 0 > is orthogonal to all the states | p >
belonging to the Hilbert space with vacuum | 0 >. For each vacuum we get an inequivalent
representation of the physical states i.e. the states created from different vacua cannot be
mapped by unitary transformations. Each choice of a fixed vacuum | 0 > yields a physically
equivalent description of the system, however.

Next we consider the conditions

< 0 |
[

Q̃i, ϕa
]

| 0 >=

∫

d3x < 0 |
[

j̃0
i (x), ϕa

]

| 0 >= c̃iav 6= 0

which imply that

< 0 | j̃µi (x)ϕa(y) | 0 >6= 0.

ϕa(y) contains a creation operator which creates from the vacuum | 0 > a state | p >a. The above
condition thus is equivalent to

< 0 | j̃µi (x) | p >a 6= 0.

Using translation invariance and P µ | p >a= pµ | p >a we obtain

< 0 | j̃µi (x) | p >a = < 0 | e−iPxj̃µi (0)eiPx | p >a
= < 0 | j̃µi (0) | p >a eipx

where < 0 | j̃µi (0) | p >a= fiap
µ since it is a function of p only and must be a Lorentz vector.

Here it is important that | p > is a scalar state. Hence

< 0 | j̃µi (x) | p >a= fiap
µeipx with fia 6= 0.

Since j̃µi (x) is a conserved current we must have

∂µ < 0 | j̃µi (x) | p >a = < 0 | ∂µj̃µ(x) | p >a
= ifiap

2eipx = 0

and hence p2 = 0. This is a very interesting result saying that the state | p >a must be a
mass zero state and ϕa(x) must be a massless scalar field. We thus have proven the Goldstone
theorem: Spontaneous breaking of a continuous symmetry implies the existence of zero mass
bosons, so called Goldstone bosons. How many Goldstone bosons are there? This question
may be answered easily if we inspect the conditions

< 0 | [Qi, ϕa] | 0 >= (Ti)an v; i = 1, . . . , n2 − 1, a = 1, . . . , n

more closely. Only generators Ti with a non-zero element in the nth column yield a symmetry
breaking condition. Using the representation of the Ti’s given in Sec. 5 we have one of the n− 1
diagonal T ′i with a non-zero element in the nth column. We denote the corresponding Qi by Q̃0

and obtain

< 0 |
[

Q̃0, ϕn
]

| 0 >= − n− 1
√

2n(n− 1)
v 6= 0.
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In addition, there are 2(n− 1) off-diagonal matrices which have either a −i or a 1 at one position
in the last column of rows a = 1 to n − 1. The corresponding Qi’s we denote by Q̃1

a and
Q̃2
a, a = 1, . . . , n− 1. Thus, we have

< 0 |
[

Q̃1
a, ϕa

]

| 0 >= −iv ; < 0 |
[

Q̃2
a, ϕa

]

| 0 >= v .

The remaining n2 − 1 − 2(n − 1) − 1 = (n− 1)2 − 1 generators have < 0 | [Qa, ϕa] | 0 >= 0 and
hence leave the vacuum invariant. These are precisely the generators of the subgroup SU(n− 1)
which leaves the vector

Fa =












0

0
...

v












invariant:

UF = F ⇒ U =




Û 0

0 1



 , Û ∈ SU(n− 1).

This group is the stability group (or little group) of the vacuum expectation value < 0 | ϕa(x) |
0 >= Fa of the scalar multiplet ϕa(x).

The 2(n−1) + 1 broken generators require 2n−1 of the 2n real fields contained in the n complex
fields ϕa to be massless i.e. there must be 2n− 1 Goldstone bosons.

If we introduce real fields by ϕa = ϕ1
a + iϕ2

a

(
ϕ1
a = Reϕa, ϕ

2
a = Imϕa

)
we obtain

< 0 | [Qi, ϕa] | 0 >=< 0 |
[

Qi, ϕ
1
a

]

| 0 > +i < 0 |
[

Qi, ϕ
2
a

]

| 0 >

Now, for a real field (and Hermitian generators Q+
i = Qi) we have

< 0 |
[

Qi, ϕ
k
a

]

| 0 > = < 0 | Qiϕ
k
a | 0 > − < 0 | ϕkaQi | 0 >

= < 0 | Qiϕ
k
a | 0 > − < 0 | Qiϕ

k
a | 0 >∗

= i 2 Im < 0 | Qiϕ
k
a | 0 >

and hence

< 0 | [Qiϕa] | 0 >= i 2 Im < 0 | Qiϕ
1
a | 0 > −2 Im < 0 | Qiϕ

2
a | 0 >

The non-vanishing expectation values are then

2 Im < 0 | Q̃0, ϕ
2
n | 0 > =

n− 1
√

2n(n− 1)
v

2 Im < 0 | Q̃1
a, ϕ

1
a | 0 > = −v

2 Im < 0 | Q̃2
a, ϕ

2
a | 0 > = −v

and the corresponding fields must be massless by the argument given before.
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As a result we have: The complex multiplet ϕa(x) in the fundamental representation of SU(n)
exhibits 2n real fields. In the spontaneously broken phase we can choose the internal space
frame such that exactly one field, ϕ1

n = Reϕn has a non-vanishing vacuum expectation value
< 0 | ϕ1

n | 0 >= v > 0. The remaining 2n− 1 must be massless Goldstone boson fields. The field
ϕ′n may have any mass and is not a Goldstone boson even if it would be massless by accident.

A final remark concerning the currents: If a global symmetry is exact the Noether currents

jµi (x) =: jµi (x) :

represented in terms of creation and annihilation operator exhibit terms a+b only (possibly b = a)
and no a+b+ or a b terms. Therefore

jµi (x) | 0 >= 0.

In the spontaneously broken phase conditions

< 0 | j̃µi (x)ϕa(y) | 0 >6= 0

must hold, such that j̃µi (x) cannot annihilate the vacuum! How can we understand this? In our
case ϕn = ϕ′n + v with < 0 | ϕ′n | 0 >= 0 i.e. ϕ′n is the field having “normal” properties if
expanded in terms of creation and annihilation operators. The contribution of ϕa to the Noether
current is

jµi = i : ϕ∗a (Ti)ab
↔
∂ µ ϕb :

If we shift the field ϕn → ϕn + v we obviously get terms proportional to v∂µϕa which are linear
in the fields. This obviously explains why

jµi (x) | 0 >6= 0

now.

There are 2n− 1 currents which get a linear term

Q̃0 : j̃µ0 = i : ϕ∗a
(

T̃0

)

ab

↔
∂ µ ϕb : +2 n−1√

2n(n−1)
v∂µϕ

2
n

Q̃1
a : j̃µ1

a = i : ϕ∗a
(

T̃ 1
a

)

ab

↔
∂ µ ϕb : −2v∂µϕ

1
a

Q̃2
a : j̃µ2

a = i : ϕ∗a
(

T̃ 2
a

)

ab

↔
∂ µ ϕb : −2v∂µϕ

2
a .

and create 2n− 1 different Goldstone bosons from the vacuum.

9.2 Models of spontaneous symmetry breaking

The first field theory models which exhibited spontaneous symmetry breaking have been invented
around the year 1960 as models for describing the pion-nucleon (π −N) system. Nambu (1960)
and Nambu-Jona-Lasinio (1961) proposed the so called Nambu-Jona-Lasinio model. At about
the same time Gell-Mann-Lévy (1960) proposed the linear σ-model as a description of the same
system. In both models pions appear as Goldstone bosons. An approximately realized Goldstone
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mechanism still is the only way to understand why pions are so much lighter than nucleons 26.
Later Goldstone (1961) noticed that the appearance of massless states is a general phenomenon
related to spontaneous symmetry breaking. One distinguishes two different schemes of sponta-
neous symmetry breaking. In the linear realization (prototype linear σ-model) a scalar field,
which develops a non-vanishing vacuum expectation value, is introduced as a fundamental field in
the Lagrangian. Such models with elementary scalars are often considered to be doubtful as viable
physical models because elementary scalars have not yet been found in nature. The other possi-
bility is the dynamical symmetry breaking scheme (prototype Nambu-Jona-Lasinio model)
which has no elementary scalars. The order parameter is a composite field like ψ̄ψ and the
Goldstone bosons are composite fermion – antifermion states similar to the real pions (if they
would be massless). The problem with such models is that our unfortunate inability to treat the
relativistic bound state problem makes it hard to make unambiguous predictions.

In the following we consider models with elementary scalars for illustration of spontaneous sym-
metry breaking and the Goldstone mechanism.

9.2.1 A model with spontaneous breaking of a discrete symmetry

Consider a real scalar field with self-interaction described by the Lagrangian

L =
1

2
(∂µϕ)2 − V (ϕ) =

1

2
(∂µϕ)2 +

µ2

2
ϕ2 − λ

4!
ϕ4 .

-

a) µ2 < 0

•

6
V (ϕ)

ϕ
-

6
V (ϕ)

•

ϕ

b) µ2 > 0

Fig. 9.1: Scalar potential a) in the symmetric and b) in the spontaneously broken phase.

Stability of the system requires λ > 0. The equation of motion for the field ϕ is

∂µ
∂L
∂∂µϕ

=
∂L
∂ϕ

or 2ϕ = −∂V
∂ϕ

= µ2ϕ− λ

3!
ϕ3 .

The Lagrangian ha a discrete symmetry Z2 = {±1} : ϕ→ −ϕ.
26In modern QCD language the Goldstone boson picture of the pions is realized in the chiral limit of vanishing

light quark masses. In this limit the pions are bona fide massless Goldstone particles
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Let us treat ϕ as a classical field for the moment. The equilibrium solution of the system is the
one for which ϕ(x) is a constant determined by ∂V

∂ϕ = 0 . If µ2 < 0, we have a unique ground
state solution ϕ(x) = ϕ0 = 0. In the quantized version we then have a unique vacuum | 0 > and
< 0 | ϕ(x) | 0 >= 0. m2 = −µ2 > 0 is the physical mass of the field ϕ. Now choose µ2 > 0. Then

∂V

∂ϕ
=
λ

3!
ϕ3 − µ2ϕ = 0

has besides the trivial solution ϕ0 = 0 two non-trivial solutions (see Fig. 9.1)

ϕ± = v± = ±
√

6µ2

λ
.

Only these two solutions correspond to a minimum of the potential and hence to a ground state
solutions. Obviously now we have two degenerate ground states.

If ϕ(x) is treated as a quantum field we have to choose one of the ground states as the vacuum
| 0 >. This choice is fixed if we require, in first approximation the vacuum expectation value to
be equal to one of the classical results

< 0 | ϕ(x) | 0 >= v+ = v > 0

for example.

Notice that a perturbation expansion based on the splitting L = L0 +Lint with L0 = 1
2 (∂µϕ)2 +

µ2

2 ϕ
2 and Lint = − λ

4!ϕ
4 does not make sense because this would correspond to an expansion

in terms of negative m2 = −µ2 < 0 solutions. Such Tachyons, neither satisfy the spectrum
condition nor local causality. As we shall see there is a simple way to circumvent this problem. If
we would perform a perturbation expansion about the fake free field solution, in every finite order
of perturbation expansion, we would have a tachyon as an artifact of a nonsensical expansion.
Only be infinite resummation techniques we would be able to recover the right physical answer.
A field which allows for a normal particle interpretation must satisfy

< 0 | ϕ′(x) | 0 >= 0.

Such a field we simply obtain by a shift

ϕ = ϕ′ + v

from the original field ϕ (B. W. Lee 1969). When we rewrite the Lagrangian in terms of ϕ ′ we
obtain

L(ϕ) = L(ϕ′ + v) = L′(ϕ′)

=
1

2

(
∂µϕ

′)2 +
µ2

2

(
ϕ′ + v

)2 − λ

4!

(
ϕ′ + v

)4

=
1

2

(
∂µϕ

′)2 +
1

2

(

µ2 − λv2

2

)

ϕ
′2

− λ
4!
ϕ

′4 − λv

3!
ϕ

′3 +

(

µ2v − λv3

6

)

ϕ′ +
µ2v2

2
− λv4

4!
.

The mass term of ϕ′ now is given by

m2
eff =

λv2

2
− µ2 =

λv2

2
− λv2

6
=
λv2

3
> 0 !
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where we have used v =
√

6µ2

λ such that λv2 = 6µ2 .

Now we can set up a perturbation expansion with

L0(ϕ′) =
1

2

(

∂µϕ
′)2 − m2

eff

2
ϕ

′2

Lint
(
ϕ′
)

= − λ
4!
ϕ

′4 − λv

3!
ϕ

′3 − c1ϕ
′
+ c0

and obtain the Feynman rules depicted in Fig. 9.2.

Propagator :

ϕ′ ( 2 +m2
eff) ϕ′ i

p2−m2
eff

+iε

+ interaction vertices :

−i λ v

−i λ

−i c1

ϕ′

ϕ′
ϕ′

ϕ′

ϕ′ϕ′

ϕ′ϕ′

ϕ′

Fig. 9.2: Feynman rules for L (ϕ′)

The vacuum energy must be adjusted to zero: c0 = 0 . The free parameters are λ and m2
eff as in

the symmetric case. The vacuum expectation value is determined by

v = +

√

3m2
eff

λ

and c1 = v
(
λv2

6 − µ2
)

= 0 ! by the condition that < 0 | ϕ′(x) | 0 >= 0.

The symmetry ϕ′ → −ϕ′ is broken now and we have learned that spontaneous symmetry breaking
can reveal a physical mass to a particle.

9.2.2 The Goldstone model

The Goldstone model illustrates spontaneous breakdown of a continuous symmetry. We may
obtain it from the previous model by replacing the real field by a complex field ϕ 6= ϕ∗. The
Lagrangian has the form

L = ∂µϕ
∗∂µϕ− V (ϕϕ∗) = ∂µϕ

∗∂µϕ + µ2ϕ∗ϕ− λ

3!
(ϕ∗ϕ)2
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and is symmetric under global U(1) transformations. We use the equivalent representation in
terms of a doublet of two real fields

ϕ̂ =




ϕ1

ϕ2



 ; ϕi = ϕ∗i (i = 1, 2)

which transforms under O(2) ' U(1) rotations. The complex (charged) field is then given by

ϕ =
1√
2

(ϕ1 + i ϕ2) .

With ϕ̂2 = ϕ2
1 + ϕ2

2 = 2ϕ∗ϕ the Lagrangian takes the form

L(ϕ̂) =
1

2
(∂µϕ̂)2 +

µ2

2
ϕ̂2 − λ

4!
ϕ̂4 ,

which obviously is symmetric under 2-dimensional rotations

ϕ̂→ ϕ̂′ =




ϕ′1

ϕ′2



 =




cos θ sin θ

− sin θ cos θ








ϕ1

ϕ2



 .

The equation of motion for ϕ̂ is

2ϕ̂ = µ2ϕ̂− λ

3!
ϕ̂2ϕ̂ .

Again for µ2 < 0 we find a unique ground state solution ϕ1 = ϕ2 = 0 and m2 = −µ2 is the
common mass of ϕ1 and ϕ2 . If µ2 > 0, the solution ϕ̂0 =

(0
0

)
is unstable. The potential has a

minimum at (see Fig. 9.3)

ϕ̂2
0 =

6µ2

λ

and we have a continuous orbit of ground state solutions related by rotations. We now choose, ad
hoc, one particular ground state solution as the vacuum | 0 > . O(2)-invariance is spontaneously
broken now. The particular choice of | 0 > is fixed by specifying the vacuum expectation value
of ϕ̂ :

< 0 | ϕ̂(x) | 0 >=




0

v



 ; v > 0 ; v =

√

6µ2

λ

The physical effect of this breaking again becomes transparent if we write the Lagrangian in terms
of the shifted field

ϕ̂′(x) = ϕ̂(x)−



0

v



 i.e.
ϕ′1 = ϕ1

ϕ′2 = ϕ2 − v .

We obtain

L(ϕ̂) = L(ϕ̂′ + (
0

v
)) = L′(ϕ̂′)

=
1

2

(
∂µϕ̂

′)2 − 1

2

(

λv2

6
− µ2

)

ϕ
′2
1 −

1

2

(

λv2

2
− µ2

)

ϕ
′2
2

− λ
4!

(
ϕ̂′
)4 − λv

2 · 3!
ϕ̂

′2ϕ′2 − c1ϕ′2 + c0
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with the mass terms

m2
1eff =

λv2

6
− µ2 =

λv2

6
− λv2

6
= 0

m2
2eff =

λv2

2
− µ2 =

λv2

2
− λv2

6
=
λv2

3
> 0 !

This is a remarkable result: By spontaneous symmetry breaking the particles have acquired
different masses and one of the particles is massless. As we know, the appearance of a Goldstone
boson is a necessary consequence of spontaneous breaking of a continuous symmetry and is not
peculiar to the particular model.

-

a) µ2 < 0

•

6

�
�

��	

V (ϕ̂)

ϕ2

-

6
V (ϕ̂)

•

ϕ2

b) µ2 > 0

�
�	

ϕ1

ϕ1

Fig. 9.3: Potential of the Goldstone model a) in the symmetric and
b) in the spontaneously broken phase.

The original Lagrangian which seems to describe the two fields ϕ1 and ϕ2 in a completely sym-
metric way, has been shown to describe two neutral scalar particles of unequal mass. This is a
clear manifestation of symmetry breaking.

This symmetry breaking is very different, however, from an explicit breaking of the symmetry
which would result if we would add ad hoc two independent mass terms for the fields ϕ1 and ϕ2.
This would yield a model with three independent parameters m1,m2 and λ. In the spontaneously
broken case one of the fields must be massless and the model has the original number of parameter
λ and m2 in spite of the fact that new interaction vertices have been generated by the shift of

the field. v is determined by v =
√

3m2
2

λ and c1 = v
(
λv2

6 − µ2
)

= 0.

There is an intuitive way of understanding the existence of a Goldstone boson from the fact
that the vacuum is not unique. Since the vacuum is a state of zero energy and momentum
different vacuum states can differ only by the presence of a Bose condensate i.e. the presence of
an unspecified number of quanta of zero energy and momentum. Such quanta are possible only
if there exist massless particles with the quantum numbers of the vacuum. In our example we
can understand intuitively that there will be one such type of Goldstone bosons. The different
possible values of < 0 | ϕ̂(x) | 0 >, lie on a circle of radius v. Each point on the circle correspond
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to a particular choice of the vacuum state. Thus there is one degree of freedom (motion along
the circle) by which different vacuum states may be connected, and hence one type of massless
bosons.

The curvature of the potential
(

∂2V

∂ϕi∂ϕk

)∣
∣
∣
∣
∣
ϕ̂=ϕ̂0

at the classical minimum actually represents the mass matrix of the system. If we diagonalize the
matrix we find an eigenvalue zero corresponding to zero curvature of the potential in direction
tangential to the ground state orbit.

A final remark may be in order here: we have shown in Subsec. 9.1 that the different degenerate
vacua carry physical Hilbert spaces which are totally orthogonal (inequivalent representations).
Thus the existence of the valley in the potential which seems to explain the come about of a
Goldstone boson as the mode which moves along the bottom of the valley is misleading. There
are no Goldstone bosons moving from one vacuum to another one. Note that all Goldstone
bosons move at the speed of light and carry some momentum. The fact that this momentum may
be arbitrarily small does not change the fact that there cannot be physical transitions between
different degenerate vacua. Similarly, if we consider a Heisenberg ferromagnet which has a net
spontaneous magnetization in a given direction (always in the thermodynamic limit, i.e., at infinite
volume ) the spin waves which correspond to the Goldstone excitations of course do not affect
(i.e., rotate ) the given ground state of the system.

Exercises: Section 9

① Discuss the symmetry breaking of SU(2)flavor (Isospin) and SU(3)flavor (Isospin and
Strangeness) in the spin 1/2 baryon octet. Comment the decays Σ0 → Λγ and Σ+ → pγ
and compare them to the strong decays Σ− → Λπ−(?) and Σ− → nπ−. Use the quark
model schema for the discussion.

② In the Goldstone model of spontaneous symmetry breaking two real fields ϕ̂ =
(ϕ1

ϕ2

)

interact

by the Lagrangian L = 1
2 (∂µϕ̂)2 + µ2

2 ϕ̂
2 − λ

4! ϕ̂
4. For µ2 > 0 let the ground state be given

by ϕ̂0 =
(0
v

)
, v > 0. Show that the curvature of the potential ∂2V

∂ϕi∂ϕk
at the ground state ϕ̂0

represents the mass matrix of the system.

③ Write down the Feynman rules for the Goldstone model (see Fig. 9.2).
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10 The Higgs mechanism

or

spontaneously broken local gauge symmetries

In Sec. 6 we learned that global symmetries on the one hand and local symmetries on the other
hand lead to very different physical consequences. Not surprisingly, therefore, the physics of
spontaneously broken symmetries also is very different for local and global symmetries. While for
global symmetries the Goldstone mechanism implies the existence of Goldstone bosons (massless
scalar particles) the analogue so called Higgs mechanism of spontaneously breaking a gauge
symmetry reveals that the corresponding “would be Goldstone bosons” are unphysical and can
be eliminated from the theory by a local gauge transformation. At the same time the spin 1
gauge bosons acquire a mass in a way which does not conflict with the renormalizability of the
theory. As we shall see, the number of gauge bosons which become massive is equal to the number
of scalars which become unphysical (Higgs ghosts). Since each massive spin 1 particle has one
additional degree of freedom (one longitudinal besides the two transversal ones) in comparison
with the massless case the number of physical degrees of freedom remains conserved when a
system undergoes a Higgs mechanism. The interesting property of the Higgs mechanism is that it
provides a tool which allows to generate masses of particles in Yang-Mills theories without spoiling
the renormalizability and without implying the existence of massless scalars. Such scalars have
never been observed in nature and hence are not acceptable in a realistic theory of elementary
particles.

Since the basic lesson about the Higgs mechanism physicists have learned from super conductivity
in condensed matter physics we will start our discussion with a brief account of the Ginzburg-
Landau model of a super-conductor before we consider the effect in a field theoretic context.

10.1 Superconductivity and the Meissner effect

Superconductivity (Kammerlingh Onnes, 1911) is always accompanied by the Meissner effect
(Meissner Ochsen feld, 1933) which is that electromagnetic fields must vanish inside a supercon-
ductor. This means that a mass is generated for the photon in a superconducting state. In a
normal conductor, like in the vacuum, local gauge invariance requires the photon to be massless
and hence the electromagnetic field to be long ranged. Below a critical temperature Tc (Curie
temperature) the electron-phonon (lattice vibrations of the solid) interactions lead to an effective
attractive interaction between electrons by exchange of virtual phonons (Fröhlich, 1950). In the
presence of an attractive interaction the Fermi sea which describes the ground state of a normal
metal (electron gas) is unstable against formation of bound states between electron pairs of op-
posite spin and equal total momentum for all pairs, no matter how weak the interaction (Cooper,
1950). According to Ginzburg-Landau (1950) a superconductor may be described by an order pa-
rameter Ψs(~r ) which describes the macroscopic wave function of the quantum mechanical ground

state. | Ψs(~r ) |2= ns(~r )
2 is the density of Cooper-pairs of electrons, i.e. ns(~r ) is the density of

superconducting electrons. At constant temperature the system is described by the free energy
F [Ψs] as a function of the order parameter. In the normal state ns ≡ 0 for all T > Tc . Since ns
vanishes as we approach Tc from below we may expand F [Ψs] in terms of Ψs and grad Ψs if we
are not to far below Tc . Because Ψs is a charged field (carrying charge e∗ = 2e and with mass
m∗ = 2me) F [Ψs] only can depend on ΨsΨ

∗
s . In addition, grad Ψs in the presence of a magnetic
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field ~B must enter in the form of a canonical momentum

h̄

i
~∇→ h̄

i
~∇− e∗

c
~A

where ~A is the vector potential. This guarantees a gauge invariant coupling between Ψs and ~A .
Accordingly, a stationary superconducting state is described by the Ginzburg-Landau Ansatz

F [Ψs] = Fn(T, 0) +

∫

d3r
~B2(~r )

8π

+

∫

d3r

(

a | Ψs |2 +
b

2
| Ψs |4 + . . .

)

+

∫

d3r

(

1

2m∗

∣
∣
∣
∣

(
h̄

i
~∇− e∗

c
~A(~r )

)

Ψs(~r )

∣
∣
∣
∣

2

+ . . .

)

with ~B = rot ~A . The first term is the normal metal contribution at vanishing ~B and the second
term is the magnetic field free energy. The ground state wave functions Ψs must be determined
such that F [Ψs] is at the minimum. This implies that Ψs must be a solution of the Ginzburg-
Landau equations. These are

i) the Maxwell equation

~js =
c

4π
rot ~B (which implies div~js ≡ 0)

for the superconducting current

~js =
e∗h̄

2m∗i
Ψ∗s
↔
∇ Ψs −

e∗2

m∗c
| Ψs |2 ~A(~r )

ii) the Schrödinger equation

(

~p 2

2m∗
+ b | Ψs |2

)

Ψs = −aΨs

with

~p =
h̄

i
~∇− e∗

c
~A.

Thus −a is the energy eigenvalue and b | Ψs |2 (b > 0) is a repulsive self–interaction potential
which forces Ψs to spread over the whole system. Ψs is a condensate wave function describing
the condensate of Cooper-pairs. By gauge invariance

~A→ ~A ′ = ~A+ ~∇χ(~r )

Ψs → Ψ′s = ei
e∗
h̄c
χ(~r )Ψs

of the free energy the phase ϕ of Ψs

Ψs =| Ψs | eiϕ

has no physical meaning. It may be arranged to vanish by a local gauge transformation.
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We are now ready to discuss the solutions of the Ginzburg-Landau equations. For the interior of
a superconductor we have ~B ≡ 0 and ns = constant. Thus for the free energy density f = F/V ,
V the volume of the system, we obtain

∆f = fs − fn = a | Ψs |2 +
b

2
| Ψs |4

with
(

a+ b | Ψs |2
)

Ψs = 0.

If a > 0 Ψs ≡ 0 and hence ns ≡ 0 i.e. the system is in a normal state. This occurs if T > Tc .
For T < Tc we must have a < 0 and the ground state is non-trivial:

| Ψs0 |2=
ns
2

= −a/b > 0

such that27

∆fmin = −a
2

2b
< 0

a) a < 0

6

-

∆f

a)

|Ψs|

b)

Re Ψs

-

b) a > 0

6

�
�

�
��	

∆f

Im Ψs

Fig. 10.1: Potential of the Ginzburg-Landau model a) in the
normal and b) in the superconducting phase.

The superconducting current then reads

~js = − e∗2

m∗c
| Ψs0 |2 ~A = −e

2ns
mc

~A

and hence we have

rot ~js = −e
2ns
mc

~B.

27If we apply an external magnetic field H then f gets increased by H2

8π
. At the critical field Hc =

H2
c

8π
= a2

2b
a

transition to the normal state takes place.
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Using the Maxwell equation rot ~B = 4π
c
~js we find

rot rot ~B = grad div ~B −∆ ~B =
4π

c
rot ~js = −4πnse

2

mc2
~B

and since div ~B = div rot ~A ≡ 0 this reads

∆ ~B =
1

λ2
L

~B

with

λL =

√

mc2

4πnse2

the London penetration depth (empirically λL ' 100 − 500
◦
A). This last equation exhibits the

Meissner effect of superconductivity i.e. the magnetic field gets expelled from the superconducting
state. At the boundary the field ~B is exponentially screened (see Exercise).

-�
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��	
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@
@
@@R

r
normal

&%
'$

���
6

@@I�
��	 ?
@@R

��)��r
superconducting

~B
λ

ϕmagn ∝ 1
r ; mγ = 0 ϕmagn ∝ e−r/λ

r ; mγ = h̄
λe ∝

√
ns

ns ∝ |ψ|2 6= 0

Weyl,Yang-Mills Yukawa

Fig. 10.2: The Meissner effect for a magnetic pole.

There is a contribution from ~B to the free energy in the superconducting state from the boundary
layer:

∆FBs =
1

8π

∫

d3r ~B2 =
1

8π

∫

d3r ~B rot ~A

Using div( ~B × ~A) = ~A rot ~B − ~B rot ~A and the fact that the integral over a divergence vanishes
(by partial integration) if no long ranged fields are present we obtain

∆FBs =
1

8π

∫

d3r ~A rot ~B =
1

2c

∫

d3r ~js ~A = − 1

8πλ2
L

∫

d3r ~A 2 .
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Here we have utilized the Maxwell equation for rot ~B and the explicit form for ~js . This result
is an alternative form of the Meissner effect. The “photon field” ~A in the superconducting phase
acquired a mass

mγ =
1√

4πλL
=

√

nse2

mc2

So far we have not shown that the Ginzburg-Landau superconductor exhibits infinite conductivity.
For completeness we briefly discuss also this basic property. Heuristically, ideal conductivity
follows from free (frictionless) motion

m
→̇
v= e ~E

of the superconducting electrons. By ~vs we denoted the average drift velocity and the supercon-
ducting current is

~js = ens~vs .

This implies the London equation

→̇
j=

nse
2

m
~E

and replaces Ohms law

~jn = σ ~E

with finite conductivity σ valid for a normal metal. For a normal conductor the electric field
energy is compensated by energy dissipation caused by friction (production of heat) which, using
~jn = ene~vn, implies

~vn =
σ

ene
~E = constant for ~E = constant

which describes a stationary current flow.

In the Ginzburg-Landau model ideal conductivity derives from the results given before and
Maxwell’s equations. We assume that external charges and currents are absent and also neglect

possible displacement currents proportional to
→̇
E . Then, the homogeneous Maxwell equations

div ~E = 0 , div ~B = 0

infer that ~E and ~B derive from a vector potential ~A

~E = −1

c

∂ ~A

∂t
, ~B = rot ~A

and we assume the London gauge

div ~A = 0

in order to determine ~A uniquely. Using our previous result

~js = −e
2ns
mc

~A
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and the inhomogeneous Maxwell equations

rot ~E = −1

c

→̇
B , rot ~B =

4π

c
~js

we obtain London’s equations (London, 1935)

→̇
j s=

nse
2

m
~E , rot~js = −nse

2

mc

~B .

These indeed exhibit infinite conductivity and the Meissner effect. Notice that both ~E and ~B get
exponentially screened at the phase boundary (see Exercise).

10.2 The Abelian Higgs model (gauged Goldstone model)

The Abelian Higgs model is a relativistic quantum field theory version of the Ginzburg-Landau
model of superconductivity and at the same time a local gauge symmetry version of the Goldstone
model discussed in Sec. 9.2.2 (Higgs, 1964, Englert, Brout, 1964). We consider a self–interacting
charged scalar field ϕ 6= ϕ∗ described by the Lagrangian

L = ∂µϕ
∗∂µϕ− V (ϕ∗ϕ) = ∂µϕ

∗∂µϕ + µ2ϕ∗ϕ− λ

3!
(ϕ∗ϕ)2

which is symmetric under global U(1)-transformations

ϕ(x)→ ϕ′(x) = eieωϕ(x) .

For the moment we assume µ2 = −m2 < 0 such that m is the mass of the field ϕ . Let us
now couple ϕ to a massless gauge field Aµ in a locally gauge invariant manner. As usual this is
achieved by performing a minimal substitution

∂µϕ(x)→ Dµϕ(x) = (∂µ − ieAµ(x))ϕ(x)

in the original Lagrangian and by adding a kinetic term for the gauge field. In this way we obtain
the Abelian Higgs model described by the Lagrangian

Linv = −1

4
FµνF

µν + (Dµϕ)∗(Dµϕ)− V (ϕ∗ϕ)

where Fµν = ∂µAν − ∂νAµ is the Abelian field strength tensor. By construction Linv is invariant
under local U(1)-transformations

Aµ(x) → A′µ(x) = Aµ(x)− ∂µω(x)

ϕ(x) → ϕ′(x) = eieω(x)ϕ(x) .

Let us now assume that µ2 > 0 . Then the ground state is characterized by a non-zero value of
ϕ . We may chose a gauge and a corresponding vacuum state such that

< 0 | ϕ(x) | 0 >=
v√
2

with v real and positive. The question now is what physical particles the model describes.
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On a classical level we may express the complex field in polar coordinates

ϕ(x) =
ρ(x)√

2
e−i

θ(x)
v ; ρ(x) = ρ′(x) + v

where ρ(x) and θ(x) are real scalar fields which take values in the ranges

ρ(x) ≥ 0 , 0 ≤ θ(x) < 2π .

The normalization by v in the exponential is needed in order to have the usual dimension for the
scalar field θ(x) .

In the new coordinates we have

ϕ∗ϕ =
ρ2

2

(Dµϕ)∗ (Dµϕ) =
1

2
(∂ρ)2 +

e2

2

(

Aµ +
1

ev
∂µθ

)2

ρ2

since the covariant derivative takes the form

Dµϕ = (∂µ − ieAµ)ϕ =
(∂µρ)√

2
e−i

θ
v − ie

(

Aµ +
1

ev
(∂µθ)

)
ρ√
2
e−i

θ
v .

The form of the Lagrangian now is

Linv = −1

4
FµνF

µν +
1

2

(
∂ρ′
)2

+
e2

2

(

Aµ +
1

ev
∂µθ

)2 (
ρ′ + v

)2 − V
(

(ρ′ + v)2

2

)

and, remarkably, the field θ only enters like gauge transforming Aµ . Indeed, since Linv is gauge
invariant, we may perform a gauge transformation

Aµ → Aµ −
1

ev
∂µθ

ϕ → ei
θ
vϕ =

ρ√
2

which eliminates θ completely from the Lagrangian. Notice that Fµν and ρ remain unaffected
by a gauge transformation. Consequently there exists a gauge where Linv can be represented in
terms of the two fields Aµ and ρ only.

Linv = −1

4
FµνF

µν +
1

2

(
∂ρ′
)2

+
e2v2

2
AµA

µ + e2vAµA
µρ′ +

e2

2
AµA

µρ
′2 − V

(

(ρ′ + v)2

2

)

.

This Lagrangian describes a massive spin 1 boson Aµ and a massive spin 0 boson, called Higgs
boson. The masses are

mA = ev , mρ =

√

λ

3
v

where the latter comes from V (ϕ∗ϕ) . The θ-field, the “would be” Goldstone boson, has disap-
peared from the physical spectrum. Somehow the field θ got absorbed by the gauge field Aµ,
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which acquired a mass and hence the extra (third) degree of freedom required for a massive spin 1
particle. Therefore the number of physical degrees of freedom has been conserved in the process.

The non-observability of the θ mode is reminiscent of the fact that in quantum mechanics the
phase of the wave function of a charged particle is not observable. In an arbitrary gauge θ is an
unphysical ghost particle, called a Higgs ghost. One can prove that there are no non-vanishing
transition matrix elements between θ-particle states and physical states.

The non-appearance of Goldstone bosons and the generation of a mass for the gauge bosons,
instead, is known as the Higgs mechanism. The Goldstone theorem no longer holds for gauged
symmetries.

So far our argumentation has been rather formal and mainly on the classical field theory level.
In quantum field theory the use of the polar decomposition of ϕ is problematic for two reasons.

Firstly, using non-polynomial fields like e−i
θ
v is in conflict with perturbative renormalizability

which only allows monomials of fields with dimension 4 at most in 4 space-time dimensions. In
our Abelian model this seems not to be a problem since L(A, ρ, θ) looks like to be renormalizable.
However, and this is the second problem, we do not know how to maintain the conditions ρ ≥ 0
and 0 ≤ θ < 2π which have to be satisfied by the classical fields. If we just treat ρ and θ as
normal real scalar fields (−∞ < ρ, θ < +∞) we are not sure that we are still talking about the
original model. We therefore will discuss the model in a more precise way in the following.

We proceed by following closely our discussion of the Goldstone model. We represent ϕ by a
linear transformation

ϕ =
1√
2

(ϕ1 + iϕ2)

in terms of two real fields ϕ1 and ϕ2 . For the fields ϕi (i = 1, 2) the U(1) transformations
correspond to O(2) rotations in the (ϕ1, ϕ2)-plain. Accordingly an infinitesimal local O(2) trans-
formation reads

Aµ → A′µ(x) = Aµ(x)− ∂µω(x)

ϕ1(x) → ϕ′1(x) = ϕ1(x) + eω(x)ϕ2(x)

ϕ2(x) → ϕ′2(x) = ϕ2(x)− eω(x)ϕ1(x) .

For µ2 > 0 we may chose the ground state (vacuum) such that 2

< 0 | ϕ1(x) | 0 >= 0 , < 0 | ϕ2(x) | 0 >= v > 0

and represent the Lagrangian in terms of

ϕ′1 = ϕ1 , ϕ′2 = ϕ2 − v .

To this end, we first notice that we may write

(Dµϕ)∗(Dµϕ) = ∂µϕ
∗∂µϕ− ĵµAµ =

1

2
(∂ϕ1)2 +

1

2
(∂ϕ2)2 − ĵµAµ

2In order to conform with our discussion of the Goldstone model we use a convention which differs by a phase
from the one used so far in this section.
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with3

ĵµ = −ie
{

ϕ∗
↔
∂µ ϕ− ieϕ∗ϕAµ

}

= eϕ1

↔
∂µ ϕ2 −

e2

2
Aµ
(

ϕ2
1 + ϕ2

2

)

Using this we easily evaluate Linv in terms of ϕ′1 and ϕ′2 .

The resulting L reads

Linv = −1

4
FµνF

µν +
m2
A

2
AµA

µ +
1

2
(∂ϕ′1)2 +

1

2
(∂ϕ′2)2 − m2

2

2
ϕ

′2
2

+evAµ∂
µϕ′1 +

e2

2
AµA

µ
(

ϕ
′2
1 + ϕ

′2
2

)

− eAµϕ′1
↔
∂µ ϕ′2

+evAµA
µϕ′2 −

λ

4!

(

ϕ
′2
1 + ϕ

′2
2

)2
− λv

2 3!

(

ϕ
′2
1 + ϕ

′2
2

)

ϕ′2

−c1ϕ′2 + c0

where m2, c1 and c0 are the same as in Sec. 9.2.2. As before Aµ now has a mass mA = ev and ϕ′2 is
the massive physical Higgs scalar. ϕ′1 is the “would be” Goldstone field (Higgs ghost). The crucial
difference between the Abelian Higgs model and the Goldstone model is the presence of the field
Aµ and the appearance of a mixing term Aµ∂

µϕ′1 in the bilinear part of the Lagrangian. Since the
latter is not diagonal in the fields Aµ, ϕ

′
2 and ϕ′1 we cannot yet write down the Feynman rules.

In any case we first have to fix a gauge for the vector potential Aµ . If we would chose simply the
linear covariant gauge ∂µA

µ = 0 and correspondingly add a gauge fixing term LGF = − 1
2ξ (∂µA

µ)2

to the invariant Lagrangian, as appropriate for QED, we still would be left with a non-diagonal
term in the bilinear part L0 of the Lagrangian which obscures the particle interpretation. We have
to modify the gauge condition in such a way that we achieve at the same time a diagonalization
of L0 . There is a unique linear covariant gauge condition, the t’Hooft gauge,

∂µA
µ(x) + ξmAϕ

′
1 = 0

which does the job. Indeed by adding the gauge fixing term

LGF = − 1

2ξ

(
∂µA

µ + ξevϕ′1
)2

= − 1

2ξ
(∂µA

µ)2 − ev∂µAµϕ′1 −
ξm2

A

2
ϕ

′2
1

for ξ an arbitrary gauge parameter we achieve:

3Notice that ĵµ is not the conserved Noether current. In any local gauge theory the latter is determined by the
divergence of the field strength tensor (Maxwell equation).

∂νF
νµ = jµ ↔ −∂ν ∂L

∂∂νAµ
= − ∂L

∂Aµ
.

This current is trivially conserved
∂µj

µ = ∂µ∂νF
µν = 0

because ∂µ∂ν is symmetric while F µν is antisymmetric. In our model we find

jµ = −ie
{

ϕ∗
↔
∂µ ϕ− 2ieAµϕ∗ϕ

}

= eϕ1

↔
∂µ ϕ2 − e2Aµ

(
ϕ2

1 + ϕ2
2

)

which differs from ĵµ by a factor 2 in the second term. This difference is due to the fact that the interaction is
not linear in Aµ as it is in QED for example.
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i) the standard term for fixing the gauge of the gauge field propagator

ii) by a partial integration in the action
∫
d4x L(x) :

−ev∂µAµϕ′1 = −evAµ∂µϕ′1

we precisely get the term needed to cancel the non-diagonal term present in Linv , and,

iii) as a result of the diagonalization, the field ϕ′1 acquires a mass m1 =
√
ξmA which however

is gauge dependent. This reveals that ϕ′1 cannot be a physical field because physics must
be gauge invariant and hence cannot depend on ξ .

Because our model is Abelian we do not need a Faddeev-Popov term. According to the Faddeev-
Popov construction, described in Sec. 8, we would get simply

LFP = ∂µη̄∂
µη ; (since cijk ≡ 0) .

i.e. the FP-ghost do not couple to any other field and hence are completely free ghosts and can
be ignored.

As a result the correct Lagrangian for the Abelian Higgs model is

Leff = Linv + LGF,

from which we can setup the Feynman rules in the standard manner. The diagonal bilinear terms
are given by

L0(A) =
1

2
Aµ

[(

2 +m2
A

)

gµν −
(

1− 1

ξ

)

∂µ∂ν
]

Aν

L0(ϕ′2) =
1

2
ϕ′2
[

−
(

2 +m2
2

)]

ϕ′2

L0(ϕ′1) =
1

2
ϕ′1
[

−
(

2 + ξm2
A

)]

ϕ′1

where we have performed the appropriate partial integrations.

The propagators, given by the inverses of the operators (kernels) in square brackets, are easily
determined in momentum space (see Sec. 8):

∆̃A
F (p, ξ)µν = −

(

gµν − (1− ξ) pµpν

p2 − ξm2
A

)

1

p2 −m2
A + iε

massive gauge boson propagator

∆̃
ϕ
′
2

F (p) =
1

p2 −m2
2 + iε

physical Higgs propagator

∆̃
ϕ
′
1

F (p) =
1

p2 − ξm1
A + iε

unphysical Higgs ghost propagator
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Physical quantities must be gauge invariant and hence cannot depend on the gauge parameter ξ .
In particular we may consider the limit ξ →∞ . In this limit the A-propagator takes the form

−
(

gµν − pµpν

m2
A

)

1

p2 −m2
A + iε

which describes a physical massive spin 1 boson. At the same time the ghost field ϕ ′1 becomes
infinitely heavy and thus freezes out from the dynamics. Therefore the gauge ξ → ∞ is called
the physical or unitary gauge. In this gauge ghosts are absent and massive spin 1 particles
are described by the standard physical propagators (as listed in the Appendix to Sec. 2).

Our discussion of the quantization of the model confirms the physical interpretation we found
earlier by heuristic arguments on the classical level.

One problem remains to be mentioned. In the unitary gauge we loose renormalizability because
in this gauge the A-propagators, for p2 → ∞, behaves like O(1) and not like O(p−2) as it is
necessary for a field theory to be renormalizable. We notice that for any finite ξ the A-propagator
behaves as O(p−2) and one indeed can prove that the model is renormalizable. The gauges with
finite ξ therefore are called renormalizable gauges. In order to be able to control the high
energy (ultraviolet) behavior calculations of higher order effects (loops) must be performed in a
renormalizable gauge. Since physical quantities like S-matrix elements are gauge independent
(this one can prove) we know that they are independent of the gauge parameter ξ . Thus, for
physical quantities a calculation performed in a renormalizable gauge yields the same answer we
would obtain in the unitary gauge. This means that we are able to control at the same time
renormalizability and unitarity of the model.

10.3 Higgs mechanism for Yang-Mills theories (Higgs-Kibble mechanism)

In this chapter we briefly illustrate the Higgs mechanism for non-Abelian theories (Kibble, 1967).
As an example we consider a model with the symmetry group SU(2) which will play a central role
in the standard model of electroweak interactions (mass generation for the weak gauge bosons).

Let us consider a SU(2)-doublet of complex scalar fields (Higgs field) with hypercharge Y = +1 :

Φb =




ϕ+

ϕ0





where the charge assignment follows from the Gell-Mann Nishijima relation Q = T3 + Y
2 . We

also define a Y -charge conjugate field with hypercharge Y = −1 :

Φt = iτ2Φ∗b =




0 1

−1 0








ϕ−

ϕ∗0



 =




ϕ∗0

−ϕ−





where ϕ− = (ϕ+)∗ . In terms of the matrix

φ̃ = (Φt,Φb) =




ϕ∗0 ϕ+

−ϕ− ϕ0





we may represent the doublet fields as

Φb = φ̃χb , Φt = φ̃χt
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with isospinor basis vectors

χb =




0

1



 , χt =




1

0



 .

We also may write φ̃ in terms of real fields H and ϕi (i = 1, 2, 3)

φ̃ =
1√
2

( 1H + iτiϕi) =







H+iϕ3√
2

iϕ1−iϕ2√
2

iϕ1+iϕ2√
2

H−iϕ3√
2






.

By 1 we denoted the 2 × 2 unit matrix, τi are the Pauli matrices. The real and the complex
representation are related by

ϕ+ = i
ϕ1 − iϕ2√

2
, ϕ0 =

H − iϕ√
2

, ϕ = ϕ3 .

The matrix field φ̃ has the following important properties:

φ̃φ̃+ = φ̃+φ̃ = S · 1
Det φ̃ = Det φ̃+ = S

with S = ϕ+ϕ− + ϕ∗0ϕ0 .

We notice that the singlet field S is given by

S = Φ+
b Φb = ϕ+ϕ− + ϕ∗0ϕ0 = ϕ+ϕ− +

1

2
ϕ2 +

1

2
H2.

Now let us suppose that Φb has a non-vanishing vacuum expectation value

< 0 | Φb | 0 >= Φ0 =
v√
2




0

1





which is equivalent to

< 0 | H | 0 >= v ; < ϕi >= 0 .

In this case (Higgs phase) Φ+
b Φb has a classical positive background term

S =
v2

2
(1 + X )

where

X = 2
H ′

v
+
H

′2 + ϕ2

v2
+ 2

ϕ+ϕ−

v2
; H ′ = H − v , < 0 | H ′ | 0 >= 0 .

The fields in S appear as a perturbation (quantum fluctuations) about the classical background
field and in ReS > 0 analytic functions F (S), like S−1,

√
S or 1/

√
S are well defined as pertur-

bation series in v−1 (in the standard model of electroweak interactions v−2 =
√

2Gµ where Gµ is
the weak interaction Fermi constant).
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In this sense the matrix field

Ũ =
φ̃√
S

is well defined and has the property

Ũ Ũ+ = Ũ+Ũ = 1 , Det Ũ = Det Ũ+ = 1

which infers that Ũ is an SU(2) matrix which we may write as

Ũ = ei
τi
2

θi
v

with three real fields θi . As a result we find the representation

Φb = Ũ
ρ′ + v√

2
χb ; Φ+

b Φb =
(ρ′ + v)2

2

for the Higgs doublet field.28

After this formal digression we are going to discuss the physics of the global and local SU(2)
Higgs model. We first study the Goldstone model with Lagrangian

L = (∂µΦb)
+ (∂µΦb)− V

(

Φ+
b Φb

)

= (∂µΦb)
+ (∂µΦb) + µ2Φ+

b Φb − λ
(

Φ+
b Φb

)2

exhibiting global SU(2) invariance

Φb(x)→ Φb(x) = ei
τi
2
ωiΦ(x) .

If µ2 > 0 the symmetry is spontaneously broken and we chose the ground state such that Φb has
the vacuum expectation value Φ0 given above. Our main interest again is the mass spectrum of
the model. The square mass matrix is given by

M2
ik =

(

∂2V

∂ϕi∂ϕk

)∣
∣
∣
∣
∣
Φb=Φ0

.

Since V is already diagonal in the fields (depending on Φ+
b Φb only) it can be evaluated easily.

For the ground state V |Φb=Φ0
is at the minimum and therefore

∂V

∂ϕi
=

∂V

∂
(

Φ+
b Φb

)

∂
(

Φ+
b Φb

)

∂ϕi
=
(

2λΦ+
b Φb − µ2

)

ϕ̃i

at Φb = Φ0 must vanish. This implies that the first factor must vanish for Φb = Φ0, since for
ϕ̃i = H the second factor is non-zero. Thus µ2 takes the value µ2 = λv2 . Then

∂2V

∂ϕk∂ϕi

∣
∣
∣
∣
∣
∣
∣
∣
∣ Φb = Φ0

= 2λϕ̃kϕ̃i

∣
∣
∣
∣
∣
∣
∣
∣
∣
ϕi=0 , H=v

=







2λv2 = m2
H ; ϕi = ϕk = H

0 ; otherwise

28By expanding the exponential and utilizing the properties of the Pauli matrices one finds

H ′ + v = (ρ′ + v) cos
θ

2v
; ϕi = (ρ′ + v)

θi
v

sin
θ

2v

with θ =
√
θiθi .
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Thus, as ascertained by the Goldstone theorem, the model exhibits 3 Goldstone bosons ϕ± and
ϕ and a massive neutral scalar H with mass m2

H = 2λv2 . The situation dramatically changes if
we “gauge” the symmetry. If we couple Φb in a locally gauge invariant way to SU(2) Yang-Mills
fields we have

Linv = −1

4
WaµνW

µν
a + (DµΦb)

+ (DµΦb)− V
(

Φ+
b Φb

)

as a resulting Lagrangian. Waµν is the non-Abelian field-strength tensor

Waµν = ∂µWaν − ∂νWaµ + gεabcWbµWcν

and

DµΦb =

(

∂µ − ig
τa
2
Waµ

)

Φb

the covariant derivative of the Higgs field.

Using the result we have derived at the beginning of this chapter, we may write the Higgs field
in the form

Φb = ei
τi
2

θi
v
ρ′ + v√

2




0

1




.

This representation tells us that Φb is a local gauge transform of

Φu
b =

ρ′ + v√
2




0

1





with SU(2) transformation matrix

Ũ(θ) = ei
τi
2

θi
v .

With other words by a local gauge transformation

Φb → Φu
b = Ũ+(θ)Φb

Waµτa →W u
aµτa = Ũ+(θ)WaµτaŨ(θ) +

2i

g
Ũ+(θ)∂µŨ(θ) ,

which leaves the Lagrangian invariant (see Sec. 6.2), the fields θi can be eliminated completely
from the invariant Lagrangian. The Yang-Mills term WaµνW

µν
a reads the same in terms of the

new (unitary gauge) fields W u
aµ . The Higgs potential now depends on one single field, the ρ-field,

V
(

Φ+
b Φb

)

= V
(

(ρ′+v)2

2

)

and provides the mass and the self-interactions. The most interesting

change shows up in the Higgs “kinetic” term:

(DµΦu
b )+ (DµΦu

b ) =
1

2
(0, 1)

(

∂µρ
′ + ig

τa
2
Waµ

(
ρ′ + v

)
)(

∂µρ′ − ig τb
2
W µ
b

(
ρ′ + v

)
)



0

1





=
1

2

(
∂ρ′
)2

+
g2

8
(ρ′ + v)2WaµW

µ
a
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exhibiting a mass term for the triplet of Yang-Mills fields 29. Again the mass term

M2
W

2
WaµW

µ
a =

g2v2

8
WaµW

µ
a

is generated owing to the presence of a vacuum condensate v and the mass is given by

MW =
gv

2
.

The triplet of massive gauge bosons exhibits three additional degrees of freedom, while the three
scalars θi (the would-be Goldstone bosons) have disappeared from the physical spectrum. We
notice that the component of the Higgs doublet which picks the non-vanishing vacuum expectation
value always describes a physical massive spin 0 boson, the physical Higgs boson. Such a particle
so far has not been found in nature. This means that, provided it exists at all, it must be heavy
enough such that its production was not possible up to presently accessible energies.

As a result we have learned that in the Higgs phase (v > 0) there exists a gauge, the physical
or unitary gauge, for which the invariant Lagrangian takes a particularly simple and physically
transparent (ghost free) form.

Linv = −1

4
WaµνW

µν
a +

M2
W

2
WaµW

µ
a

+
M2
W

v
HWaµW

µ
a +

M2
W

v2
H2WaµW

µ
a

+
1

2
(∂H)2 − m2

H

2
H2 − λ

4
H4 − λvH3

where we dropped the constant term λv4

4 . H denotes the physical Higgs (denoted by ρ′ so far).
Another novel feature of models in the Higgs phase is that masses and couplings are no longer
independent parameters. We now have typical mass-couplings relationships

MW =
gv

2
, mH =

√
2λv .

In the unbroken phase µ2 < 0 , v = 0 we have the independent parameters

g, λ,m2 = −µ2

and the model describes 3 massless gauge bosons and 4 physical scalars of equal mass m . In
contrast, in the Higgs phase, where 3 massive gauge bosons and one massive physical scalar are
present, the independent parameters are

g, λ, v =

√

µ2

λ
or MW ,mH =

√

2µ2 , v .

The effect of the Higgs mechanism may be summarized as follows:

29We have used

τaτbWaµW
µ
b =

1

2
{τa, τb}WaµW

µ
b = δabWaµW

µ
b .

Notice that the mixed term (∂µρ
′)W µ

a drops out.
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i) it generates the mass of the gauge bosons

ii) it implies the existence of a Higgs boson the mass of which is a free parameter (equivalent
to the scalar self coupling of the Higgs potential)

iii) the Higgs boson acts as a “physical cut-off” for the massive vector boson gauge theory
which without the Higgs would not be renormalizable.

iv) it implies mass-couplings relationships which can be tested experimentally since the masses
and couplings can be determined independently.

For the standard model of electroweak interactions besides the SU(2) also the weak hypercharge
U(1)Y will be a local symmetry. This will complicate matters slightly. In addition also the
fermion masses will be generated by the Higgs mechanism.

Exercises: Section 10

② Solve ∆ ~B = 1
λ2
L

~B for a boundary between a normal state in the half-space x < 0 and a super

conducting state in the complementary half-space x ≥ 0 . In the normal state an external
magnetic field ~H parallel to the positive z-axis is applied. How does the superconducting

current look like? Also discuss the electric field ~E = 4π
c2
λ2
L
~̇js present if ~H varies with time.

1. (see Sec. 10.3) The SU(2) triplet of gauge fields Waµ do not carry hypercharge. Use
Q = T3 + Y

2 to show that

W+
µ =

W1µ − iW2µ√
2

, W 0
µ = W3µ

carry electrical charge +1 and 0, respectively. Hint: Use the commutation relation

[T3, T±] = ±T± , T± = T1 ± iT2

of the generators Ti = τi
2 of SU(2) .

2. (see Sec. 10.3) Evaluate (DµΦb)
+ (DµΦb) in terms of ϕ±, ϕ and H ′ = H−v (for non-unitary

gauges) and discuss the result. Determine the gauge fixing function

Ca = ∂µW
µ
a + . . .

and add

LGF = − 1

2ξ
C2
a

to Linv in such a way that the bilinear part

Linv + LGF = L0 + Lint

is diagonal in the fields. Discuss the particle spectrum of the model.

221



11 Weak interactions at low energies

11.1 Introduction

The history of the theory of weak interaction processes started around 1930 at a time when
the photon (γ) (Einstein 1905) the electron (e−) (Wiechert, Thomas) and the proton (p) (H-
atom) were the only known elementary particles. These together with their antiparticles and
the neutrinos are all the stable particles we know. It was not known at that time that nuclei
contain besides protons also neutrons. Weak processes had to do with decays, the only known
weak processes were β–decays, like

6He→6 Li + e− + missing energy ,

were very puzzling for the following reason. The observed α– and γ–spectra of nuclei are discrete,
which tells us that the nuclear states are discrete. Therefore one expected the electrons from
β–decays to be mono-energetic with energy

Ee ' ∆ = (Mi −Mf ) c2

determined by the mass difference between the initial (i) and final (f) nuclei. Note that, for a
two body decay, in the CM frame (where ~pf = −~pe)

Ekin
f =

~p 2
e

2Mf
� Ee +

√

~p 2
e +m2

e

the kinetic energy of the final nucleus is completely negligible. In contrast to these theoretical
expectations, experimentally a continuous electron energy spectrum with Emax

e ' ∆ was observed
(Chadwick 1914). In addition to this crisis of energy conservation also angular momentum
conservation was in conflict since in 6He→6 Li + e− the nuclear spin of 6He is J = 0 while 6Li
has J = 1. This lead Pauli to propose the existence of a neutral very light fermion, later called
the neutrino, and to explain the β–decays as three body decays, for our example,

6He→6 Li + e− + ν̄e ,

where ν̄e escapes observation. After the discovery of the neutron (n) by Chadwick in 1932 it
became clear that nuclear β–decay was related to neutron β–decay

n→ p+ e− + ν̄e

which is a four fermion process. For free nucleons the crossed reaction

p→ n+ e+ + νe
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is forbidden kinematically (Mn > Mp), it can take place inside a nucleus (K-capture), as for
example, 10C →10 B∗ + e+ + νe.

In 1934 Fermi proposed a four fermion theory of β–decay in close analogy to a four fermion
effective interaction in QED. In QED the transition matrix element for a four fermion process
like Coulomb scattering of a proton and an electron

p+ e− → p+ e−

is given, in the Feynman gauge, by

T = e2 (ūpγµup)

(

−gµν
q2

)

(ūeγνue)

which, in the one-photon exchange approximation, exhibits a current–current form of effective
interaction described by an effective Lagrangian

Leff
QED ' −

e2

q2
j(p)
µ em j(p)µ

em .

Fermi postulated that weak interaction responsible for β–decay is of an analogous form, however,
short ranged i.e. it has no propagator. The matrix element for the reaction then Eq. 11.1 reads

T =
GF√

2
(ūpγµup) (ūeγ

µue)

which derives from an effective interaction Lagrangian

Leff
weak =

GF√
2

(

ψ̄pγµψn
) (

ψ̄eγ
µψνe

)

obtained by replacing the spinors by the corresponding fields. In contrast to the electromagnetic
current ψ̄eγµψe, which is electrically neutral in that it creates or destroys an e+e−–pair or destroys
and recreates an electron etc., the weak current

J+
µ hadron = ψ̄pγµψn

in β–decay is a charged current (CC) carries charge 1, in units of the positron charge, as it
destroys a neutron and creates a proton. The Hermitean conjugate current

Jµ ≡ J−µ =
(

J+
µ

)+
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is

J−µ hadron = ψ̄nγµψp

and destroys one unit of charge. For the leptons, similarly, we have

J+
µ lepton = ψ̄νeγµψe

such that we may write the Fermi Lagrangian in the form

Leff
weak =

GF√
2

(

J+
µ hadron(x) Jµlepton(x) + h.c.

)

where the Hermitean conjugate (h.c.) term describes inverse β–decay . While the individual
currents do not conserve the charge the Lagrangian does. The interaction must have overall
charge conservation and it must be a Lorentz scalar.

In 1936 Anderson and Neddermeyer discovered the muon....

From the investigations of nuclear β–decay it soon became clear the the Fermi theory was not
able to explain all the β–decays . Subsequently the Fermi Ansatz was generalized (Gamow, Teller
and others) to the most general form of a four fermion interaction

Leff
weak = GF√

2

∑

i { ci
(
ψ̄1Γiψ2

) (
ψ̄3Γiψ4

)

+ c′i
(
ψ̄1Γiψ2

) (
ψ̄3Γiγ5ψ4

)

+ h.c. }

with

Γi = {1, γµ, σµν , γµγ5, iγ5}

a basis of 4 × 4 matrices. By σµν = i
2 [γµ, γν ] as usual we denote the antisymmetric tensor. The

matrices Γi have the Hermitecity property Γi = γ0Γi+γ0 such that ψ̄Γiψ is Hermitean and the
transforms under L–transformations as scalar (S), vector (V), tensor (T), axial vector (A)
and pseudoscalar (P), respectively. The couplings S, V and T are parity even the couplings A
and P are parity odd.

Before 1957 the physics community was taking parity and time reversal invariance for granted
and the requirement of these symmetries leads to

P invariance : ci, c
′
i real

T invariance : c′i = 0

The existence of parity violating weak interactions was proposed by Lee and Yang in 1956 to
solve the so called θ–τ puzzle. At that time there apparently existed two strange particles, which
were called θ and τ , and decayed as

θ± → π± + π0 , τ± → π± + π+π−

which had identical mass and lifetime, close to the values known for the K 0, and identical quantum
numbers except from their opposite intrinsic parities. This follows from the observation that both
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decays lead to a zero angular momentum state and by the fact that the pions are spin zero particles
with negative intrinsic parity. Lee and Yang pointed out the possibility to identify

θ± ≡ τ± ≡ K±

if weak interactions do not preserve parity. The crucial experiment performed by Wu in 1957 was
the study of the decay of polarized

60Co→60 N∗i + e− + ν̄e

revealed that parity indeed was violated maximally, with equal strength of parity conserving and
parity violating interactions. The result could be interpreted in such a way that only left handed
neutrinos exist:

ψν → ψνL =
1− γ5

2
ψν

This two component theory of the neutrino or Weyl fermion theory (Weyl 1929) was proposed
in 1957 independently by Salam, Landau and Lee and Yang. In 1958 Marshak and Sudarshan,
Feynman and Gell–Mann, Sakurai and Theis independently showed that a vector minus axial–
vector form of the charge changing weak current, the so called V–A interaction, was able to
explain all experimental facts.

As a matter of fact 24 years of intense activities in weak interaction physics revealed that a
“simple” modification, V → V–A of the 1934 Fermi theory was the right answer. Thus the
effective charge changing weak interaction Lagrangian reads

Leff
weak =

GF√
2
J+
µ (x) Jµ(x)

where the current has a leptonic and a hadronic piece of the V–A form

Jµ = Jµ lepton + Jµ hadron

with

Jµ lepton = ψ̄eγµ (1− γ5) ψνe ψ̄µγµ (1− γ5) ψνµ + · · ·
Jµ hadron =

This Lagrangian describes at the same time processes like µ–decay

µ→ e− + ν̄e + νµ

and β–decay . It exhibits e− µ universality and µ− β universality (Gβ ' Gµ). The existence of
the neutrino was experimentally established in the reaction

ν̄e + p→ n+ e+
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by Reines and Cowens in 1953. Experiments with νµ’s from π–decays

π− → µ− + νµ

??→ e−ν̄e + νµ

showed that

νµ + Z → (Z + 1) + µ−

takes place, while

νµ + Z 6→ (Z + 1) + e−

is not found. Here Z is a nucleus with Z protons and N neutrons and (Z + 1) is a nucleus with
Z+1 protons and N-1 neutrons. This proves that

νµ 6= νe !

In addition the reaction

µ→ e+ γ

was never found, which leads to the conclusion that , within experimental limits, there exist
conserved lepton numbers Le and Lµ.

The validity of the V–A hypothesis (µ− β universality) for the hadronic current which includes
no neutrino and therefore cannot be “explained” just by the absence of the right handed νR’s in
Nature was clarified by the investigation of the purely hadronic parity violating reaction

Λ0 → p+ π− .

11.2 µ–decay

A detailed investigation of the µ–decay

µ−(p0, n0) → e−(p1, n1) + ν̄E(p2) + νµ(p3)

is particularly tricky and challenging due to the fact that the two neutrinos escape any direct ob-
servation such that all information we can have must be derived from the electron spectrum. The
pi denote the particle momenta and the ni possible polarization vectors. Thus all experimental
information must derive from

dΓ =
1

2mµ

(2π)4

(2π)6
dµ(p1)

∫
d3p2

2E2

d3p3

2E3
δ(4)(Q− p2 − p3)

∑

r2,r3

|T |2

with both neutrinos integrated out and summed over the spins. We will see that for massless
neutrinos the square of the matrix element T is proportional to p2ρp3σ

∑

r2,r3

|T |2 = p2ρp3σF
ρσ(p0, p1, n0, n1)
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such that the integral over the two neutrinos may be performed independent of the form of the
interaction. One obtains

(2π)2 Iρσ =

∫
d3p2

2E2

d3p3

2E3
δ(4)(Q− p2 − p3) p2ρp3σ

=

∫
d3p2

2|~p2|
1

2| ~Q− ~p2|
δ(Q0 − |~p2| − | ~Q− ~p2|) p2ρ(Q− p2)σ

=
π

24

(

Q2gρσ + 2QρQσ
)

such that I is a symmetric tensor:

Iρσ = Iσρ .

The matrix element can be easily calculated. The relevant part of the effective Lagrangian reads

Leff,int = − G√
2

(ēγα (1− γ5) νe) (ν̄µγα (1− γ5) µ)

and thus

T = out< e−, ν̄eνµ|µ− >in
=

G√
2

(ūeγ
α (1− γ5) vνe)

(
ūνµγα (1− γ5) uµ

)

and

T ∗ =
G√

2

(

v̄νeγ
β (1− γ5) ue

) (

ūµγβ (1− γ5) uνµ
)

The transition probability is thus proportional to

|T |2 =
G2

2
ūeγ

α (1− γ5) vνe v̄νeγ
β (1− γ5) ueūνµγα (1− γ5) uµūµγβ (1− γ5) uνµ

11.3 Neutrino scattering, and the weak mixing angle.

Exercises: Section 11

① XX

② In the Fermi type model of low energy effective weak interactions, the weak interaction
Lagrangian for charged current (cc) processes is

Leff,int = −GF√
2
J+
µ J

µ−

where

J2
µ = Σν̄l(x)γµ (1− γ5) l(x) + hadronic terms

l = e, µ, τ
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is the charged SU(2)L current. l(x) and νl(x) are the Dirac fields describing a lepton l
and its neutrino ν : k, respectively. Calculate, within this model, the µ-decay rate for
unpolarized states:

µ−(p0)→ e−(p1) + ν̄l(p2) + νµ(p3).

Use

dΓ =
1

2mµ

1

(2π)2
dµ(p1)

∫
d3p2

2E2

∫
d3p3

2E3
δ(4) (Q− p2 − p3)×

∑

spins

| T |2

where Q = p0 − p1.
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12 Chiral transformations, chiral symmetry and the axial-vector
anomaly

12.1 Chiral fields and the U(1)-axial current

In the zero mass limit a free Dirac particle decouples into two chiral states described by the Weyl
fields ψL and ψR. This becomes evident if we write the free Dirac Lagrangian in terms of ψL and
ψR : ψ = ψL + ψR

30

L = ψ̄iγµ∂µψ −mψ̄ψ
= ψ̄Liγ

µ∂µψL + ψ̄Riγ
µ∂µψR −m

(

ψ̄LψR + ψ̄RψL
)

If m = 0 we observe that L decomposes into two independent Lagrangians for the fields ψL and
ψR. In this case L is not only invariant under global phase transformations

ψ → eiαψ ; eiα ∈ U(1)V vector group

(infinitesimal: δψ = iαψ, δψ̄ = −iαψ̄) but also under global chiral transformations

ψ → eiβγ5ψ ; eiβγ5 ∈ U(1)A axial group

(infinitesimal: δψ = iβγ5ψ, δψ̄ = iβψ̄γ5; note the change of sign for δψ̄!). Since

γ5 ψL = −ψL , γ5 ψR = ψR

the chiral transformation for the fields ψL and ψR reads:

ψL → eiβγ5ψL = e−iβψL
ψR → eiβγ5ψR = e iβψR

and hence the “chiral” fields transform with opposite chirality (handedness). The conserved
Noether currents

jµ(x) = −
{

δψ̄

δω

∂L
∂∂µψ̄

+
∂L
∂∂µψ

δψ

δω

}

for the U(1)V ⊗ U(1)A symmetry group are the vector current
(
δψ
δω = iψ

)
31

jµ = ψ̄γµψ ; ∂µj
µ = 0

30Remember: γ5 is Hermitian and anticommutes with all γ-matrices. Therefore Π± = (1 ± γ5)/2 are Hermitian
projection operators: Π+ + Π− = 1 , Π2

± = Π± , Π+Π− = Π−Π+ = 0 . Since by definition ψL = Π−ψ
and ψR = Π+ψ we have ψ̄L = ψ+

L γ
0 = ψ+Π−γ

0 = ψ+γ0Π+ = ψ̄Π+ and similarly ψ̄R = ψ̄Π− . Therefore
ψ̄Lγ

µψR = ψ̄Rγ
µψL = 0 and ψ̄LψL = ψ̄RψR = 0 .

31For massive fields and charged (non-diagonal) currents jµ = ψ̄1γ
µψ2 and jµ5 = ψ̄1γ

µγ5ψ2 the divergences of
the currents can be easily calculated for free fields: By the Dirac equation γµ∂µψi = −imiψi , ∂µψ̄iγ

µ = imiψ̄i

and hence
∂µj

µ =
(
∂µψ̄1

)
γµψ2 + ψ̄1γ

µ (∂µψ2) = i(m1 −m2)ψ̄1ψ2

and
∂µj

µ
5 =

(
∂µψ̄1

)
γµγ5ψ2 + ψ̄1γ

µγ5 (∂µψ2) = i(m1 +m2)ψ̄1γ5ψ2 .

Thus jµ is conserved only if m1 = m2 , for jµ5 to be conserved we must require m1 = m2 = 0 .
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and the axial-vector current
(
δψ
δω = iγ5ψ

)

jµ5 = ψ̄γµγ5ψ ; ∂µj
µ
5 = 0 .

Both vectors V µ = ψ̄γµψ and axial vectors Aµ = ψ̄γµγ5ψ are invariant under chiral transforma-
tions whereas scalars S = ψ̄ψ , pseudoscalars P = iψ̄γ5ψ and tensors T µν = ψ̄σµνψ are not.

Now, suppose that ψ describes a massless charged Dirac particle which couples to photons. The
massless QED Lagrangian

L = ψ̄γµ (∂µ − ieAµ)ψ

formally still looks chirally invariant. In fact, however, global chiral symmetry is broken now by
the axial-vector anomaly (Adler, Bell and Jackiw, 1969)

∂µj
µ
5 =

e2

8π2
F̃µνF

µν 6= 0 (12.1)

where F µν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor and F̃µν = 1
2εµνρσF

ρσ its
dual pseudotensor (parity odd). The pseudoscalar density is a divergence of a gauge dependent
pseudovector

F̃µνF
µν = ∂µKµ ; Kµ = 2εµρνσA

ρ∂νAσ. (12.2)

This anomaly is a quantum effect which cannot be removed. In particular it cannot be compen-
sated by adding a counterterm to the Lagrangian which would restore the symmetry. For QED
the non-conservation of the jµ5 current poses no problems because photons do not couple to an
axial-vector current. For gauge theories for which gauge fields couple to axial-vector currents
γ5-anomalies are disastrous. If they are present they destroy renormalizability and unitarity. The
problems are evident if we consider, for example, the Abelian subgroup U(1)Y of hypercharge Y
of the electroweak standard model. The latter is not parity conserving and thus does not treat
left-handed and right-handed fields in a democratic way. As we shall see in Sec. 13, the leptonic
hypercharge current has the form

jµY =
1

2

(¯̀
Lγ

µ`L + ν̄`Lγ
µν`L

)
+ ¯̀

Rγ
µ`R

where ` denotes a lepton field and ν` its associated neutrino field. This current contributes to the
action a term

A(Y )
int = g′

∫

d4x jµY (x)Bµ(x) .

Bµ is the U(1)Y gauge field and g′ the corresponding gauge coupling. Under a local gauge
transformation

Bµ(x)→ B′µ(x) = Bµ(x)− ∂µω(x)

the action changes by

δA(Y )
int = −g′

∫

d4x jµY (x) ∂µω(x)

and after a partial integration

δA(Y )
int = −g′

∫

d4x (∂µj
µ
Y (x)) ω(x)
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we see that the action cannot be gauge invariant unless the current is conserved. In fact

(∂µj
µ
Y (x)) 6= 0

has an anomaly as we shall see below. In any case, for a gauge theory in order to be renormal-
izable we must make sure that axial anomalies are absent. For QED and QCD, which are parity
conserving, anomalies are absent because the gauge fields couple to vector currents only. The
SU(2)L⊗U(1)Y electroweak theory is not anomaly save. It can be rendered renormalizable only
by anomaly cancellation between leptons and quarks. This leads to lepton-quark duality:
the electroweak standard model is renormalizable only if fermions appear in lepton-quark families.

12.2 The chiral group U(n)V ⊗ U(n)A

In general we have to consider currents associated with non-Abelian symmetries. What we said
about Abelian models carries over to the non-Abelian ones. Of particular interest is the so called
chiral group

GF = U(NF )V ⊗ U(NF )A ' SU(NF )V ⊗ SU(NF )A ⊗ U(1)V ⊗ U(1)A

with NF the number of quark flavors. As we know the pions have odd inner parity which means
that an effective pion field has the transformation properties of a SU(2)I -triplet

~π(x) = Ψ̄iγ5~τ

2
Ψ(x) ; Ψ '




p

n





where Ψ is a SU(2)I -doublet of fermions with the quantum numbers of the nucleons, as indicated.
This shows that although QCD is parity conserving non-trivial chiral properties are crucial in
the theory of strong interaction. QCD distinguishes between leptons (which do not participate in
strong interactions) and colored triplets of quarks and antiquarks it does not distinguish between
different flavors however. Strong interactions therefore exhibit a flavor symmetry. For free quarks
known are the f=u, d, c, s, t and b (6 flavors) quarks which show up in three colors each c=red
(r), green (g) and blue(b), we have a Lagrangian

Lq =
6∑

f=1

3∑

c=1

(
ψ̄cf i γ

µ∂µψcf −mf ψ̄cfψcf
)

To the extend that we can neglect the quark masses this Lagrangian has a global U(18)V ⊗U(18)A
symmetry. If strong interaction is switched on by the minimal substitution

∂µ → Dµ = ∂µδcc′ − igs
(
λi
2

)

cc′
Giµ ,

where the gauge fields Giµ (i = 1, . . . , 8) are called gluons, gs is the QCD coupling constant and
the λi are the Gell-Mann matrices (see Sec. 5), the subgroup SU(3)c of color is promoted to a
local symmetry. QCD requires the quark masses to be degenerate in color space. Again, provided
we discard quark masses, there is a symmetry flavor symmetry

[GF , SU(3)c] = 0

where NF = 6. As we increase the number of flavors from NF = 2 to 6, the above symmetry is
broken more and more by increasingly heavy quark masses
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quark flavor u d s c b t

mass (MeV) ∼5 ∼9 190 1650 4750 174200

In practice at a given energy scale only those flavors are effective in a physical process which
have masses lower than the given energy. Degrees of freedom with masses heavier than the given
energy scale do not influence the which means that the flavor symmetry is preserved the better
the lower the number of flavors is which participate in a given physical process.

In the following we will discuss the general condition for anomaly freedom of a theory.

In perturbation theory the axial anomaly shows up in closed fermion loops with an odd number
of axial-vector couplings if a non-vanishing γ5-odd trace of γ-matrices like 32

Tr (γµγνγργσγ5) = 4iεµνρσ

p1 p2

−(p1 + p2)

k

k + p1 k − p2

igγµTi igγνTj

γλγ5Tk

Figure 5. 5: Triangle diagram exhibiting the axial anomaly

is involved and if the corresponding Feynman integral is not ultraviolet convergent such that it
requires regularization. The simplest diagram exhibiting the axial anomaly is the triangle diagram
(see Fig. 5) which leads to the amplitude (1st diagram)

T̃ µνλijk (p1, p2) = (−1) i5 Tr (TjTiTk)
g2

(2π)4

∫

d4k Tr

(
1

k/ − p/2 + iε
γν

1

k/ + iε
γµ

1

k/ + p/1 + iε
γλγ5

)

.(12.3)

If we include the bose symmetric contribution (2nd diagram)

T µνλijk (p1, p2) = T̃ µνλijk (p1, p2) + T̃ νµλjik (p2, p1) (12.4)

and impose vector current conservation

p1µT
µνλ
ijk (p1, p2) = p2νT

µνλ
ijk (p1, p2) = 0 (12.5)

we obtain the unambiguous regularization independent result

−(p1 + p2)λ T
µνλ
ijk (p1, p2) = i

g2

16π2
Dijk 4 εµνρσp1ρp2σ 6= 0 (12.6)

with Dijk = Tr ({Ti, Tj}Tk) .

32Notice that Tr
(∏n

i=1
γµiγ5

)
= 0 for n < 4 and for all n = odd.
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This result is independent on the masses of the fermion lines and is not changed by higher order
corrections. Therefore the result is exact beyond perturbation theory! (Adler and Bardeen,
1969).

We may represent the result as an operator identity in configuration space: p1ρ(p2σ) corresponds
to a derivative i∂ρ(i∂σ) acting on a gauge field (external leg) Viµ(x) (Vjν(x)) while − (p1 + p2)λ
corresponds to the vertex i∂λj

λ
5 (x) . Because of the permutation symmetry in the two gauge fields

we have to divide by a factor 2. We then obtain:

∂λj
λ
5k(x) = − g2

32π2
Dijk 4 εµνρσ (∂ρViµ(x)) (∂σVjν(x)) .

Using the antisymmetry of the ε-tensor and renaming summation indices we may rewrite this
result

∂λj
λ
5k(x) = − g2

32π2
Dijk ε

µνρσ (∂ρViµ − ∂µViρ) (∂σVjν − ∂νVjσ)

=
g2

16π2
Dijk

◦
G̃µνi

◦
Gjµν

with
◦
Gjµν= ∂µVjν − ∂νVjµ and

◦
G̃µνi = 1

2ε
µνρσ

◦
Giρσ. The expression for −(p1 + p2)λ T

µνλ
ijk (p1, p2)

is a matrix element of i∂λj
λ
5 (0) . If terms from other diagrams contributing to other possible

matrix-elements of the axial current are included one finds for the final form of the anomaly

∂λj
λ
5k(x) =

g2

16π2
Dijk G̃

µν
i (x)Gjµν(x) (12.7)

where Giµν(x) is the non-Abelian field strength tensor and G̃µνi its dual pseudotensor. As a result
the condition for the absence of an anomaly reads

Dijk = Tr ({Ti, Tj} Tk) = 0 ∀ (ijk) . (12.8)

The matrices Ti are the generators of a gauge group in a representation R under which the
fermions transform. What are the general conditions for the absence of anomalies? To answer
this question we need the following basic properties of traces:

i) trace of the transpose AT of a matrix A:

Tr (A) =
∑

i

Aii = Tr (AT )

ii) trace of the equivalent A′ = SAS−1 of a matrix A

Tr (SAS−1) = Tr (S−1SA) = Tr (A)

since Tr (AB) = Tr (BA). S must be nonsingular.

We have to distinguish two different types of representations, real and complex ones. A represen-
tation R is called real if its complex conjugate representation R∗ is equivalent to R : R∗ ' R
i.e. R∗ = SRS−1 for some fixed non-singular matrix S. Non-real representation R 6' R∗ are
called complex. The following general statements hold:
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A) Real representations are anomaly free: Dijk ≡ 0. SinceR∗ ' R we have Dijk(R∗) = Dijk(R).
On the other hand in the canonical basis T+

i = Ti, if Ti are the generator of R then
−T ∗i = −T Ti are the generators of R∗. Therefore

Dijk(R
∗) = −Dijk(R).

Consequently Dijk(R) ≡ 0 for real representation. The groups SO(2`+1), ` > 1, Sp(2`), G2, F4, E7

and E8 have only real representations and hence are anomaly free. The groups SO(2`), ` >
1 , except SO(6) ' SU(4) are also anomaly free.

B) Groups for which the fundamental representation is real are anomaly free.

One can show that for any representation R

Dijk(R) = Dijk(R0) ·K(R)

where R0 is the fundamental representation. Only the invariant quantity K(R) depends on
the representation, K(R0) = 1.

For the groups SU(2) ' SO(3) and E6 one has Dijk(R0) = 0 ; and thus all representations
of these groups are anomaly free.

C) The groups SU(n), n ≥ 3 have complex representations and Dijk(R0) 6= 0. Fermions
transforming under representations of these groups in general lead to anomalies. In order
to avoid anomalies in this case one has to find those representations R for which K(R) = 0
i.e. for the SU(n), n ≥ 3, groups one can avoid anomalies only by putting the fermions
into particular representations. One can easily find these representations. We always can
write the fermion currents jµi which couple to the gauge fields in terms of left-handed and
right-handed fields

jµi = ψ̄Lγ
µTLiψL + ψ̄Rγ

µTRiψR

= ψ̄γµ
1− γ5

2
TLiψ + ψ̄γµ

1 + γ5

2
TRiψ.

Since ψ̄LγµψR = ψ̄RγµψL = ψ̄Lγµγ5ψR = ψ̄Rγµγ5ψL = 0 the contributions from the left-
handed and right-handed fields in closed fermion loops decouple. The contribution to the
anomaly thus is given by the sum of the contributions from left-handed fields and from right-
handed fields. If a particular left-handed loop gives an anomaly proportional to Dijk(RL)
then the right-handed loop gives an anomaly contribution proportional to −Dijk(RR) be-
cause the two contributions differ by a sign at the γµγ5 vertex as γ5

1±γ5
2 = ±1±γ5

2 . Thus
the condition that no anomalies arise from gauge interactions is that for all i, j, k :

Tr ({TLi, TLj}TLk)− Tr ({TRi, TRj}TRk) = 0 . (12.9)

For SU(2) the terms are individually zero for any representation. For SU(3) there is no
anomaly if the ψL and ψR transform under the same representation. This is the case for
QCD where due to TRi = TLi no axial currents couple to the gluons. Since the left-handed
antiquarks are in the complex conjugate representation 3∗ of the fundamental representa-
tion 3 the corresponding right-handed particle fields also transform under 3: This follows,
because under antiparticle conjugation

ψL
C→ ψcL = iγ2ψ∗R .
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D) The Abelian group U(1) ' SO(2) are not anomaly save. The previous argument for SU(n)
groups for the U(1) group leads to

D = Tr T 3
L0 − Tr T 3

R0 = 0

as a condition for anomaly cancellation. Here T0 denotes the Abelian generator of hyper
charge.

For non-simple groups the generators of the factor groups commute with each other. Therefore,
the anomaly is given by the sum of the anomalies of the individual subgroups. This means that
anomalies must be absent for each factor group.

For the standard model only the U(1)Y yields a non trivial condition which must be satisfied in
order to have an anomaly free theory! Let us check this condition now.

The matter field are in

doublets




ψ1

ψ2





L

and singlets ψR1, ψR2 .

The hypercharge and charge assignments satisfy:

Yi = 2(Qi − T3i) ; QRi = QLi = Qi ; Q1 −Q2 = 1

such that we have

YL1 = 2(Q1 −
1

2
) = 2Q1 − 1 , YR1 = 2Q1

YL2 = 2(Q2 +
1

2
) = 2Q1 − 1 , YR2 = 2Q2 = 2Q1 − 2 .

Thus the anomaly contribution per doublet is given by

D = Y 3
L1 + Y 3

L2 − Y 3
R1 − Y 3

R2 = 2 (2Q1 − 1)3 − (2Q1)3 − (2Q1 − 2)3 = −12 Q1 + 6 .

Consequently, the SU(2)L ⊗ U(1)Y electroweak model with leptons only is not renormalizable
(not anomaly free). The anomaly must be canceled by a contribution of opposite size coming
from the quarks!

For the anomaly factor D we get for a lepton doublet and Nc = 3 colored quark doublets and the
associated singlets

Dleptons +Dquarks = 6− 6Nc (2Qq
1 − 1) = 0

and since

Qq1 =
1

2

(

1 +
1

Nc

)

= 2/3 for Nc = 3 .

Notice that one could satisfy the anomaly condition also with the nucleon doublet: Nc = 1 , Q1 =
1 i.e.




ψ1

ψ2



 =




p

n



 .
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This is an example of ’t Hooft’s anomaly condition: A composite particle must reproduce the
axial anomaly of its fermionic constituents. This may be understood as a consequence of the
Adler-Bardeen theorem which states that the anomaly is not renormalized by higher order effects
and hence that the axial anomaly is a known non-perturbation effect.

As a result we find: The electroweak standard model is renormalizable only if fermions are grouped
into lepton-quark families.

Exercises: Section 12

① In the SM the leptonic hypercharge current has the form

jµY =
1

2

( ¯̀
Lγ

µ`L + ν̄`Lγ
µν`L

)
+ ¯̀

Rγ
µ`R .

Write it in terms of vector plus axialvector contributions.

② Calculate the trace and the Feynman integral (12.3) and verify (12.6).
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The closer you look the more there is to see.

13 The Standard Model of fundamental interactions

According to present day knowledge, the known “fundamental” interactions of “elementary”
particles follow from a local gauge principle (Weyl, Yang-Mills) with the gauge group

GSM
local = SU(3)c ⊗ SU(2)L ⊗ U(1)Y (13.1)

which is broken through a Higgs mechanism to SU(3)c⊗U(1)em . SU(3)c is the color gauge group
which determines the interaction of the color triplets of quarks via an octet of colored gluons.
This unbroken color gauge theory is called quantum chromodynamics (QCD) (Fritzsch, Gell-
Mann, Leutwyler 1973) and determines strong interaction physics, and in particular, the hadron
spectrum and the residual strong interaction between hadrons. Quarks originally emerged as
the building blocks of hadrons in the attempt to classify the hadronic states according to their
flavor (Gell-Mann, Ne’eman, Zweig 1964). The quark model hypothesis required the hadrons
to be composite states of quarks with the quarks being permanently confined in the hadrons.
The confinement hypothesis declares hadrons to be composite elementary particles. More
specifically, baryons are three quark states, mesons are quark-antiquark states

Baryons:, p, n,Λ,Σ,∆, . . .

B = (q1q2q3) : s = 1/2 : p : uud s = 3/2 : ∆++ : uuu

n : udd
...

...

∆− : ddd

Mesons: π,K, η, ρ, ω, . . .

M = (q1q̄2) : s = 0 : π+ : ud̄ s = 1 : ρ+ : ud̄

π0 : 1√
2
(uū− dd̄) ρ0 : 1√

2
(uū− dd̄)

π− : dū ρ− : dū

η : 1√
2
(uū + dd̄) ω : 1√

2
(uū + dd̄)

Quarks must then be fractionally charged: Qu = 2/3, Qd = −1/3 . A crucial problem showed
up for the states which are totally symmetric under permutations of spin and flavor (e.g. ∆++ :
u(↑)u(↑)u(↑)). The spin-statistic theorem requires both the quarks (s = 1/2) and the baryons
(s = 1/2, 3/2, . . .) to satisfy the Pauli principle. This requires a totally antisymmetric quark
wave function for the quarks in the baryon. This spin-statistics crisis could be solved only
by assigning a new quantum number, called color, to quarks. Each quark must exist in three
copies, the red(r), green(g), and blue(b) quarks. Since color never has been observed it was
natural to require SU(3)c color symmetry to be a local symmetry, which implies that colors are
indistinguishable. The confinement hypothesis now requires that physical states must be color
singlets. The singlet condition leads in a very natural way to the baryons

(q1q2q3)color singlet =
1√
3!
εc1c2c3q1c1q2c2q3c3
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and mesons

(q1q̄2)color singlet =
1√
3
δc1c2q1c1 q̄2c2

The wave functions of hadronic states are given now by a product of spatial, color, flavor and
spin wave functions. The ground state hadrons have no orbital angular momentum, such that
the spatial wave function is symmetric under permutations of the constituents. Simultaneous
eigenstates of color (singlet), flavor and spin are then easily constructed by considering factors.
The calculation of the hadrons as bound states of quarks (i.e. the actual calculation of the spatial
wave function) is an unsolved problem. After this digression to hadronic physics we come back

to the other part of of GSM
local .

The other unbroken subgroup U(1)em of SU(2)L ⊗ U(1)Y defines quantum electrodynamics
(QED), describing the interaction of all charged particles with the photon. SU(2)L is the weak
isospin gauge group which determines the interaction of the left–handed (V − A) fermion cur-
rents, known from weak interaction processes, with a triplet of weak gauge bosons also called
intermediate vector bosons. Finally, the U(1)Y subgroup is needed in order to recover U(1)em

with Q = T3 + Y
2 in the broken phase as we shall see below.

The standard model (SM) is determined essentially by specifying the matter fields and their trans-
formation properties under local gauge transformations. A way to “understand” the emergence
of the SM is described in the following.

13.1 The matter fields

The “real world” is build from massless spin 1/2 particles the quarks and leptons. Spin 1/2
particles in a sense are more fundamental than other particles because they allow to compose
particles of any spin (e.g. 1/2 ⊗ 1/2 = 0 ⊕ 1 etc.). Massless Fermi fields have fixed handedness
called chirality or helicity. If ψ is a massless Dirac field the left–handed field ψL = 1−γ5

2 ψ and

the right–handed field ψR = 1+γ5
2 ψ do not mix under Lorentz-transformations, rotations and

space-time translation.

~s⇐◦−→
~p

P←→ ~s⇒◦−→
~p

ψL ψR

The fields ψL and ψR are interchanged under parity transformations. Since ψ is a local field
satisfying Einstein causality the left–handed Dirac field of a massless electron denoted by e−L
describes a left–handed electron and, simultaneously, a right–handed positron. Similarly, if e−R is
the local field describing a right–handed electron, this field also describes a left–handed positron.
Thus e−R ≡ e+

L . Therefore, we may consider all massless fields to be left–handed.

According to todays knowledge, matter is made out of colored quarks and leptons which are
grouped into three families. The not too long ago observed neutrino oscillations require the
neutrinos to have a tiny mass which must be different for the different flavors. This requires the
existence of right–handed neutrinos ν`R ≡ ν̄`L in spite of the fact that they do not couple directly
to gauge fields (i.e., they are singlets with respect to the SM gauge group).

As we have argued earlier quarks of different flavors must show up in three replica of red(r),
green(g), and blue(b) color. The first family of fermions are

νeL, ν̄eL, e
−
L , e

+
L , uLr, uLg, uLb, u

c
Lr, u

c
Lg, u

c
Lb, dLr, dLg, dLb, d

c
Lr, d

c
Lg, d

c
Lb
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where uc denotes the antiparticle of the u-quarks and so on. All stable matter is built from
these first family quarks and leptons. The two additional families (who has ordered them?) we
obtain by replacing (νe, e) with (νµ, µ) and (u, d) with (c, s) and (νe, e) with (ντ , τ) and (u, d)
with (t, b) . They supplement Nature by forms of unstable matter and allow for the phenomena
of flavor mixing and CP -violation. Altogether we know 3 × 16 degrees of freedom if we include
the top–quark t for which we only have indirect evidence. If there would be no interactions the
(free) Lagrangian of the world would be

Lmatter =
∑

a

ψ̄Laiγ
µ∂µψLa

which exhibits a huge symmetry of global U(48) . In nature a subgroup of this large global
symmetry group turns out to be a local symmetry

ψLa → U(x)abψLb ; U(x) ∈ Glocal

where Glocal = SU(3)c ⊗ SU(2)L ⊗ U(1)Y . This requires the fields to couple to massless spin 1
gauge fields via minimal coupling

∂µψL → DµψL =

(

∂µ − i
∑

α

gαTαiVµαi

)

ψL

with interaction vertices:

ψ̄

ψ

V
g

Here, α labels the factors SU(3)c, SU(2)L and U(1)Y to which the Yang-Mills construction ap-
plies individually. The emergence of Glocal as a direct product of two simple Lie groups and
the Abelian group U(1)Y is closely related to the phenomenological appearance of strong, weak
and electromagnetic interactions as separate phenomena differing in strength and symmetry.
The SU(3)c which determines strong interactions distinguishes between triplets of quarks, “an-
titriplets” of antiquarks and singlets of leptons and neutrinos. Since the latter do not carry color
they do not participate in strong interactions i.e. they do not talk to quarks and gluons, the gauge
quanta of SU(3)c . The SU(2)L distinguishes between doublets of left–handed particles

(νe
e−
)

L
, . . .

and singlets of left–handed antiparticles which are usually identified by the right–handed particles
e+
L ≡ e−R, . . . . This undemocratic treatment of particles and antiparticles is what we know as

maximal parity violation of weak interactions. The Abelian U(1)Y only affects the phases of the
fields according to the weak hypercharge assignment Y = 2(Q− T3) .

Notice that a fermion mass term

ψ̄ψ = ψ̄LψR + ψ̄RψL

cannot be SU(2)L⊗U(1)Y invariant. It is the parity violating nature of weak interactions which
forbid fermion masses. We summarize the local multiplet structure in the following tables:

“Weak quantum numbers”: Q = T3 + 1
2Y

Doublets:
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(ν`)L (`−)L (u, c, t)L (d̃, s̃, b̃)L

Q 0 - 1 2
3 - 1

3

T3
1
2 - 1

2
1
2 - 1

2

Y - 1 - 1 1
3

1
3

Singlets:

(ν`)R (`−)R (u, c, t)R (d, s, b)R

Q 0 - 1 2
3 - 1

3

T3 0 0 0 0

Y 0 - 2 4
3 - 2

3

group representation

SU(3)c 3






qr
qg
qb




 quark color triplets

3∗






qcr̄
qcḡ
qc
b̄




 antiquark color triplets

1 leptons, neutrinos

SU(2)L 2 = 2∗
(

νe
e−

)

L

,

(

u

d̃

)

L
(

νµ
µ−

)

L

,

(

c
s̃

)

L

left–handed weak isospin
doublets of leptons and
quarks (flavor doublets)

(

ντ
τ−

)

L

,

(

c

b̃

)

L

1 νeR, e
−
R, uR, dR

νµR, µ
−
R, cR, sR

right–handed weak isospin
singlets of leptons and
quarks

ντR, τ
−
R , tR, bR

U(1)Y phase transformations weak hypercharge Y = 2(Q− T3)
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Notice: • νeR, νµR and ντR all have zero quantum numbers with re-
spect to Glocal (i.e. no couplings to gauge fields).

• the bottom components of the quark doublets are Cabibbo-
Kobayashi-Maskawa rotated fields d̃, s̃, b̃ (see below).

In the following we denote the weak doublets by L` (` = e, µ, τ) for the leptons and by Lq for
the quarks.

13.2 The gauge fields

For each factor group of Glocal, local gauge invariance requires the existence of a set of massless
gauge fields in the adjoint representation, which couple minimally to the matter fields. We denote
the gauge fields Vµαi(x) and the gauge couplings as follows:

group gauge fields name coupling

SU(3)c : Gµi ; i = 1, . . . , 8 gluons gs

SU(2)L : Wµa ; a = 1, 2, 3 weak
gauge
bosons

g

U(1)Y : Bµ g′

The Yang-Mills Lagrangian is given by

LYM = −1

4
GµνiG

µν
i −

1

4
WµνaW

µν
a −

1

4
BµνB

µν

with field strength tensors

SU(3)c : Gµνi = ∂µGνi − ∂νGµi + gsfiklGµkGνl

SU(2)L : Wµνa = ∂µWνa − ∂νWµa + gεabcWµbWνc

U(1)Y : Bµν = ∂µBν − ∂νBµ .

The non-abelian fields must exhibit self–interactions described by the vertices

g
g2

and with coupling strength equal the matter field coupling

Lmatter, int = gψ̄Lγ
µTaψLWµa

where Jµa = ψ̄Lγ
µTaψL are the fermion currents associated with the gauge group.

Since the QCD part, the unbroken SU(3)c, represents the final answer and the relevant Feynman
rules have been given in Sec. 8, we will omit the strong interactions and concentrate to the
discussion of the electroweak SM SU(2)L ⊗ U(1)Y in the following.

The non–abelian gauge field interaction terms for the electroweak gauge group SU(2)L ⊗ U(1)Y
have been experimentally confirmed by LEP experiments [?].
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13.3 The electroweak gauge bosons, γ − Z−mixing

In the real world SU(2)L⊗U(1)Y is broken to U(1)em by the masses of the physical particles. In
particular, the weak gauge bosons which mediate weak interactions must be massive as the weak
interactions are short ranged. Also the weak equivalence principle which claims the left–handed
neutrino to be indistinguishable from the left–handed electron is obviously not true in the real
world. In 1961 Glashow proposed a massive vector boson gauge theory by simply adding the
symmetry breaking mass terms:

Lbroken = Linv + Lmass .

Before we can add mass terms we have to know which physical fields we have. They have to
be mass eigenstates and must carry electric charge Q = T3 + Y

2 . Q is the only good quantum
number left after the breaking. The fields Wµa have Y = 0 and hence the physical fields must be
eigenstates of T3 = τ3

2 . Using the SU(2) algebra [Ti, Tk] = iεiklTl , Ti = T+
i one finds that the

ladder operators

T± = T1∓iT2 , T+ =




0 0

1 0



 , T− =




0 1

0 0





satisfy

[T3, T±] = ±T±

therefore the fields

W±µ =
1√
2

(Wµ1 ∓ iWµ2)

carry charge ±1 . These are the charged W bosons. The “charged” part of the matter field
Lagrangian reads for the leptons

L`,charged
matter, int =

g

2

(
ν̄`, ¯̀)

L γ
µ (τ1Wµ1 + τ2Wµ2)




ν`

`





L

=
g

2

(
ν̄`, ¯̀)

L γ
µ (T+ + T−)Wµ1 + i (T+ − T−)Wµ2




ν`

`





L

=
g√
2

(
ν̄`, ¯̀)

L γ
µ
(

T+
Wµ1 + iWµ2√

2
+ T−

Wµ1 − iWµ2√
2

)



ν`

`





L

=
g√
2

(

Jµ+
` W−µ + Jµ−` W+

µ

)

where (Jµ± = Jµ1 ∓ i Jµ2 )

Jµ+
` = ¯̀

Lγ
µν`L and Jµ−` =

(

Jµ+
`

)+
= ν̄`Lγ

µ`L

is the leptonic contribution to the weak charge changing current.
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The fields Wµ3 and Bµ both have Y = 0 and T3 = 0 and hence Q = 0 . Since they have
the same physical (unbroken) quantum numbers they can mix. To find out the physical linear
combinations, we have to inspect their interactions with the matter fields. For the leptons we
have

L`,neutral
matter = L̄`iγ

µ
(

∂µ − igT3Wµ3 + i
g′

2
Bµ

)

L`

+¯̀
Riγ

µ (∂µ + ig′Bµ
)
`R + ν̄`Riγ

µ∂µν`R

= ¯̀iγµ∂µ`+ ν̄`iγ
µ∂µν`

− g

2

(¯̀
Lγ

µ`L − ν̄`Lγµν`L
)
W3µ

− g′

2

(¯̀
Lγ

µ`L + ν̄`Lγ
µν`L

)
Bµ

− g′
(¯̀
Rγ

µ`R
)
Bµ

The electromagnetic lepton current must be

jµ`em = − (¯̀γµ`) = − (¯̀Lγµ`L + ¯̀
Rγ

µ`R
)

without a neutrino contribution. The field Zµ which couples to the neutrino is

Zµ ∝ gWµ3 − g′Bµ

and the photon must be orthogonal to Zµ

Aµ ∝ gBµ + g′Wµ3.

The transformation



Zµ

Aµ



 =
1

√

g2 + g′2




g −g′

g′ g








Wµ3

Bµ



 =




cos θW − sin θW

sin θW cos θW








Wµ3

Bµ





with

cos θW =
g

√

g2 + g′2
, sin θW =

g′
√

g2 + g′2
; cos2 θW + sin2 θW = 1

is (must be) orthogonal such that the real kinetic terms (bilinear parts) of the gauge fields satisfy

◦
Gµν3

◦
Gµν3 +BµνB

µν =
◦
Zµν

◦
Zµν +FµνF

µν

with

◦
Zµν = ∂µZν − ∂νZµ
Fµν = ∂µAν − ∂νAµ .

If we replace now

W3µ = cos θWZµ + sin θWAµ

Bµ = − sin θWZµ + cos θWAµ
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in the Lagrangian we obtain

L`,neutral
matter, int =

g

cos θW
JµZZµ + ejµemAµ

with weak neutral current

JµZ = Jµ3 − sin2 θW j
µ
em .

The relation e = g sin θW must hold. This is the unification condition. Above we have used
relations like

e = g sin θW = g′ cos θW

g cos θW + g′ sin θW =
√

g2 + g′2 = g
cos θW

g′ sin θW = g
′2√

g2+g′2
= sin2 θW

√

g2 + g′2 = sin2 θW
g

cos θW
.

The mixing angle θW is called weak mixing angle and sin2 θW weak mixing parameter (Glashow,
1961). Notice that in the limit g′ → 0 i.e. no U(1)Y interaction e→ 0 and we would not get the
electromagnetic interactions. This demonstrates the need for the Abelian subgroup U(1)Y . If we
include the quarks

Lq = q̄uRiγ
µ
(

∂µ − i
4

3

g′

2
Bµ

)

quR + q̄dRiγ
µ
(

∂µ + i
2

3

g′

2
Bµ

)

qdR

+L̄qiγ
µ
(

∂µ − i
1

3

g′

2
Bµ − ig

τa
2
Wµa

)

Lq

we obtain the SU(2)L ⊗ U(1)Y fermion currents:

i) J+
µ = ν̄`γµ

1− γ5

2
`− + q̄uγµ

(1− γ5)

2
UCKMqd

is the charged current (CC) which is of pure V −A type and exhibits Cabibbo-Kobayashi-Maskawa
flavor mixing :

qu =








u

c

t








; qd =








d

s

b








are “horizontal” family vectors and

UCKM =








VudVusVub

VcdVcsVcb

VtdVtsTtb








is a unitary 3× 3 mixing matrix.

Strict lepton number conservation (still true within exerimental limits) is only possible if the
neutrinos are strictly massless. Non-vanishing neutrino masses lead to neutrino-oscillations.
Neutrino mixing searches (ν-oscillations ν` ↔ ν`′) have confirmed the effect recently, which implies
the existence of non–vanishing neutrino masses. Present direct upper limits on the neutrino
masses are:
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mνe < 3.0 eV (from 3H → 3He e− ν̄e)

mνµ < 190 keV (from π → µ νµ)

mντ < 18.2 MeV (from τ− → 3π ντ )

Lower bounds are not yet so easy to establish at present but observed neutrino mixing phenomena
indicate values of about two to three orders of magnitude lower than the above direct upper limits.
In any case this implies corresponding lepton numbers L` (` = e, µ, τ)–violations.

ii) JµZ =
∑

f

ψ̄fγµ (vf − afγ5)ψf ≡ J3µ − sin2 θW jµ em

is the weak neutral current (NC). It is strictly flavor conserving (GIM mechanism). The vector
and axial vector couplings are:

vf = −Qf sin2 θW +
T3f

2
; af =

T3f

2
.

iii) jµ em =
∑

f

Qf ψ̄fγµψf

is the electromagnetic current.

In terms of the fermion currents we get

Lmatter =
∑

f

ψ̄f iγ
µ∂µψf

+
g√
2

(

J+
µ W

µ− + J−µ W
µ+
)

+
g

cos θW
JµZZ

µ + ejµ emA
µ

νµ ν̄µ νµ e− e−
µ− µ+ νµ e− e−

W− W+ Z Z γ

as a final form for the electroweak interactions of matter with the physical gauge fields. Some
typical vertices in the leptonic sector are shown.

Now we also have to rewrite the Yang-Mills term

LYM = −1

4
(∂µBν − ∂νBµ)2 − 1

4
(∂µWνa − ∂νWµa + gεabcWµbWνc)

2

in terms of the physical fields W±µ , Zµ and Aµ .

For the charged fields we use the relations

Wµ1 =
1√
2

(

W+
µ +W−µ

)

, Wµ2 =
i√
2

(

W+
µ −W−µ

)

Wµ1Wν1 +Wµ2Wν2 = W+
µ W

−
ν +W+

ν W
−
µ

Wµ1Wν2 −Wν1Wµ2 = −i
(

W+
µ W

−
ν −W+

ν W
−
µ

)

Wµ1W
µ
1 +Wµ2W

µ
2 = 2W+

µ W
µ−
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for the neutral fields

Bµ = − sin θWZµ + cos θWAµ

Wµ3 = cos θWZµ + sin θWAµ

Wµ3Wν3 = cos2 θWZµZν + cos θW sin θW (ZµAν + ZνAµ) + sin2 θWAµAν

Wµ3W
µ
3 +BµB

µ = ZµZ
µ +AµA

µ .

For the free (bilinear) part we obtain

L(0)
YM = −1

4
BµνB

µν − 1

4

◦
W µνa

◦
W µν

a

= −1

2

(

∂µW
+
ν − ∂νW+

µ

) (
∂µW ν− − ∂νW µ−)

−1

4
(∂µZν − ∂νZµ)2 − 1

4
(∂µAν − ∂νAµ)2 .

As it should be the charged fields only appear in the neutral bilinear combination W +
µ W

−
ν .

For the interaction part

LYM, int = −g
2
εabc

◦
W µνa W

µ
b W

ν
c −

g2

4
εabcεab′c′WµbWνcW

µ
b′W

ν
c′

the transformation is slightly more complicated. We first consider the trilinear term, which in
terms of the charged fields reads

Ltriple
YM = i g2

[ ◦
Wµν3

(
W µ+W ν− −W µ−W ν+)

+
◦
W+

µν
(
W µ−W ν

3 −W µ
3 W

ν−)

−
◦
W−µν

(
W µ+W ν

3 −W µ
3 W

ν+)
]

Since the antisymmetric rotations
◦
W ·µν= ∂µW

·
ν − ∂νW ·µ are contracted with an antisymmetric

expression we may replace it by −2∂νW
·
µ . Furthermore we may write W µ+ = gµρW+

ρ , W µ− =

gµσW−σ and W µ
3 = gµλWλ3 , W+

µ = δρµW
+
ρ , W−µ = δσµW

−
σ and Wµ3 = δλµWλ3 etc. such that the

fields appear as a common factor W+
ρ W

−
σ Wλ3 .

We thus obtain

Ltriple
YM = ig

[ (

gρλgσν − gρσgλν
)(

∂νW
+
ρ

)

W−σ Wλ3

+
(

gρσgλν − gρνgσλ
)

W+
ρ

(
∂νW

−
σ

)
Wλ3

+
(

gρνgσλ − gρλgσν
)

W+
ρ W

−
σ (∂νWλ3)

]

.

In momentum space we assign the incoming momenta p1, p2 and p3 to the fields W+,W− and
W3 respectively, such that the derivative is given by a factor ∂ν → −ipiν :

L̃triple
YM = g

[(

gρλgσν − gρσgλν
)

p1ν

+
(

gρσgλν − gρνgσλ
)

p2ν

+
(

gρνgσλ − gρλgσν
)

p3ν

]

W̃+
ρ (p1) W̃−σ (p2) W̃λ3(p3)

= g V ρσ,λ(p1, p2, p3) W̃+
ρ (p1) W̃−σ (p2) W̃λ3(p3)

246



with

V ρσ,λ(p1, p2, p3) = gρσ(p2 − p1)λ + gρλ(p1 − p3)σ + gσλ(p3 − p2)ρ .

The replacement of Wλ3 by Zµ and Aµ is trivial and we find for the triple gauge vertices:

: g cos θW V ρσ,λ(p1, p2, p3)

: e V ρσ,λ(p1, p2, p3) .
W+
ρ

W−σ

Aλ

W+
ρ

W−σ

Zλ

Notice that by g sin θW = e the W± fields indeed couple with charge unit 1, as it should be. For
the quadrilinear term, finally, we use the identity

εabcεab′c′ = δbb′δcc′ − δbc′δcb′

such that

Lquartic
YM = −g

2

4

[(

~Wµ · ~W µ
)2
−
(

~Wµ · ~Wν

)2
]

.

Inserting the charged fields we get

Lquartic
YM = −g

2

2
(gµνgρσ − gµρgνσ)

(

W+
µ W

−
ν + 2Wµ3Wν3

)

W+
ρ W

−
σ

The term quadrilinear in W3 has dropped out in the difference. This must be so, since otherwise
we would get photon self–interactions. This cannot be the case for the Abelian photon field. If
we symmetrize in the identical fields (i.e. in the Wµ3Wν3 and the W−ν W

−
σ terms) we may express

the vertices in terms of the tensor

T ρσ,µν
.
= 2gρσgµν − gρµgσν − gρνgσµ.

After substituting the Wµ3Wν3 term we have for the quartic gauge interaction vertices:

: g2 T ρµ,σν
(

1
2!

1
2!

)

: −g2 cos2 θW T ρσ,µν
(

1
2!

)

: −eg cos θW T ρσ,µν

: −e2 T ρσ,µν
(

1
2!

)
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W+
µ

W−ν

Zµ

Zν

Zµ

Aν

Aµ

Aν

W+
ρ

W−σ

W+
ρ

W−σ

W+
ρ

W−σ

W+
ρ

W−σ

The permutation symmetry factors 1
2! for each pair of identical fields are omitted in the Feynman

rules since diagrams obtained by permutations of identical lines are not counted separately.

If we add the mass terms

Lmass = −
∑

f

mf ψ̄fψf +
1

2
M2
ZZµZ

µ +M2
WW

+
µ W

µ−

we have a model which essentially describes well all experimental data. But it is not an accept-
able theory, because the mass term breaks SU(2)L ⊗ U(1)Y in a catastrophic way which makes
the theory non-renormalizable. This means that beyond the Born approximation perturbative
calculations are not unambiguously defined. A renormalizable massive vector boson gauge theory
can only be obtained if masses are generated by the Higgs mechanism33.

13.4 The Higgs field and mass generation

A minimal renormalizable extension of the massive vector boson gauge theory can be ob-
tained only if physical particle masses are generated by a Higgs mechanism. Starting from the
massless SU(2)L ⊗ U(1)Y invariant gauge theory one couples all fields which should acquire a
mass in an SU(2)L⊗U(1)Y invariant manner to a Higgs field, a scalar field which develops a non-
vanishing vacuum expectation value. Since the Higgs mechanism has to break SU(2)L ⊗ U(1)Y
to U(1)em, the Higgs field must transform in a non-trivial way under both factors of the gauge
group. Again, the simplest possibility is to assume the Higgs field to be a SU(2)L doublet Φb

transforming according to the fundamental representation. What is the transformation property
of Φb under U(1)Y ? The component of Φb which develops a non-vanishing vacuum expectation
value must be electrically neutral, since the charge Q must be a good quantum number in the
broken phase. By convention we choose the lower component to be neutral. Since Q = T3 + Y

2 ,
the field Φb must have Y = 1 and the upper component must have charge Q = 1 . Therefore we
write

Φb =




ϕ+

ϕ0





.

We may represent this complex doublet in terms of four real fields Hs and ϕi ; i = 1, 2, 3 .

We first introduce the 2× 2 matrix field

1√
2

(Hs + iτiϕi) =





Hs+iϕ3√
2

iϕ1−iϕ2√
2

iϕ1+iϕ2√
2

Hs−iϕ3√
2



 = (Φt,Φb) .

33As we will see later, in the electroweak SM except for the Higgs mass all other masses are generated by the
Higgs field acquiring a vacuum expectation value. Besides the weak gauge bosons W± and Z, also all fermions
aquire their mass via the minimal Higgs mechanisms. Note that this does not mean that the mass of ordinary
matter in our universe is solely due to the Higgs mechanism. The major part, about 99 %, of the mass of matter
fom which stars planets and interstellar matter is made, namely, protons and neutrons (baryonic matter), get their
mass through strong interaction binding energy. In fact, the nucleon masses (∼ 1 GeV) are completely dominated
by the binding energy, while the light u and d quarks nucleons are made of only contribute a tiny amount (as
mu ∼ 3 MeV, md ∼ 8 MeV). The Higgs mechanism is responsible only for the quark masses not for the nucleon
masses.
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and iso-doublet vectors χt =
(1
0

)

and χb =
(0
1

)

.

Then, we may write

Φb =




ϕ+

ϕ0



 =
1√
2

(Hs + iτiϕi)χb

with ϕ± = ± i√
2

(ϕ1 ∓ iϕ2) and ϕ0 = 1√
2

(Hs − iϕ3) .

The field

Φt = iτ2Φ∗b =




0 1

−1 0



Φ∗b =




ϕ∗0

−ϕ−



 =
1√
2

(Hs + iτiϕi)χt

is the Y -charge conjugate doublet field with Y = −1. For the physical interpretation of the Higgs
field it is important to notice that Hs + iτiϕi can be written in “polar” form: 34

Hs + iτiϕi = ρse
iτiθi = ρs

(

cos θ + i
sin θ

θ
τiθi

)

with θ =
√
θiθi i.e. Hs = ρs cos θ, ϕi = ρs

sin θ
θ θi or for infinitesimal θ : Hs ' ρs, ϕi ' ρsθi . We

may write therefore

Φb =
ρs√

2
U(θ)χb with U(θ) ∈ SU(2) .

The transformation properties of Φb and the requirement of local SU(2)L ⊗ U(1)Y invariance
completely determine the couplings of the gauge fields to the Higgs field: The invariant Higgs
Lagrangian reads

LHiggs = (DµΦb)
+ (DµΦb)− λ

(

Φ+
b Φb

)2
+ µ2Φ+

b Φb

with covariant derivative

DµΦb =

(

∂µ − i
g′

2
Bµ − ig

τa
2
Wµa

)

Φb .

Invariant couplings of the Higgs field with the fermions may easily be constructed. Noting that
Lψ =

(ψt

ψb

)

L
,Φb and Φt transform identically under SU(2)L : Lψ → U(x)Lψ,Φi → U(x)Φi , while

ψiR → ψiR , we obtain scalars L̄ψΦiψiR (i = t, b) which have hypercharge zero if ψiR is chosen as
indicated. Explicitly the two kind of terms read

ψ̄tLϕ
+ψbR + ψ̄bLϕ0ψbR

ψ̄tLϕ
∗
0ψtR − ψ̄bLϕ

−ψtR .

34Use (τiθi)
2 = τiτkθiθk = 1

2
{τi, τk} θiθk = δikθiθk = θiθi = θ2 with θ =

√
θiθi . Separating even and odd powers

in the exponential series defining eiτiθi we have

eiτiθi =

∞∑

k=0

i2k

2k!
(τiθi)

2k +

∞∑

k=0

i2k+1

2k + 1!
(τiθi)

2kτiθi

=

∞∑

k=0

(−1)k

2k!
θ2k + iτi

θi
θ

∞∑

k=0

(−1)k

2k + 1!
θ2k+1 = cos θ + iτi

θi
θ

sin θ .
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In order to obtain Hermitean operators we have to add the Hermitean conjugate (h.c.) to each of
the terms. Thus the Yukawa type Higgs-fermion Lagrangian for one lepton–quark family reads

LYukawa = −Gb`
(
L̄`Φb`R + h.c.

)−Gt`
(
L̄`Φtν`R + h.c.

)

−Gbq
(
L̄qΦbbR + h.c.

)−Gtq
(
L̄qΦttR + h.c.

)

where Gi` and Giq are the Yukawa couplings for the leptons and quarks, respectively. A more
general form for LYukawa will be discussed below. For massless neutrinos we must set Gt` ≡ 0 .

It is quite non-trivial that the masses of the weak gauge bosons and the masses of the fermions
may be generated with the same single Higgs field. This only works because besides the fermion
doublets there exist fermion singlets as it is obvious from the Yukawa terms given above. With
this minimal choice of elementary scalars the SM often is called more specifically the minimal
standard model.

Above we have noted that Φb may be written as a SU(2) transform of

Φu
b =

ρs√
2




0

1





i.e.

Φb =
ρs√

2
U(θ)




0

1





.

If we perform a particular gauge transformation of the fields

Φu
b = U+(θ) Φb =

ρs√
2




0

1





W u
µaτa = U+(θ)WµaτaU(θ) +

2i

g
U+(θ)∂µU(θ)

Luψ = U+(θ) Lψ

the three real fields θi and hence ϕi are eliminated from the invariant Lagrangian. The fields
ϕi therefore cannot be physical, they are called Higgs ghosts. Since Lmatter and LYM are
invariant their form is unaffected. In contrast, LHiggs and LYukawa take a particularly simple
form since only one real scalar field is left in Φu

b , the physical Higgs field ρs = Hs . Notice
that the number of fields which can be eliminated by a SU(2) transformation is given by the
order of the group, which is 3 in our case. The particular gauge we have chosen to eliminate the
Higgs ghosts is called unitary gauge (U -gauge). The general case in which the Higgs ghosts are
present is called renormalizable gauge (R-gauge) for reasons which will become clear later on.

Since physics is more transparent in the U -gauge let us consider the Higgs mechanism first in
this gauge. If we replace Φb by Hs√

2
χb in LHiggs and replace the gauge fields by the physical fields

W±, Z and A we obtain the simple form

LHiggs =
1

2
(∂µHs∂

µHs) +
1

8
H2
s

{(
g

cos θW

)2

ZµZ
µ + 2g2 W+

µ W
µ−
}

−λ
4
H4 +

µ2

2
H2
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with vertices

Z Z W W

H H H H H H

H H

and similarly

LYukawa = −
∑

f

Gf√
2
Hsψ̄fψf

with vertex

f f

H

If µ2 > 0 by the Higgs mechanism < 0 | Hs | 0 >= v > 0 in the physical ground state | 0 > . The
existence

6V (Hs)

-
Hs

µ2 < 0 µ2 > 0

+
v

Fig. 13.1: Higgs potential of the SM a) in the symmetric

(µ2 < 0) and b) in the broken phase (µ2 > 0).

of a Bose condensate density v breaks the global Z2 symmetry Hs ↔ −Hs of the Higgs
Lagrangian and as we shall see only a U(1)em local symmetry remains from the original SU(2)L⊗
U(1)Y symmetry.

The correct mass spectrum is obtained by the shift

H = Hs − v

to the physical Higgs field H which satisfies < 0|H|0 >= 0 . The Lagrangian then takes the form

LHiggs =
1

2
(∂µH∂

µH) +
1

2

(

1 +
H

v

)2 {

M2
ZZµZ

µ + 2M2
WW

+
µ W

µ−
}

−λ
4
H4 − λvH3 − 1

2
m2
HH

2

LYukawa = −
∑

f

mf

(

1 +
H

v

)

ψ̄fψf .
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with the characteristic mass-coupling relations

MZ =
gv

2 cos θW
, MW =

gv

2
, mf =

Gf√
2
v and mH =

√
2λ v

The masses are generated through interaction with the condensate: Diagrammatically, with
v =< 0|Hs|0 >= v

= , =

= , + =

v v v v
M2
Z M2

W

Z W

v
v v −µ2 m2

Hmf

f H

As a result we have found

LHiggs + LYukawa = Lmass + LHiggs, free + LHiggs, int

where the existence of the Higgs and its interaction is experimentally unverified. However, as we
shall see below, the vacuum expectation value of the Higgs field is very precisely determined

v =
(√

2Gµ
)−1/2

= 246.221(3) GeV

by the Fermi constant Gµ . v is called the Fermi scale.

If we take serious the SM and hence the Higgs mechanism, we have to conclude that the existence
of the Higgs Bose condensate has been established experimentally.

Like in the Ginzburg-Landau theory of superconductivity, where the Bose condensate field repre-
sents an effective description only, of the Cooper-pairs of the underlying microscopic BCS theory,
the Higgs field could turn out to be a low energy effective description of a composite fermion-
antifermion condensate. Generally, it is believed that the SM should provide the correct low
energy effective theory for physics below the 1 TeV scale.

What the Higgs mechanism has done for us may be summarized as follows: The Higgs mechanism

• breaks SU(2)L ⊗ U(1)Y to U(1)em as required by phenomenology

• generates the masses of W±, Z and the fermions (without conflicting renormalizability)

• provides a “physical cut-off” to the massive vector boson gauge theory i.e. it “restores”
renormalizability and the associated smooth high energy behavior of physical transition
amplitudes.

• implies the existence of a new massive scalar particle, the Higgs particle, the mass of which
is essentially unconstrained. Some general constraints follow, however, since neither the
limit mH → 0 (causing an infrared problem) nor the limit mH → ∞ (causing ultraviolet
problems) exists.

Notice that the Higgs couples universally to the masses of particles. The couplings
are proportional to the mass and the mass-square for fermions and bosons, respectively, and in
proportion to v:
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mf/v for fermions

M2
V /v for bosons and triple vertices

M2
V /v

2 for bosons and quartic vertices

where V = Z, W or H . Thus the coupling of the Higgs to ordinary matter consisting of u-quarks,
d-quarks and electrons is minuscule. In fact all couplings to the light fermions including the b–
quark are too small for getting reasonable production cross-sections. The Higgs is therefore very
hard to find. It can only be produced at reasonable rates in association with heavy particles like
W- and Z-bosons or the top–quark, which remains to be discovered first. In this context we note
an important consequence of the “spontaneous symmetry breaking”, namely, the generation of
the triple vertices HZZ and HWW

= , =
Z

H
v

Z

H
v

Z Z

H

W W

H

which are the most important vertices for Higgs production since, firstly, the coupling is large
and, secondly, they allow the Higgs to be singly produced which is particularly important for
energetic (phase space) reason when the Higgs is heavy. Detecting the Higgs by these couplings is
very promising and would be an unambiguous signal of the Higgs mechanism at work. Processes
of this kind are, H-production in Z-decay Z → Hµ+µ− which is allowed energetically provided
the Higgs is lighter than the Z, or in associated production with a Z e+e− → Z∗ → ZH at
sufficiently high energy which strongly depends on the unknown mass of the Higgs.

Z

H

Z∗

f f̄

e+

e−

H

Z

Z∗

Fig. 13.2: Higgs production processes

At present the limit for mH from LEP experiments is

mH > 60 GeV (95% CL) .

Possible windows for a light Higgs have been excluded all the way down to mH = 0 . At LEP2
the Higgs search can be extended to about mH ' MZ . If the Higgs should be heavier, and this
is likely to be the case, a discovery is possible only at future colliders like SSC or LHC.

Notice that higher order predictions depend on the unknown mass of the Higgs boson, the remnant
from spontaneous symmetry breaking, and the mass of the unknown top quark, the missing
member of the 3rd fermion family and other possible unknown physics. While higher order
predictions of physical quantities depend substantially on the unknown top mass the dependence
on the unknown Higgs mass is much weaker as we shall discuss below. At present, the Higgs
sector is completely unverified and its confirmation is a big challenge for experimental particle
physics.

13.5 The Higgs sector in the R-gauge

This chapter should be skipped by the reader who is not interested in problems of renormalizability
or higher order calculations.
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In the previous subsection we used the U -gauge to discuss the physical implications of the Higgs
mechanism. The problem with the U -gauge is, that it is not manifestly renormalizable. This will
become clear later on. In order to stay within a manifestly renormalizable framework we have to
keep the Higgs as a complex doublet and stay within a manifestly gauge invariant scheme. The
Higgs mechanism can be implemented exactly as before, but the Higgs and Yukawa Lagrangians
are more complicated due to the extra Higgs ghosts ϕ± and ϕ =

√
2 Im ϕ0 . We assume µ2 > 0

in the Higgs Lagrangian and we may choose the vacuum | 0 > such that

< 0 | Φb | 0 >=
v√
2
χb with v = v∗ > 0 .

Again we have to rewrite the Lagrangian in terms of a shifted field

Φ′b = Φb −
v√
2
χb

for which

< 0 | Φ′b | 0 >= 0

before we can set up a perturbative approach. We first calculate the vector boson (VB) mass
term

Lmass, VB = LHiggs

∣
∣
∣
Φb= v√

2
χb

+ V

(

v2

2

)

=
v2

2
(Dµχb)

+ (Dµχb)

=
v2

8
χ+
b

(
g′Bµ + gτa′Wµa′

) (
g′Bµ + gτaW

µ
a

)
χb

=
v2

8

(

g
′2BµB

µ − 2g′gBµW
µ
3 + g2Wµ3W

µ
3 + g2 (Wµ1W

µ
1 +Wµ2W

µ
2 )
)

=
v2(g2 + g

′2)

8
ZµZ

µ +
v2g2

4
W+
µ W

µ−

=
1

2
M2
Z ZµZ

µ +M2
W W+

µ W
µ− + “ 0 ·AµAµ ” .

We have used τa′τa = δa′a + iεa′acτc yielding τa′τaWµa′W
µ
a = WµaW

µ
a since the ε-term cannot

contribute due to the symmetry of Wµa′W
µ
a . From the mixed terms only τ3 contributes since

χ+
b τiχb = −δi3 . The fields W±, Z and A follow from diagonalizing the mass-matrix i.e. by setting
gWµ3−g′Bµ =

√

g2 + g′2Zµ and Wµ1W
µ
1 +Wµ2W

µ
2 = 2W+

µ W
µ− . Aµ must be the field orthogonal

to Zµ, which turns out to be massless, and this fact ascertains the existence of a residual Abelian
U(1)em symmetry. Of course the physical fields found here are identical to the ones we introduced
earlier by different arguments.

The remaining terms of LHiggs may be worked out by using Φb = Φ+ v√
2
χb with Φ =

(ϕ+

ϕ0

)

where

ϕ0 =
H − iϕ√

2
, H, ϕ real .

Then, we obtain

Φ+
b Φb −

v2

2
= Φ+Φ +

v√
2

(

χ+
b Φ + Φ+χb

)

= ϕ+ϕ− +
1

2
ϕ2 +

1

2
H2 + vH .
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By the ground state condition

∂V

∂Φb

∣
∣
∣
∣
∣
∣ Φb = v√

2
χb

= 0

we have µ2 = λv2 =
m2

H
2 . We then get for the part bilinear in the scalars:

LHiggs,0 =
(

∂µΦ+) (∂µΦ)− λv2H2

= ∂µϕ
+∂µϕ− +

1

2
∂µϕ∂

µϕ+
1

2
∂µH∂

µH − m2
H

2
H2 .

The ghost fields ϕ± and ϕ (the “would be Goldstone bosons”) are massless due to µ2− λv2 = 0 .
By the same condition linear terms in the scalars are absent.

For the scalar interactions we find

LHiggs, int = −λ (Φ+Φ
)− 2λv

(
Φ+Φ

)
H

= −λ (ϕ+ϕ−
)2 − λϕ+ϕ−

(

H2 + ϕ2
)

− λ

4

(

H2 + ϕ2
)2

−2λvϕ+ϕ−H − λvϕ2H − λvH3 .

There is a bilinear term mixing scalar and vector fields (p.i. means partial integration)

L(0)

Higgs, VB =
v√
2
χ+
b

(

i
g′

2
Bµ + ig

τa
2
Wµa

)

∂µΦ + h.c.

= −MZZµ∂
µϕ + iMWW

−
µ ∂

µϕ+ − iMWW
+
µ ∂

µϕ−

p.i.
= MZ (∂µZµ) ϕ− iMW (∂µW−µ ) ϕ+ + iMW (∂µW+

µ ) ϕ−

which can be compensated by a similar term of opposite sign from the gauge fixing Lagrangian
LGF (see below). Finally, there remains the quite ugly term

L(int)
Higgs, VB =

i

2
Φ+ (g′Bµ + gτaWµa

)

∂µΦ + h.c.

+
1

4
Φ+ (g′Bµ + gτa′Wµa′

) (
g′Bµ + gτaW

µ
a

)
Φ

+
1

4

v√
2
χ+
b

(
g′Bµ + gτa′Wµa′

) (
g′Bµ + gτaW

µ
a

)
Φ + h.c.

which has to be worked out in terms of W±µ , Zµ, Aµ and H,ϕ±, ϕ . The result is part of the
Feynman rules, which will be given later.

The Yukawa term is much simpler. We consider one doublet only. Thus

LYukawa = −Gbψ
(

ψ̄tLϕ
+ψbR + ψ̄bLϕ0ψbR

)

+ h.c.

−Gtψ
(
ψ̄tLϕ

∗
0ψtR − ψ̄bLϕ−ψtR

)
+ h.c.

with ϕ0 = v√
2

+ H−iϕ√
2

we get
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LYukawa = − v√
2
Gbψ

(
ψ̄bLψbR + ψ̄bRψbL

)

− v√
2
Gtψ

(
ψ̄tLψtR + ψ̄tRψtL

)

−Gbψψ̄tLψbRϕ+ +Gtψψ̄tRψbLϕ
+

+Gtψψ̄bLψtRϕ
− −Gbψψ̄bRψtLϕ−

+i
Gbψ√

2

(
ψ̄bLψbR − ψ̄bRψbL

)
ϕ

−Gbψ√
2

(

ψ̄bLψbR + ψ̄bRψbL
)

H

−iGtψ√
2

(

ψ̄tLψtR − ψ̄tRψtL
)

ϕ

−Gtψ√
2

(

ψ̄tLψtR + ψ̄tRψtL
)

H

where we used
(
ψ̄iLψkR

)∗
= ψ̄kRψiL . Working out the chiral projectors ψL = 1−γ5

2 ψ etc. and

replacing Gtψ =
√

2mt
v , Gbψ =

√
2mb
v we arrive at

LYukawa = −mbψ̄bψb −mtψ̄tψt −
mb

v
ψ̄bψbH −

mt

v
ψ̄tψtH

+i
mb

v
ψ̄bγ5ψbϕ− i

mt

v
ψ̄tγ5ψtϕ

− 1√
2v

(
mbψ̄t (1 + γ5)ψb −mtψ̄t (1− γ5)ψb

)
ϕ+

− 1√
2v

(
mbψ̄b (1− γ5)ψt −mtψ̄b (1 + γ5)ψt

)
ϕ− .

Due to the many unphysical vertices obtained in a renormalizable gauge higher order calculations
get extremely involved in general. Tree level calculations may be done in the U -gauge without
problems.

13.6 The Yukawa sector and flavor mixing

So far we have considered the Higgs–fermion couplings for each quark–lepton family separately.
The fact that there exist three families of fermions which are made up of fields with identical
SU(2)L ⊗ U(1)Y transformation properties allows us to form invariant Yukawa couplings for
arbitrary combinations of fields from the different families. Such flavor mixing is known to
occur in the quark sector while for leptons all searches for family mixing have been negative so
far.

For the quarks we have four horizontal vectors in “family space” with identical quantum
numbers with respect to the local gauge group. These are the left–handed and right–handed
versions of the up and down family vectors ui = (u, c, t) and di = (d, s, b) and we denote them by
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uiL, diL, uiR, diR . The general form of the Yukawa term reads

LqYukawa = −
3∑

i,j=1

[

GijtqL̄qiΦtujR +GijbqL̄qiΦbdjR + h.c.
]

with Gijtq and Gijbq arbitrary complex 3 x 3 matrices. The mass–matrix we obtain by inserting

Φb = v√
2

(0
1

)
and Φt = v√

2

(1
0

)
. Thus

Lqmass = − v√
2

3∑

i,j=1

[

GijtqūiLujR +Gijbq d̄iLdjR + h.c.
]

= −
3∑

i,j=1

[

mij
tqūiLujR +mij

bqd̄iLdjR + h.c.
]

with

mij
. =

v√
2
Gij. .

The quark fields considered up to now are in the weak interaction basis in which the matter
field Lagrangian is diagonal in the families. We now have to find the physical fields in the mass
eigenstate basis in which the mass–matrix is diagonal such that each field has a fixed mass35.
To this end we have to perform global unitary transformation on the horizontal vectors. Unitary
because they have to leave the kinetic terms of the quarks invariant and global because we have
to diagonalize the constant coupling matrices G· q .

We first perform the transformations

ujR → (VuR)jk ukR

djR → (VdR)jk dkR



u

d





jL

→ (VL)jk




u

d





kL

of the singlets and the doublet. Since the doublet fields are transformed as a doublet these
unitary transformations do not change the matter field Lagrangian which exhibits terms of the
form L̄qi · · ·Lqi , ūiR · · · uiR and d̄iR · · · diR ! For the mass matrices we obtain

mtq → V +
L mtq VuR real diagonal

mbq → V +
L mbq VdR

35Notice that the mass-matrices mbq and mtq are not Hermitean in general. We make use of the fact that any
square matrix can be diagonalized with the help of two unitary transformations. In our case we thus need four
matrices such that

V +
uLmtqVuR = Dtq = diag (mu,mc,mt)

V +
dLmbqVdR = Dbq = diag (md,ms,mb)

The matrices may be determined if we multiply the equations with its Hermitean conjugate, for example,

V +
uLmtqVuRV

+
uRm

+
tqVuL = V +

uLmtqm
+
tqVuL = D2

tq = diag (m2
u,m

2
c ,m

2
t )

and we see that VuL is the matrix which diagonalizes the Hermitean matrix mtqm
+
tq. This reduces our problem to

a standard eigenvalue problem for Hermitean operators.
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and the transformed matrices are required to be real diagonal each with 3 free parameters (the
3 independent masses) left out of the 18 we started with. A unitary 3 x 3 matrix has 9 parameters
and with the two matrices VuR and VL we have enough parameters to satisfy the 15 conditions
to make Gtq real diagonal. However, the remaining 3 parameters not used up from VL plus the 9
of VdR are not sufficient to diagonalize Gbq. We thus have to transform the (by convention) lower
components of the doublets by an independent unitary transformation:

djL → d̃jL = (UCKM)jk dkL

This however changes the form of Lmatter and generates a family–mixing in the charged current.
This leads us to the form of the charged current

JCCµ = (ū, c̄, t̄) γµ (1− γ5) UCKM








d

s

b








given earlier with the unitary 3× 3 matrix

UCKM =








Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb








.

Part of the parameters are used up to diagonalize

mbq → U+
CKM V +

L mbq VdR real diagonal .

After diagonalization we always assume the fields to be relabeled such that the fields with identical
quantum numbers are ordered with increasing mass:

mu ≤ mc ≤ mt and md ≤ ms ≤ mb .

How many observable parameters are there left ? The phase of a charged field is not observable. In
the charged current only left–handed fields are present. If we change the phases of the left–handed
fields

qL → eiφqqL , φq an arbitrary real number

the CKM-matrix changes according to

V →








e−iφu 0 0

0 e−iφc 0

0 0 e−iφt















Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb















eiφd 0 0

0 eiφs 0

0 0 eiφb








and thus

Vuidj → exp −i (φui − φdj ) Vuidj .

This generalizes to any number N of families. If all of the 2N fields are transformed with the
same phase Vuidj is not affected and hence there are 2N-1 phases which may be transformed away
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by rephasing the left–handed fields. This means that 2N-1 phases of UCKM are not measurable.
This is only true if the remaining parts of the Lagrangian are not affected. The neutral current
is not affected by this rephasing because it is diagonal in flavor and handedness. The Yukawa
Lagrangian obviously is not invariant under left–handed rephasing because it necessarily connects
left–handed and right–handed fields. However, we have the phases of the right–handed fields at
our disposal. We may choose these phases to be the same as the one’s of the left–handed fields
(for each individual flavor) such that LYukawa remains invariant.

We may count now the number of free parameters which affect the physics. Let us consider N
families. A unitary N × N matrix has N2 parameters. We may compare it with an orthogonal
N × N matrix, describing a rotation in N dimensional Euclidean space and exhibiting N(N-1)/2
parameters, which may be taken to be the Euler angles. We may parametrize the unitary matrix
by the N(N-1)/2 Euler angles, describing the rotations, plus N2-N(N-1)/2 phases. As we have
argued before 2N-1 of these phases are unobservable. Thus we end up with (N-1)(N-2)/2 physical
phases:

number of families number of angles number of phases

N N(N-1)/2 (N-1)(N-2)/2

2 1 0

3 3 1

4 6 3

For N=3 we have 4 relevant parameters. Besides 3 (real) 3-dimensional rotations there remains
one phase undetermined. Thus UCKM may be parametrized in terms of 3 rotation angles and one
phase36:

UCKM =








c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12c23 − c12s23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13








.

where cij = cos θij and sij = sin θij with i and j being the family labels. Without loss of generality
one may assume all cij and sij to be positive and the phase δ13 to lie in the range 0 ≤ δ13 < 2π.

A non-degenerate phase

δ13 6= 0 , π

leads to complex effective couplings in the charge changing current which violate CP -invariance.
It is important to notice that this specific kind of “standard model CP -violation” is only possible
for more than two families. In fact, the mixing matrix has to satisfy a number of conditions in
order that CP -violation occurs. The basic observation is that a unitary 3 by 3 matrix which has
a zero matrix element somewhere is necessarily real. Therefore mixing must be non-degenerate:

θij 6= 0 ,
π

2
ij = 12, 23, 13 .

36There are many equivalent parametrizations, here we present the one advocated by the Particle Data Group.
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For the same reason, CP -violation can only occur this way if all the states are distinguishable.
This means that all states with the same charge must have different masses:

mu < mc < mt and md < ms < mb .

which happens to be so in Nature. Otherwise, suppose the s and the b quarks would have the
same mass, for example, then the Lagrangian would be invariant under U(2) in (s,b)-flavor space.
If we perform the U(2) rotation




s′

b′



 =
1

X




Vus Vub

|Vub|eiδ
′ |Vus|eiδ








s

b





with X =
√

|Vus|2 + |Vub|2 and the phases constraint by unitarity, δ ′ = δ+ δus− δub+π we obtain








Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb















d

s

b








=








Vud X 0

Vcd V ′cs V ′cb

Vtd V ′ts V ′tb















d

s′

b′








the u-quark only couples to d and s′ but no longer to the b′ such that the CKM-matrix has a zero
element and hence would be real.

Due to unitarity, there is no mixing effect in the neutral current. In the weak interaction basis the
neutral current is diagonal in helicities, flavors and families and the unitary CKM-transformation

3∑

i=1

d̄iL · · · diL →
3∑

i=1

d̃iL · · · d̃iL ≡
3∑

i=1

d̄iL · · · diL

leaves its form invariant. This is called the GIM-mechanism explaining the absence of flavor-
changing neutral currents (FCNC). In fact, in order to explain the absence of FCNC’s, Glashow,
Iliopoulos and Maiani had to propose, in 1970, the existence of a fourth quark, the charm quark
c as a doublet partner of the s quark. At that time only three quarks where known.

The discovery of the charmonium (cc̄) state J/ψ in 1974 revealed the completeness of the 2nd
family with the charm quark c. The first 3rd family member showed up in 1975 with the discovery
of the τ . With the observation of the bottonium (bb̄) state Υ the existence of the b quark could
be established.

First indications of an unexpectedly heavy top quark came from the first observation of B 0 ↔ B0

oscillations by the ARGUS Collaboration in 1987 [?]. LEP precision measurements together with
SM fits in 1995 had constrained the top mass to

mt = 170± 10+17
−19 GeV

assuming a Higgs mass in the range 60 GeV < mH < 1000 GeV. Shortly after in 1995 the top
was discovered at the Tevatron (CDF and D0 at Fermilab) by tt̄–production [?]. More recent top
mass measurement at the Tevatron [?] determined the rather precise result

mt = 172.6 ± 1.4 GeV , (13.2)

in excellent agreement with the final indirect determination mt = 172.3+10.2
−7.6 GeV from the LEP

precision measurements of Z resonance parameters [?].

Note about neutrino masses and mixings: we notice that, according to Tab. ??, the right-handed
neutrinos (now established to exist in reality) are sterile. They do not carry any gauge charge
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and hence, in contrast to all other particles, do not interact via the spin 1 gauge bosons with
the rest of the world. Hence, the right-handed neutrinos could be absent altogether. This would
imply the leptonic CC to exhibit some very special properties: if ν`R would not exist, then
mν` = 0 and lepton numbers L` would be strictly conserved individually for each flavor ` = e, µ, τ .
For a long time this seemed to be supported by experiments. Today we know that this is true
approximately only, although lepton-number violating processes such as µ→ eγ still are expected
to have extremely small probability (see below). The observed neutrino mixing implies that
neutrino masses must be non-vanishing and non-degenerate. Indeed, for small neutrino masses,
the lepton-number violation is expected to be seen first in neutrino oscillations, which have been
subject of extensive experimental searches (Davis since 1968, ... , Super-Kamiokande 1998-2001,
SNO 2002, KamLAND 2003) [?, ?, ?, ?, ?].

We summarize the following important consequences:

• i) all masses of quarks, leptons and neutrinos are independent

• ii) the coupling of the Higgs boson to the fermions is universally proportional to each fermion
mass, for bosons proportional to the square of each boson mass

• iii) there is quark flavor violation in charge exchange weak interactions; similarly, the dif-
ferent neutrino flavors mix in charged current interactions

• iv) the phase in UCKM is CP-violating and thus potentially capable of explaining the ob-
served CP-violation in K-decays (Cronin and Fitch 1964). At least 3 families are needed to
“explain” CP-violation in this way. In fact it predicts O(1) (in units of Cabibbo’s λ = sin θc)
CP-violation in the B-system, which has been fully confirmed experimentally37.

• v) flavor is conserved in neutral currents at tree level (GIM mechanism). This is strikingly
supported by experiment, at least for the light flavors.

• vi) neutral currents are all CP-conserving at tree level.

These “predictions” of the SM must be considered a great success. Many extensions of the SM
encounter difficulties with flavor changing and CP-violation in neutral currents.

The leptonic CC has some very special properties, which derive from the absence of right-handed
neutrinos in them. Among the unsolved neutrino-puzzles we mention: Why are neutrino masses so
small (see saw mechanism?)? Do neutrinos have unusual magnetic moments? Are there neutrinos
which are their own antiparticles (Majorana neutrinos)?

The properties of the weak currents have been established in a long history which started with
Fermi in 1934. Here, we only mention some more recent of the fundamental experimental tests:

• V-A structure of the CC:
µ-decay provides the most sensitive clean direct tests for right-handed currents (e.g. SU(2)R⊗
SU(2)L ⊗ U(1)B−L extension of the SM). The best limit for the transition amplitude is

AV+A

AV−A
< 0.029 (90%CL)

37The particle-antiparticle mixing of the neutral kaons K0 ↔ K̄0 (Gell-Mann und Pais 1955) played a key role
in revealing CP violation as an observable effect. In the B-meson system B0 ↔ B̄0 mixing plays an analogous role.
CP violation in the B-system was found to be precisely as predicted by CKM mixing (BABAR at SLAC, Belle at

KEK 2001): sin(2φ1) = 0.78 ± 0.08 where φ1 = arg(−VcdV
∗
cb

VtdV
∗
tb

) [?]. For its prediction Kobayashi and Maskawa have

been awarded the Noble Pize in 2008 [?].
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• absence of flavor-changing NC at tree level:

Γ(KL → µ+µ−)/Γ(KL → all) = (9.5+2.4
−1.5)× 10−9

Γ(D0 → µ+µ−)/Γ(D0 → all) < 1.1× 10−5

Γ(B0 → e+e−)/Γ(B0 → all) < 3× 10−5

Flavor-changing NC processes are allowed in higher orders (rare processes).

• special properties of the lepton current:
The lepton numbers L` (` = e, µ, τ) are other additive quantum numbers which seem to be
strictly conserved at first sight. By convention L`(`

−) = 1 . That Lµ is separately conserved
follows from the non-observations of the decays

µ+ → e+ + γ Γ(µ→ eγ)/Γ(µ→ all) < 1.2× 10−11

µ+ → e+ + e− + e+ Γ(µ→ 3e)/Γ(µ→ all) < 1.0× 10−12

KL → e+ µ Γ(KL → eµ)/Γ(KL → all) < 4.7× 10−12

K+ → π+ + e + µ Γ(K+ → π+eµ)/Γ(K+ → all) < 2.1 × 10−10

µ− + (Z,A)→ e− + (Z,A) Γ(µ−Ti→ e−Ti)/Γ(µ−Ti→ all) < 4.0× 10−12

µ− + (Z,A)→ e+ + (Z − 2, A) Γ(µ−Ti→ e+Ca)/Γ(µ−Ti→ all) < 3.6× 10−11 .

Tests of the separate conservation of Lτ are much less stringent: The best limits are:

Γ(τ → eγ)/Γ(τ → all) < 2.7× 10−6 and Γ(τ → µγ)/Γ(τ → all) < 1.1 × 10−6 .

Within the experimentally well established electroweak standard model strict lepton number
conservation is only possible if the neutrinos are strictly massless. Non-vanishing neutrino
masses lead to neutrino-oscillations. Neutrino mixing searches (ν-oscillations ν` ↔ ν`′)
have confirmed the effect recently which implies the existence of non–vanishing neutrino
masses. Present direct upper limits on the neutrino masses are:

mνe < 3.0 eV (from 3H → 3He e− ν̄e)

mνµ < 190 keV (from π → µ νµ)

mντ < 18.2 MeV (from τ− → 3π ντ )

Lower bounds are not yet so easy to establish at present but observed neutrino mixing
phenomena indicate values of about two to three orders of magnitude lower than the above
direct upper limits. In any case this implies corresponding lepton numbers L` (` = e, µ, τ)–
violations.

Another important limit is the absence of ∆Le = 2 transitions. The limit from neutrino-
less double beta decay (Z,A) → (Z + 2, A) + e+ + e− is t1/2 > 1.6 × 1025 years for 76Ge
. The observation of such reactions would imply that the electron-neutrino is a massive
Majorana neutrino, a self-conjugate fermion which is its own antiparticle.

Neutrino mixing (ν-oscillations ν` ↔ ν`′) turned out to be very hard to establish. Ater decades
of intense research finally neutrino oscillations were confirmed [?, ?, ?, ?, ?], which means that
neutrinos have tiny non–degenerate masses and mix [?] similar to the quarks, although the mixing
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pattern looks very different from quark-mixing38. This also requires the right–handed singlet
neutrinos to exist, which, however, are sterile with respect to any gauge interaction. In 2002 R.
Davis Jr. and M. Koshiba awarded the Nobel Prize for pioneering contributions to astrophysics,
in particular for the detection of cosmic neutrinos.

At about the same time, when the neutrino puzzle was resolved, the measurements of direct
CP-violation (ε′) in the K-meson system [CP-LEAR[NA48]/CERN (2002), kTEV/FNL (2008)]
and CP-violation in the B-meson system [B factories BaBar/SLAC and Belle/KEK (2001)] was
experimentally proven to follow excatly the pattern of the Kobayashi-Maskawa 3–family quark
mixing and the resulting CP violation mechanism [?]. M. Kobayashi and T. Maskawa were
awarded the Nobel Prize in 2008, for their prediction (made in 1973) of O(1) (in units of Cabibbo’s
λ = sin θc) CP-violaton in the B–meson system.

13.7 Flavor mixing pattern

Historically flavor mixing was “observed” first by a comparison of the decays K → µν and
π → µν. Only u, d and s flavors (isospin and strangeness) were known at that time and the
approximate SU(3)flavor symmetry was established. This symmetry is substantially broken by
mass splittings within SU(3) multiplets like for the pseudoscalar mesons with mK ' 494 MeV
and mπ ' 140 MeV. Hadronic transition matrix-elements however satisfy SU(3) relations quite
well. Denoting the matrix element between the pseudoscalar meson P and the weak hadronic
current hµ(x) by

< 0|hµ(0)|P (p) >= ipµfP

one obtains for the ratio of the decay widths

Γ(K → µν)

Γ(π → µν)
=
mK

mπ

(

1−m2
µ/m

2
K

1−m2
µ/m

2
π

)2 (
fK
fπ

)2

' 1.3

and thus
(
fK
fπ

)2

' 0.075

and not O(1) as suggested by approximate SU(3) symmetry! Cabibbo solved this puzzle by
noting that the strangeness conserving ∆S = 0 part and the strangeness changing ∆S = 1 part
of the hadronic current mix in a specific way, described by a rotation:

hµ = hµ∆S=0 cos θc + hµ∆S=1 sin θc

such that the effective couplings for the two processes are

K → µν : GF sin θc

π → µν : GF cos θc

38Present results may be summarized as follows: a) Solar neutrinos: ∆m2
12 ≈ (7)×10−5 eV2, tan2 Θ12 ≈ 0.4 (large

νe ↔ νµ mixing), sin2 2Θ13 < 0.067. b) Atmospheric neutrinos: ∆m2
23 ≈ (1.3 − 3.0) × 10−3 eV2, sin2 2Θ23 > 0.9

(large angle νµ ↔ ντ mixing). Main features are:

• smallness of ν masses: mν < 1 − 2 eV, at least for one mass mν >
√

∆m2
23 > 0.04 eV,

• hierarchy of ∆m2’s : |∆m2
12/∆m

2
23| = 0.01 − 0.15,

• no strong hierarchy of masses: |m2/m3| > |∆m12/∆m23| = 0.18+0.22
−0.08 ,

• bi–large or maximal mixing between neighboring families (1-2) and (2-3),
• small mixing between remote families (1-3),
in any case mν � m`,mq.
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with sin θc ' 0.22 and thus

(
fK
fπ

)2

→ tan2 θc

(
fK
fπ

)2

' 0.0795

(
fK
fπ

)2

such that the SU(3) relation fK = fπ is satisfied quite well. Of course if one uses the above ratio
to fix the Cabibbo angle one has to consider other processes in order to see whether the above
hypothesis makes sense or not.

Similarly for the Baryons. β–decay: Gn = GF cos θc, Λ–decay: GΛ = GF sin θc.

In addition, as a result of CVC, for µ–decay: Gµ = GF !

As a result, Cabibbo universality works for ∆S = 0 and ∆S = 1 transitions, however, not for
∆S = 2 transitions, which require the c–quark!

As a next step Glashow, Iliopoulos and Maiani introduces the c quark in order to explain the
absence of FCNC’s and thus for the first time considered a 2 family world:

LCC =
g

2
√

2
(ū, c̄) γµ (1− γ5) UCKM




d

s



 W µ

with the unitary 2× 2 matrix

U =




Vud Vus

Vcd Vcs





.

For N=2 the quark mixing matrix is automatically real and given by a simple rotation, the
Cabibbo rotation matrix




cos θc sin θc

− sin θc cos θc





In the 2 family world the hadronic currents are:

CC: J+
µ = ūγµ (1 − γ5) ( d cos θc + s sin θc)

︸ ︷︷ ︸

d̃

Cabibbo

+ c̄γµ (1− γ5) (−d sin θc + s cos θc)
︸ ︷︷ ︸

s̃

GIM piece

NC: JZµ = ūγµ (vu − auγ5) u+ ¯̃dγµ (vd − adγ5) d̃
︸ ︷︷ ︸

FCNC

+ c̄γµ (vu − auγ5) c + ¯̃sγµ (vd − adγ5) s̃ GIM piece

= ūγµ (vu − auγ5) u+ d̄γµ (vd − adγ5) d

+ c̄γµ (vu − auγ5) c + s̄γµ (vd − adγ5) s .

Without the c quark s̃ would be absent in the CC and if one assumes that in the NC only the
fields already present in the CC enter one ends up with a flavor changing NC. Although NC’s had
not been observed at all (before 1973) such FCNC’s would have had observable consequences.
The N=2 mixing scheme sometimes is called Cabibbo universality. Due to the existence of a third
family Cabibbo universality is violated, because the 2 by 2 sub-matrix of the CKM-matrix is not
unitary. A comparison of the N=2 and the N=3 mixing schemes in the 2 family world yields:
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U N=2 N=3

Vud cos θc c12

Vus sin θc s12

Vcd − sin θc −s12c23

Vcs cos θc c12c23

where we used the excellent approximation c13 = 1, as c13 is known to deviate from unity only
in the fifth decimal place.

The N=2 mixing scheme was extended to N=3 by Kobayashi and Maskawa in 1973 in order to
incorporate CP -violation in a natural way.

Empirically the CKM matrix elements have the approximate moduli

|V | '








1 λ λ3

λ 1 λ2

λ3 λ2 1








with λ ' sin θc ' 0.22 given by the sine of the Cabibbo angle. This suggests the Wolfenstein
parametrization (by unitarization up to higher order terms)

V =








1− 1
2λ

2 λ Aλ3 (ρ− iη)

−λ 1− 1
2λ

2 Aλ2

Aλ3 (1− ρ− iη) −Aλ2 1








+O(λ4)

where A ∼ 1 and ρ2 + η2 < 1. The corresponding quark decay pattern is illustrated in the
following diagram:

� �

� �

� � �

� � �

Figure 13.11: The CKM mixing hierarchy (??). FCNCs at tree level are forbidden [X].

Note: the u quark is stable, the s and b quarks are metastable. Flavor changing neutral current
transitions are allowed only as second (or higher) order transitions: e.g. b → s is in fact b →
(t∗, c∗, u∗)→ s, where the asterix indicates “virtual transition”.

Exercises: Section 13
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① The left (L)- and right (R)-handed fields are given by

ψL =
1− γ5

2
ψ , ψR =

1 + γ5

2
ψ .

Show that a mass term is given by

ψ̄ψ = ψ̄LψR + ψ̄RψL .

Discuss helicity mixing for the terms

S = ψ̄ψ , P = ψ̄γ5ψ , V µ = ψ̄γµψ , Aµ = ψ̄γµγ5ψ , T µν = ψ̄σµνψ

② Consider two free fields ψ1 and ψ2 with different masses m1 and m2 . Calculate the diver-
gences of the vector and axial vector currents

V µ = ψ̄1γ
µψ2 and Aµ = ψ̄1γ

µγ5ψ2

∂µV
µ =? ∂µA

µ =?

What is the consequence of this result for the weak currents ? (Hint: Use the Dirac
equations)

③ Find the form of the quark currents which couple to W and Z and the photon. As a starting
point use the SU(2)L ⊗ U(1)Y covariant derivative form

Lq = b̄Riγ
µ
(

∂µ + i
1

3
g′Bµ

)

bR + t̄Riγ
µ
(

∂µ − i
2

3
g′Bµ

)

tR

+L̄qiγ
µ
(

∂µ − i
1

3

g′

2
Bµ − ig

τa
2
Wµa

)

Lq

Check the correctness of the covariant derivatives with the quantum numbers assigned to
the quarks. We have denoted by Lq =

(t
b

)

L
the left–handed doublet. tR and bR are the

corresponding right–handed singlets. Quark mixing should be ignored.

④ Work out the Yang-Mills couplings for SU(2)L in terms of the physical fields W±, Z and
A .

⑤ Give numerical values for the Higgs couplings to the various particles. Calculate the decay
width of the Higgs into a fermion pair and estimate the branching ratios for the different
flavors. Discuss the dependence of the Higgs mass for the range 0 < mH < 2MW . Compare
the Higgs width with the width of known particles.
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14 Physics at the Z resonance

14.1 Production and Decay of the Weak Vector Bosons

At lowest order, production and decay of massive vector bosons are described by the Born dia-
grams

:=
g

2 cos ΘW
f̄c̄α (γµ(vf − afγ5))αβ fcβ δc̄c

:=
g

2
√

2
V12 f̄2c̄α (γµ(1− γ5))αβ f1cβ δc̄c , (14.1)

f̄

f

f̄2

f1

Z

W

where V12 denotes the Cabibbo-Kobayashi-Maskawa mixing matrix. We have explicitly indicated
the color and spinor indices. Z and W± production and decay may be described by one general
vertex ĝf̄2γ

µ(v − aγ5)f1. The production cross section for unpolarized beams in the zero-width
approximation is

f1(p1) + f̄2(p2)→ V (p)

σ(f1 + f̄2 → V ) =
1

Nc1

1

Nc2

1

(2s1 + 1)

1

(2s2 + 1)
π δ

(

(p1 + p2)2 −M2
V

)

·
∑ |T12|2
M2
V

(14.2)

where T12 is the transition matrix element and the sum extends over color (ci) and spin (si) of
initial and final state particles. With respect to the initial states, the cross section is determined
by the color and spin averages of |T12|2.

Equation (14.2) follows from Eq. (3.35)

dσ =
(2π)4δ(4) (Pf − Pi)

2
√

λ (s,m2
1,m

2
2)
| T12 |2dµ(p)

by taking the spin (color) average over the initial spins (colors) and sum over the final spins (colors)
| T12 |2 → 1

4

∑

s1s2λ
| T12 |2 and integration over the phase space. If we neglect the electron mass (m2

e <<

M2
Z , s = (p1 + p2)2), the total unpolarized cross–section for Z–production in e+e−–annihilation is

σ(e+e− → Z) |s'M2
Z

=
1

4

∫
d3p

(2π)3 2EZ

(2π)4δ(4)(pZ − p1 − p2)

2s

∑

| T12 |2

=
2π δ(EZ −E)

16sE

∑

| T12 |2 =
1

4

∑ | T12 |2
M2
Z

π δ(s−M2
Z) .

In the c.m. frame EZ = MZ and E = E1 + E2 =
√
s. Furthermore, we used the following properties of

the δ–function: δ(x) = δ(−x) and δ(ax) = 1/a δ(x) with x = E −MZ and a = 2E = 2MZ = E +MZ for
E = MZ . Hence (E −MZ)(E +MZ) = s−M2

Z .

The decay width is determined by the same
∑ |T12|2, since the processes are related by crossing,

and given by

V (p)→ f1(p1) + f̄2(p2)
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Γ(V → f1 + f̄2) =
1

(2sV + 1)

MV

16π

2|~p |
MV

∑ |T12|2
M2
V

(14.3)

where ~p is the decay momentum of a fermion in the center of mass frame.

Equation (14.3) follows from Eq. (3.38)

dΓ =
(2π)4δ(4) (Pf − Pi)

2M
| Tfi |2 dµ(p1)dµ(p2)

by taking the spin average over the initial spin and sum over the final spins (colors) |T12 |2 → 1
3

∑

s1s2λ
|T12 |2

and by integration of the two–body phase space in the rest frame of the decaying particle:

Γ =
(2π)4

2M

1

(2π)6

1

3

∫
d3p1

2E1

d3p2

2E2
δ(4) (M − p1 − p2)

∑

| T12 |2 .

The integration over d3p2 is trivial by three momentum conservation and yields ~p2 = −~p1 and we denote
|~p2 | = |~p1 | = p. We then write d3p1 in polar coordinates and note that the remaining integrand does not
depend on the angles. The angular integration then yields 4π and hence

Γ =
1

2M

4π

(2π)2

1

12

∞∫

0

dp p2

√

p2 +m2
1

√

p2 +m2
2

δ

(

M −
√

p2 +m2
1 −

√

p2 +m2
2

)
∑

| T12 |2 .

The last integration may be performed by choosing the argument of the δ–function as an integration
variable39. Thus let

f(p)
.
=
√

p2 +m2
1 +

√

p2 +m2
2 −M

and p0 be the solution of f(p0) = 0. The derivative with respect to p reads

f ′(p) =
p

√

p2 +m2
1

+
p

√

p2 +m2
2

=
p(
√

p2 +m2
1 +

√

p2 +m2
2 )

√

p2 +m2
1

√

p2 +m2
2

=
pM

√

p2 +m2
1

√

p2 +m2
2

,

where in the last step we have used the fact that under the integral we have p = p0 and hence (
√

p2 +m2
1 +

√

p2 +m2
2) = M . We note that

dp p2

√

p2 +m2
1

√

p2 +m2
2

δ

(

M −
√

p2 +m2
1 −

√

p2 +m2
2

)

= f ′(p) dp
p

M
δ(f) = df

p0

M
δ(f)

and thus obtain

Γ =
1

24πM2

∑

| T12 |2 p0

with p0 = |~p | the magnitude of the three momentum of the decay products in the c.m. frame.

Finally, let us calculate p0: p0 is the solution of
√

p2 +m2
1 +

√

p2 +m2
2 = M . If we square the defining

equation we obtain

p2
0 +m2

1 + p2
0 +m2

2 + 2
√

p2
0 +m2

1

√

p2
0 +m2

2 = M2

and squaring

2
√

p2
0 +m2

1

√

p2
0 +m2

2 = M2 − (p2
0 +m2

1)− (p2
0 +m2

2)

39As a rule

δ(f(x)) =
∑

x0

|f ′(x0)−1| δ(x− x0)

where x0 are the solutions of f(x0) = 0 .
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once more, we get

4(p2
0 +m2

1)(p2
0 +m2

2) = (M2 − (p2
0 +m2

1)− (p2
0 +m2

2))2

which may be written as

M4 + (m2
1 −m2

2)2 − 2M2(m2
1 +m2

2)− 4M2p2
0 = 0 .

such that

p2
0 =

[(
M2 − (m1 +m2)2

) (
M2 − (m1 −m2)2

)]
/(4M2)

from which p0 is trivially obtained. Only the positive solution is physical. Our final result for the width
of a two body decay is then given by

Γ = M
16π

√

1− (m1−m2)2

M2

√

1− (m1+m2)2

M2
1

2sV +1

∑
| T12 |2

M2
(14.4)

This formula exhibits explicitly the kinematic limit for the two body phase space: M > m1 +m2.

The relevant T -matrix element is given by

T12 = ĝv̄2c̄α(p2, s2)(γµ(v − aγ5))αβu1cβ (p1, s1)ε∗µ(p, λ)δc̄c .

The color and spin sums
∑ |T12|2 may be calculated using the completeness relations

∑

s1
u1c1α1(p1, s1)ū1c̄1β1(p1, s1) = (p/1 +m1)α1β1 δc̄1c1

∑

s2
v2c2α2(p2, s2)v̄2c̄2β2(p2, s2) = (p/2 −m2)α2β2 δc̄2c2

∑

λ ε
∗
µ(p, λ) εν(p, λ) = −gµν +

pµpν
M2

V

and the trace of a product of Kronecker δcc′ in color space
∑

color

= Ncf .

As usual p/
.
= pαγ

α. We obtain

∑

| T12 |2 = ĝ2 Ncf ·
(

−gµν +
pµpν
M2
V

)

· Tr (p/2 −m2) γµ (v − aγ5) (p/1 +m1) γν (v − aγ5) .

For the calculation of the trace we first anticommute γ5 to the right using γ5γ
α = −γαγ5 :

X = (p/2 −m2) γµ (v − aγ5) (p/1 +m1) γν (v − aγ5)

= p/2 γ
µ (v − aγ5) p/1 γ

ν (v − aγ5) + m1 p/2 γ
µ (v − aγ5) γν (v − aγ5)

− m2 γ
µ (v − aγ5) p/1 γ

ν (v − aγ5)−m1m2 γ
µ (v − aγ5) γν (v − aγ5)

= p/2 γ
µ p/1 γ

ν (v − aγ5)2 + m1 p/2 γ
µ γν (v + aγ5) (v − aγ5)

− m2 γ
µ p/1 γ

ν (v − aγ5)2 −m1m2 γ
µ γν (v + aγ5) (v − aγ5)

and use (v − aγ5)2 = v2 + a2 − 2vaγ5 and (v + aγ5) (v − aγ5) = v2 − a2 . Taking traces,

Tr (γµγνγργσ) = 4 (gµνgρσ + gµσgνρ − gµρgνσ)

Tr (γµγνγργσγ5) = 4 i εµνρσ

Tr (γµγν) = 4 gµν

Tr (γµγνγρ) = Tr (γµγνγργ5) = 0
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we find

TrX = 4 (v2 + a2) [pµ2p
ν
1 + pµ1p

ν
2 − gµν (p1p2)]

− 8va i εαµβνp2αp1β − 4 (v2 − a2)m1m2 g
µν .

Since this trace is contracted with the symmetric tensor −gµν +
pµpν
M2

V

the ε–tensor term cannot contribute

and we obtain, using gµνg
µν = g ν

ν = 4 ,

∑

| T12 |2 = ĝ2 Ncf

{

4 (v2 + a2)

[(

2− p2

M2
V

)

(p1p2) + 2
(pp1) (pp2)

M2
V

]

+ 4 (v2 − a2)m1 m2

(

4− p2

M2
V

)}

.

We now use the kinematic relations: p = p1 + p2, p2 = p2
1 + 2p1p2 + p2

2 = s . We allow the vector boson to
be off-shell, such that p2 = s 6= M2

V . The on-shell conditions for the fermions read: p2
1 = m2

1 and p2
2 = m2

2

and we get

p1p2 =
1

2
(s−m2

1 −m2
2) , pp1 =

1

2
(s+m2

1 −m2
2) , pp2 =

1

2
(s−m2

1 +m2
2)

for the scalar products. Thus

∑
|T12|

2

M2
V

= 4ĝ2Ncf

{

(v2 + a2)
(

s
M2

V

− (2− s
M2

V

)
m2

1+m2
2

2M2
V

− (m2
1−m

2
2)2

2M4
V

)

+ (v2 − a2)(4− s
M2

V

)m1m2

M2
V

}

.

The transition matrix element
∑ | T12 |2 for on-shell vector bosons s = (p1 + p2)2 = M2

V is given
by

∑
|T12|2
M2

V
= 4ĝ2Ncf

{

(v2 + a2)

(

1− m2
1+m2

2

2M2
V
− (m2

1−m2
2)2

2M4
V

)

+ (v2 − a2) 3 m1m2

M2
V

}

.

The coupling ĝ = (1/ cos ΘW , 1)g/2 may be written in the form

ĝ2 =
1

v2
ĝ2v2 =

√
2GµM

2
V

since
√

2Gµ = 1/v2 , g2v2 = 4M2
W and g2v2/ cos2 ΘW = 4M2

Z .

For V = Z with f1 = f2 = f we have

ĝ2 =
1

v2

g2v2

4 cos2 ΘW
=
√

2GµM
2
Z

vf = −2Qf sin2 ΘW + T3f = −2Qf sin2 ΘW ±
1

2

af = T3f = ±1

2

and hence, using 2Qf T3f = |Qf | ,

(v2
f + a2

f ) =
1

2
− 2 |Qf | sin2 ΘW + 4 Q2

f sin4 ΘW

(v2
f − a2

f ) = − 2 |Qf | sin2 ΘW + 4 Q2
f sin4 ΘW .
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For V = W± and f1 6= f2 we have simply

ĝ2 =
1

v2

g2v2

4
=
√

2 GµM
2
W

v = a =
1√
2

and therefore

(v2 + a2) = 1 , (v2 − a2) = 0 .

As a result the formula for the partial widths are given by

ΓV→f1f̄2 =
√

2GµM3
V

12π
2|~p |
MV

Ncf

{

(v2 + a2)

(

1− 1
2

(m2
1+m2

2)

M2
V
− 1

2
(m2

1−m2
2)2

M4
V

)

+(v2 − a2)3m1m2

M2
V

} (14.5)

or, for light fermions mi �MV , |~p| ' MV
2 ,

ΓW→f1f̄2 =
√

2GµM3
W

12π Ncf |V12|2 ; ΓZ→ff̄ =
√

2GµM3
Z

12π Ncf (v2
f + a2

f ) (14.6)

where we have reinserted the Cabibbo-Kobayashi-Maskawa matrix element V12 for the charged
current. Notice that for sin2 ΘW = 0 (i.e. g′ = 0) MZ = MW and

ΓW→f1f̄2 = ΓZ→f1f̄1 + ΓZ→f2f̄2 .

Table 14.1 Lowest order predictions for ΓW and ΓZ for sin2 ΘW = 0.23,

MW = 80.19(32) GeV and MZ = 91.174(21) GeV.

W → f1f̄2 Z → f f̄

f1f̄2 Γ0(MeV ) Br(%) f f̄ f(sin2 ΘW )+ Γ0(MeV ) Br(%)

`ν̄` 225.6 11.1 ν`ν̄` 1 165.8 6.8

inv 497.5 20.5

`¯̀ 0.5032 83.4 3.4

ud̄ 676.7 33.3 uū 0.5748 286.0 11.8

dd̄ 0.7404 368.3 15.2

had 1353.4 66.6 had 1676.6 69.2

tot 2030.1 100.0 tot 2424.3 100.0

Since mt > MW , MZ , the decays Z → tt̄ and W → tb are energetically forbidden. LEP has
excluded the existence of a fourth family neutrino of mass mν < MZ/2. Since the b quark is
the heaviest of the produced fermions, with a mass mb ' 5 GeV , we can safely neglect all mass
effects in calculating the widths.

By Γinv = 3ΓZ→νν̄ we denote the invisible width for the decays into νe, νµ and ντ . Γhad is the
total hadronic width for the decays into u, d, s, c and b quarks or the corresponding hadronic
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states. The total Z-width (and similarly the W-width) is given with high accuracy by the sum
over the two body decays

Γtot = ΓZ '
∑

f

Γf ; Γf = ΓZ→ff̄ = Γν ff (sin2 ΘW )

with ff (sin2 ΘW )
.
= 1−4|Qf | sin2 ΘW +8Q2

f sin4ΘW normalized to the ν channel. Since the Higgs
is known not to be light (mH > 60 GeV), the contribution ΓZ→Hff̄ is insignificant. It would only
be non-negligible for a very light Higgs.

We now consider

Z−production in e+e−collisions.

In the light fermion approximation (see Eq. (14.3))
∑ |T12|2
M2
V

= 3 · 16π
ΓZ→ff̄
MZ

and hence, in the narrow width approximation,

σ(e+e− → Z)
∣
∣
s'M2

Z
= 12π

ΓZ→e+e−
MZ

πδ(s−M 2
Z)

with s = (p1 + p2)2 = 4E2
b and Eb the beam energy.

Using the relation (the Breit-Wigner form will be “derived” below)

πδ(s−M 2
Z) = lim

ΓZ→0

MZΓZ
(s−M2

Z)2 + Γ2
ZM

2
Z

we easily obtain the cross section for (finite width) resonance production, described by a Breit-
Wigner line-shape,

σ(e+e− → Z) =
12π

M2
Z

ΓZ→eeΓZM2
Z

(s−M2
Z)2 + Γ2

ZM
2
Z

.

Near resonance, the cross section for e+e− → Z → f f̄ is

σ(e+e− → Z → f f̄) = σ(e+e− → Z) · ΓZ→ff
ΓZ

where the last factor is the branching fraction, and hence

σf0Z = σ(e+e− → Z → f f̄) = σfpeak

Γ2
ZM

2
Z

(s−M2
Z)2 + Γ2

ZM
2
Z

. (14.7)

where σfpeak is the peak cross section, evaluated at s = M 2
Z ,

σfpeak =
12π

M2
Z

Γe
ΓZ

Γf
ΓZ

. (14.8)

Table 14.2 Lowest order peak cross section σfpeak. MZ and Γf as in Tab. 14.1.

(1GeV −2 = 0.38938 × 106 nb)

f ν µ u d inv had tot

σfpeak(nb) 4.16 2.09 7.17 9.23 12.47 42.03 60.77
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3.2 The process e+e− → f f̄ , (f f̄γ)(f 6= e)

We now consider in detail the process

e+(p+) + e−(p−)→ f̄(q+) + f(q−) + “γ(k)”

in the Born approximation given by the diagrams in Fig. 14.1 Real γ emission will be considered
later.

In the center of mass frame in terms of the beam energy s = (p+ + p−)2 = 4E2
b and t =

(p+ − q+)2 = 2E2
b (1 − cos θ) with θ the angle between p+ and q+. By the arguments given in

the previous chapter we can safely neglect the fermion masses if we assume s� m2
b (the bottom

quark is the heaviest of the final state fermions at LEP energies). tt̄ production is not considered.

+

e+ f̄

e− f

γ Z

Fig. 14.1: Born diagrams for the process e+e− → f f̄

Since we are considering beam energies Eb far above the Υ threshold the fermions are essentially
massless and helicity is a good quantum number. It is therefore convenient to use left- and right-
handed fields fL = 1−γ5

2 f and fR = 1+γ5
2 f which describe polarized fermion states: The couplings

are

:= eQf f̄γ
µf ; := MZ

v f̄γµ(vf − afγ5)f (14.9)
f̄

f

f̄

f

γ Z

where f̄γµf = f̄Lγ
µfL + f̄Rγ

µfR and f̄γµ(vf − afγ5)f = εLf f̄Lγ
µfL + εRf f̄Rγ

µfR with εLf =
vf + af and εRf = vf − af .

We notice that for the vector-like couplings (i.e. vector or axial-vector) no f̄R . . . fL or f̄L . . . fR
terms are present. This is a general feature of any gauge interaction (coupling via spin 1 vector
fields). Since e−L describes a left-handed electron and a right-handed positron etc. there are
no transitions from equal helicity e+e− into equal helicity f̄f states! Therefore there are only
four possible transition amplitudes Thihf for polarized states: TLL, TLR, TRL, TRR, where hi =
−1 (L), +1 (R) is the electron helicity and hf = −1 (L), +1 (R) the final state helicity of the
fermion f . The helicity of the antiparticle in each case is fixed to have the the opposite value of
that of the particle. This is true for any gauge theory!

The differential cross section is given by

dσ

d cos θ
=

1

32πs

Ncf

4

∑

|Thihf |2 (14.10)

with

|Thehf |2 = (1± cos θ)2

∣
∣
∣
∣
∣
εheeεhff

√
2GµM

2
Zs

s−M2
Z + iMZΓZ

+QeQf4πα

∣
∣
∣
∣
∣

2

(14.11)

The sign +(−) is for TLL,TRR (TLR, TRL).
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We give a brief derivation of the above result Eq. (14.11). The matrix elements for the two graphs of
Fig. 14.1 are given by

TZhehf
= ig2

4 cos2 ΘW
εhe

εhf

{v̄e(−he)γµue(he)}{ūf (hf )γµvf (−hf )}

s−M2
Z

+iMZΓZ

T γhehf
= ie2QfQe

{v̄e(−he)γµue(he)}{ūf (hf )γµvf (−hf )}
s

and the transition amplitudes |Thehf
|2 are proportional to

Ahehf

.
= Tr {ve+ v̄e+(−he)γµue− ūe−(he)γ

ν} · Tr {uf ūf (hf )γµvf̄ v̄f̄ (−hf )γν}

= Tr {p/+γ
µp/−

(
1 + heγ5

2

)2

γν} · Tr {q/−γµq/+

(
1 + hfγ5

2

)2

γν} .

In the last step we have used the following projection operators for fixed helicity:

uh(p, s)ūh(p, s) = (p/+m)
1 + hγ5s/

2

vh(p, s)v̄h(p, s) = (p/−m)
1− hγ5s/

2
.

Then, using

Tr {p/+γ
µp/−

(
1 + hγ5

2

)2

γν} = 2{pµ−pν+ + pµ+p
ν
− − gµν(p+p−)− iheεαµβν(p+)α(p−)β}

we obtain

Ahehf
= 8 {(p−q+)(p+q−) + (p−q−)(p+q+) + hehf [(p−q+)(p+q−)− (p−q−)(p+q+)]}

It is natural to evaluate this amplitude in the c.m. frame

- �

�
�
�
�
�
�
�
�
�
��

�
�
���

�
�

���

�
e− e+

f̄

f

θ

where we have

(p+q+) = (p−q−) = p2(1− cos θ) =
s

4
(1− cos θ)

(p+q−) = (p−q+) = p2(1 + cos θ) =
s

4
(1 + cos θ)

and hence

Ahehf
=

s2

2

[
(1− cos θ)2 + (1 + cos θ)2 + hehf{(1 + cos θ)2 − (1− cos θ)2}

]

= s2(1 + hehf cos θ)2

The total transition amplitude, which is the square of the sum of the two terms the Z– and the γ–exchange
diagrams is then given by

|Thehf
|2 = s2(1 + hehf cos θ)2

∣
∣
∣
∣
∣
εhe

εhf

√
2GµM

2
Z

s−M2
Z + iMZΓZ

+QeQf
4πα

s

∣
∣
∣
∣
∣

2

= (1 + hehf cos θ)2
{

ε2
he
ε2
hf

2G2
µM

4
Z |χ(s)|2 + 16π2α2Q2

f − 8πα
√

2GµM
2
ZQfεhe

εhf
Reχ(s)

}
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where χ(s) := s
s−M2

Z
+iMZΓZ

is the resonance factor.

The differential cross section in the c.m. frame then is given by

dσ

d cos θ
=
|T |2
32πs

For unpolarized beams we still have to perform the appropriate averaging and spin summation. The tree
terms of |T |2

∑

he=±1,hf=±1(1 + hehf cos θ)2 = (1 + cos2 θ)
∑

he=±1,hf=±1 εhe
εhf

(1 + hehf cos θ)2 = vevf (1 + cos2 θ) + 2aeaf cos θ
∑

he=±1,hf=±1 ε
2
he
ε2hf

(1 + hehf cos θ)2 = (v2
e + a2

e)(v
2
f + a2

f )(1 + cos2 θ) + 8afvfaeve cos θ

In the cross section we distinguish three pieces, the pure QED cross section, the γ−Z interference
term and the pure Z-exchange cross section:

dσ

d cos θ
(e+e− → γ∗, Z∗ → f̄f) =

dσγ

d cos θ
+

dσγZ

d cos θ
+

dσZ

d cos θ
. (14.12)

Of course, in general, there is no way to measure these terms individually. However, individual
terms may dominate as for example the QED piece at low s or the Z-exchange term near the
Z-resonance.

For unpolarized beams and final states we obtain

dσγ

d cos θ =
πα2Q2

fNcf

2s (1 + cos2 θ)

dσγZ

d cos θ = −αQf

√
2GµM2

Z
4s NcfReχ(s) · {vevf (1 + cos2 θ)

+2aeaf cos θ}
dσZ

d cos θ =
G2

µM
4
Z

16πs Ncf |χ(s)|2 ·
{

(v2
e + a2

e)(v
2
f + a2

f )(1 + cos2 θ)

+8aeafvevf cos θ}

(14.13)

with the resonance factor

χ(s) =
s

s−M2
Z + iMZΓZ

.

Near the Z-resonance, the process e+e− → f f̄ is predominantly a parity violating weak interaction
transition. The axial couplings af lead to asymmetries at the tree level.

i) asymmetry in the angular distribution due to terms linear in cos θ called forward-backward
asymmetry or charge asymmetry AFB , e.g. in e+e− → µ+µ− the µ+ is produced with
different probability in opposite directions relative to the incoming e+. 40

ii) asymmetry between cross sections for (polarized) L and R states, the so called left-right
asymmetries ALR.

Before we discuss the asymmetries in more detail, we briefly consider the total cross section.

40This type of asymmetry (though much smaller) is also present in pure QED (parity conserving) coming from
higher order effects (box diagrams).
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Total cross section

The total cross section, with respect to the final state couplings, may be split into a pure vector
and a pure axial-vector piece

σf0 =

∫ +1

−1
d cos θ

dσ

d cos θ
= σV V0f + σAA0f (14.14)

with

σV V0f =
4πα2Q2

fNcf

3s − 2αQf

√
2GµM2

ZNcf

3s Reχ(s)vevf +
G2

µM
4
ZNcf

6πs |χ|2(v2
e + a2

e)v
2
f

σAA0f =
G2

µM
4
ZNcf

6πs |χ|2(v2
e + a2

e)a
2
f .

Near the Z-resonance the pure Z-exchange term dominates and we may rewrite the cross section
in the form:

σ0f = σγ0f + σγZ0f + σZ0f = σZ0f ·


1 +
σγZ0f

σZ0f



+ σγ0f = σZ0f

(

1 +Rf
s−M2

Z

s

)

+ σγ0f .

For Rf we find a γ − Z interference correction

Rf =
8παQeQf√

2GµM2
Z

vevf
(v2
e + a2

e)(v
2
f + a2

f )
.

At resonance (s = M 2
Z) this correction does not contribute. σγ0f is the QED background term

σγ0f =
4πα2Q2

fNcf

3s

which leads to a correction below 1% at resonance. Finally, using formula (39) for the width
we find Eqs. (40) and (41) in agreement with our simplified derivation of the previous chapter.
Closer inspection shows that the cross section formula

σfeff(s) =
12πΓeΓf

(s−M2
Z

)2+s2
Γ2
Z

M2
Z

{

s
M2

Z
+Rf s−M

2
Z

M2
Z

+ If ΓZ
MZ

+ . . .

}

+ σf0,QED (14.15)

yields a model independent fit of the Z-line-shape provided Γe,Γf and ΓZ are the physical (par-
tial) widths, i.e. they include higher order corrections. We have included possible corrections

proportional to ΓZ/MZ and the ellipses represent higher order terms in the expansion in
s−M2

Z

M2
Z

and ΓZ
MZ

. One important point (see below) is that ΓZ(s) defined in terms of the Z self-energy
ΠZ(s) by MZΓZ(s) = ImΠZ(s) is to high accuracy proportional to s:

ΓZ(s) ' s

M2
Z

ΓZ .

3.3 Asymmetries

A. Forward-backward asymmetry:

The differential cross section has a cos θ even and a cos θ odd term:

dσ

d cos θ
= σ0f ·

3

8
(1 + cos2θ) + ∆0f cos θ (14.16)
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where σ0f is the total cross section and

∆0f = ∆γZ
0f + ∆Z

0f

∆γZ
0f = −αQfNcf

2s

√
2GµM

2
ZReχaeaf

∆Z
0f =

G2
µM

4
Z

2πs Ncf |χ|2aeafvevf .

The forward-backward asymmetry is

AFB(s, cos θ) =
dσ(θ)− dσ(π − θ)

dσ(θ) + dσ(π − θ)
=

8

3

∆0f

σ0f

cos θ

1 + cos2θ

or in integrated form

AFB(s) =

(∫ 1
0 −

∫ 0
−1

)

d cos θ dσ
d cos θ

∫+1
−1 d cos θ dσ

d cos θ

=
∆0f

σ0f
. (14.17)

Particular regimes of interest are the following:

i) For small s�M 2
Z we have

R0f =
σ0f

σµµ
'
{

Q2
fNcf +

√
2Gµ

2πα
Ncf

ve(Qfvf )

1− s/M2
Z

}

(14.18)

where

σµµ = σ0(e+e− → γ∗ → µ+µ−) =
4πα2

3s

is the QED “point” cross section used to normalize the hadronic cross section

σhad = σ(e+e− → hadrons ) =
∑

quark q

σ0q

R(s)
.
=

σhad

σµµ
=
∑

q

Rq ' 3
∑

q

mq≤
√
s

Q2
q (14.19)

Notice that in this quantity the color factor 3 can be directly measured! For the asymmetry we
get

Aff̄FB(s) ' 3

8
ae

(

af
Qf

) √
2Gµ
πα

s

1− s/M2
Z

(14.20)

an expression which vanishes for s→ 0.

ii) For s 'MZ we find

AFB(M2
Z) =

∆Z
0f (M2

Z)

σZ0f (M2
Z)

=
3

4
· 2veae
v2
e + a2

e

· 2vfaf
v2
f + a2

f

. (14.21)

Asymmetries at the Z−resonance can all be expressed in terms of the coupling ratios

Af
.
=

2vfaf
v2
f + a2

f

=
ε2
Lf − ε2

Rf

ε2
Lf + ε2

Rf

· (14.22)
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From the representation in terms of left- and right-handed couplings introduced earlier we see
that Af measures the normalized difference between left-handed and right-handed transition
amplitudes. For AFB we have

Aff̄FB(M2
Z) =

3

4
AeAf . (14.23)

It is important to notice that

Ae =
2ξ

1 + ξ2
with ξ =

ve
ae

= 1− 4 sin2 ΘW

is a quantity which would vanish for sin2 ΘW = 0.25. Since the experimental value for sin2 ΘW

is about 0.23 Ae is unfortunately rather small. A small difference of large numbers is difficult to
determine precisely. By universality Ae is the same for ` = e, µ and τ and hence

Aµµ̄FB(M2
Z) =

3

4
A2
e ' 3ξ2

Table 14.3 e+e− → f f̄ forward-backward asymmetry at the

Z-peak for various values of sin2 ΘW

sin2 ΘW 0.22 0.23 0.24 0.25

ξ 0.12 0.08 0.04 0

Ae 0.237 0.159 0.0799 0

Aµµ̄FB 0.0420 0.0190 0.0048 0

Acc̄FB 0.1253 0.0802 0.0382 0

Abb̄FB 0.1673 0.1117 0.0557 0

B. Final state polarization asymmetry

We only consider the integrated asymmetry

Afpol
.
=
σ(e+e− → fLf̄)− σ(e+e− → fRf̄)

σ(e+e− → fLf̄) + σ(e+e− → fRf̄)
(14.24)

at the Z-resonance. Using the helicity amplitudes |Thihe |2 we obtain:

Afpol(M
2
Z) =

(ε2
Lf − ε2

Rf )

(ε2
Lf + ε2

Rf )
= Af (14.25)

which is independent of the initial state couplings. This asymmetry cannot be measured for
quarks which hadronize into hadron showers. The only case which can be investigated is the
τ -polarization where it is possible to reconstruct the τ -polarization from the decays τ → πν,
τ → ρν and τ → a1ν with the subsequent decays ρ→ ππ and a1 → πππ. For e+e− → τ+τ− we
have

Aτpol(M
2
Z) = Ae =

2ξ

1 + ξ2
(14.26)

which is linear in the vector coupling ξ. Some numerical values have been given in Tab. 14.3.

C. Polarized beams
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With polarized beams one can measure a number of additional asymmetries:

a) Initial state transversal polarization asymmetry
(azimuthal asymmetry for natural polarization)

In the magnetic field of a ring collider the e+-spins tend to line up with the magnetic field (−y-
direction) such that a natural transverse polarization is set up. If we assume the electron to move
in the z-direction we may write the e+-polarization vector in the form

~P± =
(

P±⊥ cosϕ±, P±⊥ sinϕ±, P±L
)

where P±⊥ measures the transverse and P±L the longitudinal degree of polarization. ϕ± = −π/2
and P±L = 0 means natural polarization. If beams are transversely polarized one has an azimuthal
asymmetry and one defines

A⊥ =
4

P+
⊥P

−
⊥

∫
dΩ cos2ϕ dσ

dΩ

(

e+(P+
⊥ ) + e−(P−⊥ )→ f f̄

)

∫
dΩ dσ

dΩ

(

e+(P+
⊥ ) + e−(P−⊥ )→ f f̄

) . (14.27)

We just give, without derivation, the result one obtains for s = M 2
Z :

A⊥(M2
Z) =

v2
e − a2

e

v2
e + a2

e

= −1− ξ2

1 + ξ2
(14.28)

a quantity which is independent of the final state.

b) Initial state longitudinal polarization asymmetry

In this case, assuming longitudinally polarized beams, one measures the total cross section with
left-handed and right-handed electrons separately and defines

ALR =
σ(e−Le

+ → f f̄)− σ(e−Re
+ → f f̄)

σ(e−Le
+ → f f̄) + σ(e−Re

+ → f f̄)
. (14.29)

At s = M2
Z one finds

ALR(M2
Z) =

ε2
Le − ε2

Re

ε2
Le + ε2

Re

= Ae ' 2ξ (14.30)

for the integrated asymmetry.

The left-right asymmetry is a very important observable due to the following properties: It is

• a ratio of total cross sections

• independent of the final state 41

• linear in ξ

The first property is very important since the notoriously large QED and QCD corrections are
almost identical for left- and right-handed states and therefore drop out in the ratio almost
completely. The second property implies that one can sum over all flavors gaining enormously in
statistics. The third property tells us that ALR is enhanced by a factor 2/(3ξ) relative to Aµµ̄FB.

41This is true only for the integrated asymmetry. The angular distributions Af
LR(cos θ) depend on the flavor f .
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In addition the polarized forward-backward asymmetries can be measured:

AfFB,pol =
2

P+
L + P−L

(
∫ 1

0 −
∫ 0
−1)d cos θ dσ

d cos θ (P+
L 6= 0)− (

∫ 1
0 −

∫ 0
−1)d cos θ dσ

d cos θ (P−L 6= 0)
∫+1
−1 d cos θ dσ

d cos θ (P+
L 6= 0) +

∫+1
−1 d cos θ dσ

d cos θ (P−L 6= 0)
(14.31)

which on the Z-resonance yields:

AfFB,pol(M
2
Z) =

3

4
Af (14.32)

3.4 Conclusions:

The measurement of asymmetries opens up the possibility to determine many independent ob-
servables. This is crucial for precision tests of the SM. Two points make asymmetries at the
Z-peak very interesting. First, at the Z-peak very high rates of events are available which makes
high precision tests possible. Second, at the Z-peak one is dealing almost purely with a weak NC
process! No detailed clean tests of the NC were possible before LEP. The clean νµe-scattering
processes suffer from low rates and the deep inelastic νµN -scattering data from hadronic uncer-
tainties.

Longitudinally polarized beams are highly desired, since only in this case one has good observables
that can test

Af =
2vfaf
v2
f + a2

f

for individual flavors to a good accuracy. This is an important supplement to the measurement
of the partial widths which yields tests of

v2
f + a2

f .

For precision tests it will be crucial to carefully analyze the following types of corrections:

i) QED corrections, bremsstrahlung;

ii) electroweak “non-QED” corrections;

iii) QCD corrections for hadronic final states;

iv) mass effects.

These corrections will be discussed in the following. Particularly interesting are the “non-QED”
higher order corrections since they are the key in finding deviations from the SM at its quantum
level.
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A Properties of free fields

Notation for Green functions:

a) Causal commutator:

∆(z;m2) = −i (2π)−3
∫

d4p ε(p0) δ(p2 −m2) e−ipz

(

2 +m2
)

∆(z) = 0 , ∆(0, ~z ) = 0 , ∂0∆(z0, ~z )|z0=0 = −δ(3)(~z )

b) Feynman propagator:

∆F (z;m2) = (2π)−4
∫

d4p
1

p2 −m2 + iε
e−ipz

(

2 +m2
)

∆F (z) = −δ(4)(z)

Important remark: The Green functions are distributions (generalized or singular functions) and
the δ–function is the identity in the space of distributions, which we may choose to be the space
of tempered distributions S ′(R4). The last equation above tells us that up to a sign the Feynman
propagator is the inverse of the Klein-Gordon operator 2 +m2.

Notice that in the following, except in the Feynman propagator, p2 is always on-shell and hence
p0 =

√

~p 2 +m2. Therefore, e±ipx |
p0=
√
~p 2+m2 is always a solution of the Klein-Gordon equation:

(
2 +m2

)
e±ipx = 0 .

A.1 Real scalar field: representation: (0,0)

(

2 +m2
)

ϕ(x) = 0 ; ϕ∗ = ϕ

Describes a particle of mass m, spin 0, particle ≡ antiparticle.
Examples: π0, η, Higgs particle H .

ϕ(x) =

∫

dµ(p)
{

a(~p ) e−ipx + a+(~p ) eipx
}

Canonical commutation relations:

[

a(~p ), a+(~p ′)
]

= (2π)3 2ωp δ
(3)(~p− ~p ′)

[
a(~p ), a(~p ′)

]
= 0

[
a+(~p ), a+(~p ′)

]
= 0

Green functions: solutions of the homogeneous (no source) or inhomogeneous (point source)
Klein-Gordon equations

[ϕ(x), ϕ(y)] = i∆(x− y;m2)

< 0 | T {ϕ(x), ϕ(y)} | 0 > = i∆F (x− y;m2)

( 2x +m2 ) ∆(x− y;m2) = 0 , ( 2x +m2 ) ∆F (x− y;m2) = −δ(4)(x− y)
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A.2 Complex scalar field: representation (0,0)

(

2 +m2
)

ϕ(x) = 0 ; ϕ∗ 6= ϕ

Describes a particle of mass m, spin 0, particle 6= antiparticle.
Examples: (π+, π−), (K0, K̄0) .

ϕ(x) =

∫

dµ(p)
{

a(~p ) e−ipx + b+(~p ) eipx
}

A complex field is equivalent to a doublet (ϕ1, ϕ2) of real fields: ϕi = ϕ∗i , i = 1, 2 related by
ϕ± = 1√

2
(ϕ1 ∓ i ϕ2) with ϕ− = ϕ , ϕ+ = ϕ∗ .

Canonical commutation relations:

[
a(~p ), a+(~p ′)

]
=

[
b(~p ), b+(~p ′)

]
= (2π)3 2ωp δ

(3)(~p− ~p ′)

and all other commutators vanishing.

Green functions:

[ϕ(x), ϕ∗(y)] = i ∆(x− y;m2)

< 0 | T {ϕ(x), ϕ∗(y)} | 0 > = i ∆F (x− y;m2)

A.3 Dirac field: representation ( 1
2
, 0)⊕ (0, 1

2
) (reducible)

(2 +m2)ψα(x) = 0 ; (iγµ∂µ −m)αβψβ(x) = 0 (Dirac equation)

Describes a particle of mass m, spin 1/2, particle 6= antiparticle.
Examples: (e−, e+), (p, p̄), (n, n̄), “quarks”.

ψα(x) =
∑

r=±1/2

∫

dµ(p)
{

uα(~p, r) a(~p, r) e−ipx + vα(~p, r) b+(~p, r) eipx
}

Canonical anticommutation relations:

{

a(~p, r), a+(~p ′, r′)
}

=
{

b(~p, r), b+(~p ′, r′)
}

= (2π)3 2ωp δ
(3)(~p− ~p ′) δrr′

and all other anticommutators vanishing.

Dirac-algebra: Algebra of 4 x 4 γ-matrices

{γµ, γν} = γµγν + γνγµ = 2gµν

{γ5, γ
µ} = γ5γ

µ + γµγ5 = 0

γ5 = iγ0γ1γ2γ3 ; γ2
5 = 1

σµν =
i

2
(γµγν − γνγµ) =

i

2
[γµ, γν ]
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γµ = gµνγ
ν

γ0 = γ0 , γi = −γi , γ5 = γ5

γµ =
(

γ0, ~γ
)

, γµ =
(

γ0,−~γ
)

Equivalence relations:

γ+
µ = AγµA

−1 γ+
5 = −Aγ5A

−1

γTµ = BγµB
−1 γT5 = Bγ5B

−1

γ∗µ = CγµC
−1 γ∗5 = −Cγ5C

−1

Pauli matrices:

σ1 =




0 1

1 0



 , σ2 =




0 −i
i 0



 , σ3 =




1 0

0 −1





Representations of the Dirac algebra:

a. Standard representation

γ0 =




1 0

0 −1



 , γi =




0 σi

−σi 0



 , γ5 =




0 1

1 0





A = γ0, B =




σ2 0

0 σ2



 , C =




σ2 0

0 −σ2





b. Helicity representation

γ0 =




0 1

1 0



 , γi =




0 −σi
σi 0



 , γ5 =




1 0

0 −1





A = γ0, B =




σ2 0

0 σ2



 , C =




0 σ2

σ2 0





γµstandard = S γµhelicity S−1

S =
1√
2




1 1

1 −1



 = S−1
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Spinors: Classical solutions of the Dirac equation

Notation: p/
.
= pµγ

µ

Adjoints: ū = u+γ0 , v̄ = v+γ0

Dirac equation: (p/−m) u = 0 , (p/+m) v = 0

Normalization: ū(p, r)γµu(p, r′) = 2 pµδrr′

ū(p, r)v(p, r′) = 0

v̄(p, r)u(p, r′) = 0

v̄(p, r)γµv(p, r′) = 2 pµδrr′

ū(p, r)u(p, r) = 2m δrr′

v̄(p, r)v(p, r) = −2m δrr′

Completeness:
∑

r u(p, r)ū(p, r) = p/+m
∑

r v(p, r)v̄(p, r) = p/−m

Relation to spinors in rest frame:

u(p, r) =
1

√

p0 +m
(p/ +m) ũ(0, r)

v(p, r) =
1

√

p0 +m
(p/−m) ṽ(0, r)

ũ(0, r) =




Un(r)

0



 ; ṽ(0, r) =




0

Vn(r)





Properties of two-spinors:

Vn(r) = −iσ2Un(r)

U+(r) U(r′) = δrr′

V +(r) V (r′) = δrr′

~σ · ~n Un(±) = ± Un(±)

~σ · ~n Vn(±) = −± Vn(±)

~n quantization axis







standard representation ~n = (0, 0, 1)

helicity representation ~n = ~p/|~p |

Representations for spinors:

Notation for two-spinors:

U(1
2) =




1

0



 , U(−1
2) =




0

1





V (1
2 ) =




0

1



 , V (−1
2) = −




1

0
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a. Standard representation:

u(p, r) =
√

p0 +m




U(r)

~σ·~p
p0+mU(r)





v(p, r) =
√

p0 +m





~σ·~p
p0+mV (r)

V (r)





b. Helicity representation: σµ
.
= (1, ~σ ), σ̂µ = (1,−~σ )

uh(p, r) =
1√
2

1
√

p0 +m




(σµp

µ +m) U(r)

(σ̂µp
µ +m) U(r)





vh(p, r) =
1√
2

1
√

p0 +m




(σµp

µ +m) V (r)

−(σ̂µp
µ +m) V (r)





Projection operators:

1. Covariant spin projection operators Π± :
For a fermion of momentum p

Π± =
1

2
(1± γ5n/)

define covariant spin projection operators. n is a space like unit vector orthogonal to p

n2 = −1 ; n · p = 0 .

Its general form is

n = L~p (0, ~ξ ) =

(

~p · ~ξ
m

, ~ξ +
~p · ~ξ

m(p0 +m)
~p

)

where ~ξ 2 = 1 , ~ξ the direction of polarization in the rest frame.

Projection property: Π+ + Π− = 1

Π2
± = Π±

Π+Π− = Π−Π+ = 0

The projection operators are self–adjoint

Π± = γ0 (Π±)+ γ0

with respect to the scalar product v̄u = v+γ0u in four–spinor space42.

Physical interpretation:

Π±u(p, s) = u(p, s) δs,± 1
2

Π±v(p, s) = v(p, s) δs,± 1
2

42The Lorentz invariant scalar product for the space of four–spinors is given by (v, u) → v̄u ≡ v+γ0u. The
adjoint O† of an operator O is defined by O† = γ0O+γ0. On four–spinor space the usual Hermitecity is replaced
by the self–adjointness O† = O. As usual, then (u,Hu) is real if H = γ0H+γ0.

285



2. Particle and antiparticle projection operators Λ±
The matrices

Λ± =
1

2m
(±p/+m)

project to particle solutions (positive frequencies) and antiparticle solutions (negative fre-
quencies), respectively.

Projection property: Λ+ + Λ− = 1

Λ2
± = Λ±

Λ+Λ− = Λ−Λ+ = 0

Physical interpretation:

particle antiparticle

Λ+u(p, s) = u(p, s) Λ+v(p, s) = 0

Λ−u(p, s) = 0 Λ−v(p, s) = v(p, s)

Representation in terms of spinors:

particle with polarization r: uα(p, r)ūβ(p, r) = 1
2 {(p/+m) (1 + γ5n/r)}αβ

antiparticle with polarization r: vα(p, r)v̄β(p, r) = 1
2 {(p/−m) (1 + γ5n/r)}αβ

unpolarized particle:
∑

r uα(p, r)ūβ(p, r) = (p/+m)αβ

unpolarized antiparticle:
∑

r vα(p, r)v̄β(p, r) = (p/−m)αβ

Linearly independent basis of 4x4 matrices:

Γ(r) = {1, iγ5, γµ, γµγ5, σµν} ; r = S, P, V,A, T

The labels r denote scalar (S), pseudoscalar (P), vector (V), axial vector (A) and tensor (T)
matrices.

Adjoint spinor field:
ψ̄
.
= ψ+γ0

defined such that
ψ̄Γ(r)ψ is hermitean

and, as indicated by r, transform as scalar (S), pseudoscalar (P), vector (V), axial vector (A) and
tensor (T) under Lorentz transformations.

Green functions: solutions of the homogeneous (no source) or inhomogeneous (point source) Dirac
equations

{ψα(x), ψβ(y)} = i Sαβ(x− y;m)

< 0 | T {ψα(x), ψ̄β(y)
} | 0 > = i SFαβ(x− y;m)

Sαβ(z;m) = (iγµ∂µ +m)αβ ∆(z;m2)

SFαβ(z;m) = (iγµ∂µ +m)αβ ∆F (z;m2)
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( iγµ∂xµ −m )αα′Sα′β(x− y;m) = 0

( iγµ∂xµ −m )αα′SFα′β(x− y;m) = δαβδ
(4)(x− y)

Charge conjugation is mapping particle into antiparticle creation and annihilation operators
and vice versa:

a(~p, r)↔ b(~p, r) , a+(~p, r)↔ b+(~p, r) ,

up to a phase. For the Dirac field charge conjugation reads (see 2.38)

ψα(x)→ Cαβψ̄Tβ (x)

with

C = i
(

γ2γ0
)

= −i



0 σ2

σ2 0



 .

Properties of C are:

CT = −C , CγµC−1 = −γµ ,

and for the spinors charge conjugation takes the form

(Cu)T = v̄ and (Cv)T = ū ,

which may be verified by direct calculation.

A.4 Neutrino field: representations ( 1
2
, 0) and (0, 1

2
)

iγµ∂µψ(x) = 0

Dirac field in limit m → 0 (exists if normalized appropriately). Describes a particle of mass 0,
spin 1

2 , particle 6= antiparticle, spin orientation r = ± 1
2 relative to ~p (helicity states). Subspaces

with r fixed are invariant under P↑+ i. e. a massless Dirac field decomposes into two fields of
fixed chirality (≡ handedness). Applying the chiral projectors Π± = 1

2(1 ± γ5) (which satisfy
Π+ + Π− = 1 , Π2

± = Π± and Π+Π− = Π−Π+ = 0) we obtain the two fields:

ψR = Π+ψ right-handed field (Π−ψR = 0)

describes







particle with spin ↑↑ momentum

antiparticle with spin ↑↓ momentum

ψL = Π−ψ left-handed field (Π+ψL = 0)

describes







particle with spin ↑↓ momentum

antiparticle with spin ↑↑ momentum

in Nature: ψphys
ν = ψνL “two component theory of the neutrino.”
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A.5 Real vector field: representation ( 1
2
, 1

2
)

(2 +m2)Vµ(x) = 0 ; ∂µVµ(x) = 0 ; V ∗µ = Vµ

Describes a particle of mass m, spin 1, particle = antiparticle.
Examples: Z, ρ0 .

Vµ(x) =
∑

r=±1,0

∫

dµ(p)
{

εµ(~p, r) a(~p, r) e−ipx + ε∗µ(~p, r) a+(~p, r) eipx
}

r = ±1 transversal degrees of freedom

r = 0 longitudinal degree of freedom

Canonical commutation relations:
[
a(~p, r), a+(~p ′, r′)

]
=
[
b(~p, r), b+(~p ′, r′)

]
= (2π)3 2ωp δ

(3)(~p− ~p ′) δrr′

and all other commutators vanishing.

Polarization vectors: Classical solutions of the field equations

Normalization: εµ(p, r) εµ∗(p, r′) = −δrr′
Completeness:

∑

r εµ(p, r) ε∗ν(p, r) = −gµν +
pµpν
m2

Absence of scalar mode: pµε
µ(~p, r) = 0

The explicit form of the polarization vectors εµ(p, r) depends on the choice of the quantization
axis ~n for the spin:

a) Canonical (Cartesian) basis: J3 diagonal in the rest frame

ε0(p, r) =
pr
m

; εk(p, r) = δkr + pkpr
1

m(p0 +m)

b) Helicity basis: the relationship to the canonical basis is analogous to the relation between
Cartesian coordinates and the spherical harmonics Y1m :

(x, y, z)→ r (Y11, Y1−1, Y10) =

√

3

4π

(−x− iy√
2

,
x− iy√

2
, z

)

εµh(p,+) =
1√
2

(−εµ(p, 1) − iεµ(p, 2))

εµh(p,−) =
1√
2

( εµ(p, 1) − iεµ(p, 2))

εµh(p, 0) = εµ(p, 0)

Green functions: solutions of the homogeneous (no source) or inhomogeneous (point source) Proca
equations

[V µ(x), V ν(y)] = iDµν(x− y;m2)

< 0 | T {V µ(x), V ν(y)} | 0 > = iDµν
F (x− y;m2)

Dµν(z;m2) =

{

−gµν − ∂µ∂ν

m2

}

∆(z;m2)

Dµν
F (z;m2) =

{

−gµν − ∂µ∂ν

m2

}

∆F (z;m2)
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{( 2x +m2 ) gµµ′ − ∂xµ∂xµ′ }Dµ′ν(x− y;m2) = 0

{( 2x +m2 ) gµµ′ − ∂xµ∂xµ′ }Dµ′ν
F (x− y;m2) = δ ν

µ δ
(4)(x− y)

A.6 Complex vector field: representation ( 1
2
, 1

2
)

Like a complex scalar field, a complex vector field may be defined in terms of two real fields. Let
V µ

1 (x) and V µ
2 (x) be two real vector fields of equal mass m. Then

W±µ (x) =
1√
2

(V1µ(x)∓ iV2µ(x))

are charged vector fields. Describe particles of mass m, spin 1, particle 6= antiparticle.
Examples: W±, ρ± .

W µ−(x) =
∑

r=±1,0

∫

dµ(p)
{

εµ−(~p, r) a(~p, r) e−ipx + εµ+(~p, r) b+(~p, r) eipx
}

W µ+(x) =
(

W µ−(x)
)∗

The polarization vectors are given by

εµ± =
1√
2

(εµ1 ∓ iεµ2 ) ; εµ+ = εµ∗−

and satisfy

Normalization: εµ−(p, r) εµ+(p, r′) = −δrr′
Completeness:

∑

r εµ−(p, r) εν+(p, r) = −gµν +
pµpν
m2

Absence of scalar mode: pµε
µ
±(~p, r) = 0

A.7 Photon:

In principle the photon may be described in a gauge invariant manner by the antisymmetric
electromagnetic field strength tensorF µν and the field equations

2Fµν = 0 ; ∂µF
µν = 0 ; ∂µF̃

µν = 0

where F̃ µν = 1
2ε
µνρσFρσ is the dual pseudotensor.

Describes a particle of mass 0, spin 1 with two transversal degrees of freedom.
Examples: γ, “gluons”.

Because local gauge invariance requires the matter fields to couple to the gauge potentials (in-
teraction jµemAµ), a massless spin 1 gauge field must be described by a vector potential Aµ (see
Sec. 4) 43. Since Fµν = ∂µAν − ∂νAµ the homogeneous Maxwell-equation ∂µF̃

µν = 0 is satisfied

43Another point is that the inhomogeneous Maxwell equation

∂µF
µν = jν

as a vector equation and the homogeneous Maxwell equation

∂λFµν + ∂νFλµ + ∂µFνλ = 0

as a 3rd rank tensor equation cannot be obtained as the Euler-Lagrange equations from an invariant Lagrangian if
we have available a as a dynamical variable the 2nd rank tensor Fµν only
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as an identity. Aµ is not unique (gauge dependent) and in general transforms as a Lorentz vector
up to a divergence only!

Aµ(x) =
∑

r=±

∫

dµ(p)
{

εµ(p, r) a(~p, r) e−ipx + h.c.
}

Polarization vectors: Solution of the classical field equations.

Normalization: εµ(p, r)εµ∗(p, r′) = −δrr′
Completeness:

∑

r=± εµ(p, r)ε∗ν(p, r) = −gµν + pµfν + pνfµ

Absence of scalar mode: pµε
µ(p, r) = 0

The arbitrary “vector” fµ depends on the choice of the gauge. We must require physical ampli-
tudes to be gauge invariant and hence to be independent of fµ. Gauge invariance, i.e. invariance
under Aµ → Aµ − ∂µα(x), amounts to the invariance under the substitutions

εµ → εµ + λ pµ ; λ an arbitrary constant

of the polarization vectors. One can prove that the polarization “vectors” for massless spin 1
fields can not be covariant. The non-covariant terms are always proportional to pµ, however.
Green functions:

[Aµ(x), Aν(y)] = i Dµν (x− y)

< 0 | T {Aµ(x), Aν(y)} | 0 > = i DFµν (x− y)

where

Dµν (z) = −gµν ∆(z; 0) − ∂µFν(z)− ∂νFµ(z)

DFµν (x− y) = −gµν ∆F (z; 0) − ∂µFFν(z)− ∂νFFµ(z)

with Fµ(z) and FFµ(z) gauge dependent functions (not covariant in general).
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B The group SL(2, C) and spinor representations

When discussing relativistic invariance we have to distinguish between the classical and the quan-
tum mechanical level:

• classical: Lorentz group Λ ∈ L↑+ and covariant quantities like scalars, vectors, tensors

• quantum mechanical: unimodular group U ∈ SL(2, C) with “covariant” quantities called
spinors.

There will be two types of spinors:

• spinors of even rank which may be represented by tensors, and which transform one-to-one
under L↑+ ,

• spinors of odd rank, which cannot be represented by tensors, and which transform two-to-
one under L↑+ .

Starting point are the non-trivial representations of lowest dimension: namely, the spin 1/2
representations by 2× 2 matrices. The corresponding angular momentum algebra is

[

J
( 1
2

)

i , J
( 1
2

)

k

]

= iεiklJ
( 1
2

)

l

(

~J ( 1
2

)
)2

= j (j + 1) 1 =
3

4
· 1 .

The explicit representation is provided by the Pauli matrices: ~J ( 1
2

) = ~σ/2 .

B.1 The group SL(2, C)

There is a direct relationship between the proper orthochronous Lorentz group L↑+ and the group
SL(2, C) of complex 2×2 matrices with determinant 1. The two groups have the same Lie algebra
(infinitesimal transformations) but have a different parameter space (global transformations). The

relationship between L↑+ and SL(2, C) may be constructed in the following way: let us denote
by

σµ = (1, ~σ )

the four-vector of Hermitean 2× 2 matrices composed from the unit matrix and the Pauli matri-
ces44:

σ0 =




1 0

0 1



 , σ1 =




0 1

1 0



 , σ2 =




0 −i
i 0



 , σ3 =




1 0

0 −1



 .

44They have the properties:

σ+
i = σi , σ2

i = 1 , ~σ2 = 3 · 1

σiσk =
1

2
{σi, σk} +

1

2
[σi, σk] = δik + i εikl σl

3∑

k=1

(σk)ij (σk)mn = 2 δinδjm − δijδmn
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To any real four-vector xµ we can associate a Hermitean 2× 2 matrix given by

xµ → X = xµσµ =




x0 + x3 x1 − ix2

x1 + ix2 x0 − x3




.

Conversely, every Hermitean 2× 2 matrix X determines a real four-vector

X → xµ =
1

2
Tr (Xσµ) .

Thus we have a linear one-to-one correspondence between real four-vectors and Hermitean 2× 2
matrices. Furthermore we note that

detX = x2 = xµxµ .

This establishes the following

Theorem 1: The mapping

xµ =
1

2
Tr (Xσµ) ∈M4 ↔ X = xµσµ ∈ H(2)

establishes a linear isomorphism (one-to-one mapping) between the Minkowski space M4 and the
space of two-dimensional Hermitean matrices H(2).

Definition 1: The complex 2× 2 matrices U with determinant detU = 1 with matrix multipli-
cation as a composition law form a group: the special linear group or unimodular linear group
in two complex dimensions SL(2, C) .

In the following we will discuss the relation between the groups SL(2, C) and L↑+ . An element
U ∈ SL(2, C) provides a mapping

X → X ′ = UXU+ i.e. x′µσµ = xνUσνU
+

between Hermitean matrices, which preserves the determinant

detX ′ = detU detX detU+ = detX .

The transformation

X → X ′ = UXU+ on H(2)

corresponds to the real linear transformation

xµ → x′µ = Λµν x
ν on M4

which satisfies x′µx′µ = xµxµ and therefore is a Lorentz transformation. The correspondence

x′µ = Λµν x
ν → x′µσµ = Λµν x

νσµ = xνUΛσνU
+
Λ

implies

UΛσνU
+
Λ = Λµν σµ

and proves the following
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Theorem 2a: The Hermitean 2 × 2 matrices σµ = (1, ~σ ) form a covariant four-vector with

respect to the representation UΛ = D( 1
2
,0) ≡ D.

The transformation matrix UΛ may be written in the canonical form45

UΛ = U(~χ, ~ω ) = e~χ
~σ
2 ei~ω

~σ
2 (B.1)

as a unitary rotation times a Hermitean boost.

From the above representation we see that the two different SL(2, C) transformations

U(~χ, ~nθ) and U(~χ, ~n (θ + 2π)) = −U(~χ, ~nθ)

represent the same Lorentz transformation. Therefore, UΛ is a double-valued representation of
L↑+ , i.e., the mapping

SL(2, C)→ L↑+

is two-to-one. SL(2, C) itself is simply connected. The two elements Z2 = {1,−1} form an
invariant subgroup, UZ2U

−1 = Z2 ∀U ∈ SL(2, C), and we find the isomorphism

SL(2, C)/Z2 ' L↑+ .

The main results obtained so far may we summarized in the following

Theorem 3: The group SL(2, C) is simply connected. The homomorphism (many-to-one map-

ping) UΛ ∈ SL(2, C) → Λ ∈ L↑+ is two-to-one.

A group G is called universal covering group of another group G̃ if G is simply connected and
has the same Lie-algebra as G̃. Thus

• SL(2, C) is the universal covering group of L↑+ .

45The following theorem holds:
Theorem: Each matrix U ∈ SL(2, C) may be written as a product U = HV where H = H+ is Hermitean and
V = V +−1 is unitary.

Corollary: Let U = HV then Ū =
(
U+
)−1

=
(
(HV )+

)−1
=
(
V +H

)−1
= H−1V

Proof: We note the following properties:

1) UU+ = e~χ~σ is Hermitean, ~χ real,

2)
(
UU+

)−1/2
= e−~χ~σ

2 exists,

3)
[(
UU+

)−1/2
U
] [(

UU+
)−1/2

U
]+

= 1 ,

which implies that
(
UU+

)−1/2
U is unitary and has determinant 1; consequently:

4)
(
UU+

)−1/2
U = e−~χ~σ

2 U = ei~ω
~σ
2 , ~ω real .

The result is

UΛ = U(~χ, ~ω ) = e~χ
~σ
2 ei~ω

~σ
2

with ~χ and ~ω real.
Special cases are:

U Hermitean: U = U+ = H = e~χ
~σ
2 pure Lorentz boost,

U unitary: U = U+−1 = V = ei~ω
~σ
2 pure rotation.

The unitary elements U form the subgroup SU(2) of SL(2, C) .
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The main point is that

• unitary representations of L↑+ may always be considered as faithful (one-to-one) represen-
tations of SL(2, C) .

The actual meaning of this fact will become clear below, when considering spinors.

Remark: The relationship between L↑+ and SL(2, C) is analogue to the one between the rotation
group O3 and the unimodular unitary group SU(2), which is the universal covering group of O3.

Definition 2: With D also D̄ ≡ (D+)−1 is a representation of a group, which we call conjugate

representation . Let D be the irreducible representation D = D( 1
2
,0) of SL(2, C) then D(0, 1

2
) ≡

D̄ is an inequivalent (a new) representation of SL(2, C) 46.

If UΛ is given by Eq. (B.1) we obtain for the conjugate representation

ŪΛ = U+
Λ−1 = e−~χ

~σ
2 ei~ω

~σ
2 . (B.2)

While σµ is a covariant vector with respect to the representation D = UΛ, the vector

σ̂µ = (1,−~σ )

is a covariant vector with respect to the representation D̄ = ŪΛ:

ŪΛσ̂µŪ
+
Λ = Λν µ σ̂ν

and thus we have

Theorem 2b: The Hermitean 2 × 2 matrices σ̂µ = (1,−~σ ) form a covariant four-vector with

respect to the representation ŪΛ = D(0, 1
2

) ≡ D̄.

The representations D and D̄ are the two inequivalent non-trivial representations of lowest di-
mension, called fundamental spinor representations .

Interrelation between D and D̄: We first notice the the inverse of U = (αγ
β
δ ) with detU = αδ−βγ =

1 is U−1 = ( δ
−γ
−β
α) and we observe that the matrix

C = eiπJ
( 1
2
)

= iσ2 =




0 1

−1 0



 = −C+ = −C−1 (B.3)

provides the transformations

U−1 = C−1UTC , Ū = U+−1 = C−1U∗C (B.4)

and

σ̂µ = C−1σTµC . (B.5)

A scalar product on the space H(2) is defined by

X = xµσµ , Ŷ = yµσ̂µ ⇒
1

2
Tr (XŶ ) = x · y .

46Two representations of a group G are called equivalent representations if one follows from the other
by a change of basis in the representation space: Thus there exists a non-singular transformation S such that
D̄(g) = S−1D(g)S ∀g ∈ G .
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It is thus identical to the known scalar product in Minkowski space.

One easily checks the following useful identities:

Tr (σµσ̂ν) = 2gµν (B.6)

σµσ̂ν + σ̂νσµ = 2gµν · 1 (B.7)

1

2
Tr
(

σµUΛσ̂νU
+
Λ

)

= Λµν . (B.8)

The last identity tells us, once more, that there are always two different SL(2, C) elements ±UΛ

which map into one element Λ in L↑+ .

We finally mention that the group SL(2, C) extended by the translations is denoted by iSL(2, C) ,

the inhomogeneous linear unimodular group, which is related to P ↑+ in the same way as SL(2, C)

is related to L↑+ .

B.2 Spinors

The advantage to work directly with SL(2, C) becomes obvious once we deal with spinors: A
transformation U ∈ SL(2, C) may be understood as a mapping

U : V → V

of a two-dimensional complex vector space V onto itself. The “complex two-vectors”

u =




u1

u2



 ∈ V

are called spinors. The spinors

u(↑) =




u1

0



 and u(↓) =




0

u2





are eigenvectors to the eigenvalues ±1/2 of the 3rd component of the spin matrix σ3/2:

σ3

2
u(↑) = +

1

2
u(↑) and

σ3

2
u(↓) = −1

2
u(↓) .

Since there are two types of inequivalent representations we have to distinguish two types of
spinors, called undotted and dotted spinors.

Definition 3a: A covariant undotted spinor is a spinor which transforms according to the
representation ( 1

2 , 0), i.e., it is characterized by the transformation law

ua ∈ V → u′a = UΛ
b
a ub ∈ V ; a, b = 1, 2 . (B.9)

Definition 3b: A contravariant dotted spinor is a spinor which transforms according to the
representation (0, 1

2), i.e., it is characterized by the transformation law

uȧ ∈ V → u′ȧ = Ū ȧ
Λ ḃ

uḃ ∈ V ; ȧ, ḃ = 1, 2 . (B.10)

Next we consider scalar products and the metric in spinor space:
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Definition 4a: Let va be a covariant undotted spinor. A contravariant undotted spinor is defined
to be a undotted spinor ua with the property

uava = invariant (v ∈ V ) .

From

u′av′a = u′a UΛ
b
a vb = ubvb

we find the transformation law

u′a UΛ
b
a = ub ⇒ u′a = U−1Ta

Λ b u
b = Ū∗ aΛ b u

b

for the contravariant undotted spinor.

Definition 4b: Let vȧ be a contravariant dotted spinor. A covariant dotted spinor is defined to
be a dotted spinor uȧ with the property

vȧuȧ = invariant (v ∈ V ) .

Here, from

v′ȧu′ȧ = Ū ȧ
Λ ḃ

vḃu′ȧ = vḃuḃ

we obtain

Ū ȧ
Λ ḃ

u′ȧ = uḃ ⇒ u′ȧ = Ū−1T ḃ
Λ ȧ uḃ = U∗ ḃ

Λȧ uḃ

for the transformation law of the covariant dotted spinor.

Equipped with these scalar products, we may define metric spinors gab and gȧḃ, which allow us
to obtain the contravariant spinor’s from the covariant one’s by

ua = gabub , uȧ = gȧḃuḃ .

Since the transpose of the inverse of a transformation matrix is related to the original transforma-
tion matrix according to Eq. (B.4), we infer that the metric we are looking for must be given by
the matrix C Eq. (B.3). Thus the metric is given by the two-dimensional antisymmetric tensor

gab = (iσ2)ab = εab = −εab =




0 1

−1 0





which is numerically invariant. It is the only numerically invariant tensor for the group SL(2, C)
, besides the Kronecker symbol δba. The scalar product thus may be written as

uava = εabuavb = u1v2 + u2v1 = u1v2 − u2v1 = det




u1 v1

u2 v2



 .

Similarly, with

gȧḃ = (iσ2)ȧḃ = εȧḃ = −εȧḃ =




0 1

−1 0
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we may write

uȧvȧ = εȧḃuȧvḃ = u1̇v2̇ + u2̇v1̇ = u1̇v2̇ − u2̇v1̇ = det




u1̇ v1̇

u2̇ v2̇



 .

Notice the antisymmetry of the scalar product

uava = −uava

valid for undotted or dotted indices. Thus uaua = 0 for any u ∈ V .

We finally list the different types of fundamental spinors and their transformation properties:

spinor representation

ua D = D( 1
2
,0)

uȧ D∗

ua D̄∗ = (D−1)
T

uȧ D̄ = D(0, 1
2

) = (D+)
−1

Notice that by Eq. (B.4) D∗ is equivalent to D̄ and D̄∗ is equivalent to D.

Spinors of higher rank

Since we have to distinguish two different inequivalent representations as SL(2, C) transformation
laws, a higher rank spinor is characterized by two integers n and m. A “spinor–tensor” of rank
(n,m) is an object which transforms like a product of n undotted two–spinors and m dotted
two–spinors:

ψa1...an ḃ1...ḃm ∼ ua1 . . . uanvḃ1 . . . vḃm .

Properties which hold for each type of indices separately are the following:

• Indices may be raised and lowered by means of the metric tensor

• Lower indices may be contracted with upper indices of the same kind in an invariant way

Thus contraction of mixed indices is not an invariant procedure and hence is not meaningful.
Also, note that from one spinor one cannot get an non-trivial Hermitean from, because uau

a = 0
due to the antisymmetry.

All higher spins may be constructed from the fundamental representations. As an example we
consider the construction of a spin 1 field.

Spin 1 representation

The usual representation for a spin 1 field is ( 1
2 ,

1
2) = (1

2 , 0) ⊗ (0, 1
2). It may be constructed as

follows:

From an undotted two-spinor ua a vector field may be defined by

V µ .
= u+σ̂µu .

Under a Lorentz transformation u→ u′ = UΛu we obtain

V
′µ = u

′+σ̂µu′ = u+U+
Λ σ̂

µUΛu = Λµν u
+σ̂νu = Λµν V

ν
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and hence, V µ indeed is a contravariant vector. The ordinary Lorentz transformation is thus
equivalent to a transformation u, u∗ = (u+)T → UΛu,U

∗
Λu
∗, which is equivalent to the represen-

tation ( 1
2 ,

1
2).

An equivalent representation may be obtained using a dotted spinor. Let v ȧ be a dotted two-
spinor, which transforms like v → v′ = ŪΛv, then the vector field defined by

V̂ µ .
= v+σµv

again is a contravariant vector (i.e., in the representation ( 1
2 ,

1
2)).

Parity and reflexion of spinors

The parity P , as we know, acts on four–vectors like Px = (x0,−~x ) and satisfies P 2 = 1. With
respect to the rotation group O3 P is just a rotation by the angle 2π and thus in the context of
the rotation group P has no special meaning. This is different for the Lorentz group. While

UP ~J = ~JUP

commutes

UP ~K = − ~KUP
does not commute. As a consequence, considering the representations Eqs. (B.1) and (B.2), we
learn that

UPU(~χ, ~n θ) = U(−~χ, ~n θ)UP

and hence
UPUΛ = ŪΛUP . (B.11)

We thus have the

Theorem 4: Under parity a undotted spinor is transformed into a dotted spinor and vice versa.

The position of the indices of UP may be read off from the position of the indices of the transfor-
mation matrices UΛ and ŪΛ. Since UP commutes with ~J , and in particular with the z–component
of the spin J3, each component transforms individually, which means that UP acts diagonal. Fur-
thermore, P 2 = 1 implies U 2

P = ±1 or

UP = uP = ±1 or ± i .

This follows from the correspondences xµ → X, Pxµ → UPXUP and P 2xµ = xµ → U2
PXU

2
P = X

and UP diagonal, which implies that we may write it as a c–number phase uP , simply.

B.3 Bispinors

Parity can only be a symmetry if undotted and dotted spinors enter a theory in a symmetric
fashion. This means that P–invariance requires undotted and dotted spinors to be grouped in
pairs into a single object which is called bispinor.

Definition 5: A bispinor is a four–spinor

uα
.
=




ua

vḃ



 =











u1

u2

v1̇

v2̇











=











u1

u2

u3

u4
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which transforms according to the reducible representation ( 1
2 , 0)⊕ (0, 1

2 )

uα → u′α =




UΛ 0

0 ŪΛ





αβ

uβ = (SΛu)α

and under parity

uα =




ua

vḃ



→ uP




vȧ

ub



 = uP











v1̇

v2̇

u1

u2











= uP











u3

u4

u1

u2











We may rewrite the parity operation acting on a bispinor as follows:

Definition 6: γ0 denotes the 4× 4 matrix

γ0 .
=




0 1

1 0



 . (B.12)

It acts on bispinors as

γ0











u1

u2

u3

u4











=











u3

u4

u1

u2











.

With the help of γ0 a parity transformation may be written in the compact form

uα → uP γ
0
αβuβ . (B.13)

Properties of γ0 are

(γ0)2 = 1 , γ0 = γ0 + = γ0 −1 . (B.14)

Definition 7: γ5 denotes the 4× 4 matrix

γ5
.
=




1 0

0 −1



 . (B.15)

It acts on bispinors as

γ5











u1

u2

u3

u4











=











u1

u2

−u3

−u4











.
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Thus the undotted part of a bispinor is an eigenvector to the eigenvalue +1, the dotted part is
eigenvector to the eigenvalue −1:

γ5




ua

0



 =




ua

0



 ; γ5




0

vḃ



 = −



0

vḃ



 .

Other properties of γ5 are

(γ5)2 = 1 , γ5 = γ+
5 = γ−1

5 . (B.16)

Definition 8: The 4× 4 matrices

Π±
.
=

1

2
(1± γ5) (B.17)

are projection operators

Π+ =




1 0

0 0



 ; Π− =




0 0

0 1





for the upper and lower components of a bispinor, respectively; they are called chiral projectors.
Thus

Π+




ua

vḃ



 =




ua

0



 ; Π−




ua

vḃ



 =




0

vḃ





are projections to the irreducible blocks of the bispinors.

Right–handed and left–handed bispinors

With the help of the chiral projectors acting on bispinors we may reformulate the notion of
undotted and dotted spinors as right–handed and left–handed bispinors, respectively.

Definition 9: Given a bispinor uα, we define

uRα
.
= Π+uα and uLα

.
= Π−uα . (B.18)

We call uR right-handed (bi)spinor and uL left–handed (bi)spinor.

Later, when discussing spinor fields, we will see that the “handedness” is directly related to the
helicity of a particle. Right–handed refers to positive helicity and left–handed refers to negative
helicity.

We note that there is a perfect equivalence between right–handed (bi)spinors and undotted spinors
and left–handed (bi)spinors and dotted spinors. In the physics literature commonly the bispinor
language together with the handedness is used instead of the undotted and dotted two–spinor
terminology.

Properties of the representation SΛ

The reducible representation

SΛ ≡



UΛ 0

0 ŪΛ



 = ei(~χ
~K+~ω ~J ) (B.19)
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has the generators (see (B.1) and (B.2))

1) Rotations : ~J ≡




~J 0

0 ~J





2) Boosts : ~K ≡ i





~J 0

0 − ~J





with ~J = ~σ/2. With the help of γ5 we may write

~K = i γ5
~J .

A crucial property of the representation SΛ is the following:

Theorem 5: S+−1
Λ is equivalent to SΛ .

Indeed,

S+−1
Λ = S+

Λ−1 = γ0SΛγ
0 , (B.20)

which is easily verified. Thus, there exist only one such representation . One consequence is that
we may obtain an invariant Hermitean form from one single bispinor. It is convenient to first
introduce an adjoint bispinor:

Definition 10: to a bispinor uα we associate the adjoint bispinor

ūα
.
=
(

u+γ0
)

α
= (u∗3, u

∗
4, u
∗
1, u
∗
2) .

We then have the

Theorem 6: the bilinear form
ūαuα = u+

αγ
0
αβuβ ,

where repeated spinor indices are summed over, is Hermitean and Lorentz invariant.

The proof is simple and follows from the properties of γ0 and SΛ which we have stated above.

B.4 Boosts and rotations

Let us consider now the lowest dimensional non-trivial representation of a Lorentz boost

D( 1
2

) (L(~p )) = e~χ
~σ
2 = 1 cosh

χ

2
+ ~σ · ~n sinh

χ

2

where χ = |~χ | and ~n = ~χ/|~χ | the unit vector in direction of ~χ. To prove the last equality we
note that the boost matrix is Hermitean and that any Hermitean 2× 2 matrix may be written in
the form: h = α1 + ~β ~σ with real coefficients α, βi. Expanding the exponential we have

e~χ
~σ
2 =

∞∑

n=0

(χ/2)n

n!
ni1σi1 · · ·ninσin

Using ninkσiσk = 1
2n

ink{σi, σk} = ninkδik · 1 = ~n2 · 1 = 1 we obtain

e~χ
~σ
2 = 1

∞∑

k=0

1

(2k)!

(
χ

2

)2k

+ ~σ · ~n
∞∑

k=0

1

(2k + 1)!

(
χ

2

)2k+1
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from which the result follows.

For a special Lorentz transformation L(~p ) the parameter χ is the hyperbolic angle determined
by

coshχ =
p0

m
, sinhχ =

|~p |
m

, ~n = ~̂p =
~p

|~p | .

The hyperbolic functions satisfy cosh2 χ− sinh2 χ = 1 and for half-angles we have

cosh
χ

2
=

(
coshχ+ 1

2

)1/2

, sinh
χ

2
=

(
coshχ− 1

2

)1/2

.

Using these relations we find

cosh
χ

2
=

√

p0 +m

2m
, sinh

χ

2
=

√

p0 +m

2m

|~p |
p0 +m

in terms of the boost momentum. We thus obtain the important representation

D( 1
2

) (L(~p )) = e~χ
~σ
2 =

1
√

2m (p0 +m)

(

(p0 +m)1 + ~p · ~σ
)

=
1

√

2m (p0 +m)
(pµσµ +m) (B.21)

for the Lorentz boost, and furthermore we may write

D (L(~p ))D+ (L(~p )) = (D (L(~p )))2 = e~χ·~σ = 1 coshχ + ~̂p · ~σ sinhχ =
1

m
pµσµ , (B.22)

which is Lorentz invariant.

The second inequivalent lowest dimensional non-trivial representation of a Lorentz boost is

D̄( 1
2

) (L(~p )) = e−~χ
~σ
2 =

1
√

2m (p0 +m)

(

(p0 +m)1− ~p · ~σ
)

=
1

√

2m (p0 +m)
(pµσ̂µ +m) (B.23)

and

D̄ (L(~p )) D̄+ (L(~p )) = (D (L(~p )))2 = e−~χ·~σ =
1

m

(

p0 1− ~p · ~σ
)

=
1

m
pµσ̂µ (B.24)

again is Lorentz invariant.

Finally, the lowest dimensional non-trivial representation of a rotation reads

D( 1
2

) (R(~ω )) = ei~ω
~σ
2 = 1 cos

ω

2
+ i ~σ · ~̂ω sin

ω

2

where ω = |~ω | and ~̂ω = ~ω/|~ω | a unit vector in direction of ~ω. Notice that this SU(2) ⊂ SL(2, C)
rotation is a rotation by half of the angle, only, of the corresponding classical O3 rotation.
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B.5 Transformation laws of the annihilation and creation operators

Let us consider massive states in the canonical basis |~p, j3 > which transform according to
Eq. (2.2), which implies

U (Λ, a) a+(~p, j3) U−1 (Λ, a) = eiaΛpD(j) (RΛ,p)j′3j3
a+(Λ~p, j′3) , (B.25)

where we used U (Λ, a) |0 >= |0 > and dropped the vacuum state, from which the one–particle
state was created by the creation operator. For the annihilation operator we thus have

U (Λ, a) a(~p, j3) U−1 (Λ, a) = e−iaΛpD(j)
(

R−1
Λ,p

)

j3j′3
a(Λ~p, j′3) . (B.26)

A first obvious problem is that the annihilation and the creation operator transform in a different
way and we have to bring the transformation laws into the same form in order to be able to get
a field with simple transformation properties. To this end we use Eq. (B.4). Since for a pure
rotation R the representation D(R) is unitary, we have

D(j)(R)
∗

= CD(j)(R)C−1 . (B.27)

The matrix C for arbitrary spin is a (2j + 1)× (2j + 1) matrix with the properties

C∗C = (−1)2j ; C+C = 1 ,

and, explicitly, we have

Cj3j′3 =

(

eiπJ
(j)
2

)

j3j′3

= (−1)j+j3δj3,−j′3 . (B.28)

Utilizing these properties of C together with the unitarity of D(j)(R) we observe that we may
write

D(j)(R)j′3j3 =
{

CD(j)(R−1)C−1
}

j3j′3
. (B.29)

Thus we may rewrite Eq.(B.25) in the form

U (Λ, a) a+(~p, j3) U−1 (Λ, a) = eiaΛp
{

CD(j)
(

R−1
Λ,p

)

C−1
}

j′3j3
a+(Λ~p, j′3) , (B.30)

which directly compares to the transformation law of the creation operator Eq. (B.26).

We notice that the transformation matrix has a complicated p–dependence, such that the Fourier
transforms of the creation and the annihilation operators have themselves no simple transforma-
tion law in configuration space. Therefore, one has to construct suitable p–independent linear
combinations before taking the Fourier transform. The new basis of creation and annihilation op-
erators is called spinor basis. We will denote operators in the spinor basis by a tilde: ã+(~p, j3),
ã(~p, j3) and require them to transform under SL(2, C) like

U (Λ) ã (~p, j3) U−1 (Λ) = D(j)
(

Λ−1
)

j3j′3
ã (Λ~p, j ′3)

U (Λ) ã+(~p, j3) U−1 (Λ) = D(j)
(

Λ−1
)

j3j′3
ã+(Λ~p, j′3) .

We note that D(j)(Λ) cannot be unitary unless j = 0. How is this possible? In order to understand
this we have just to look at the relationship between the canonical and the spinor basis. We have

D(j)
(

R−1
Λ,p

)

= D(j)
(

L−1(~p )Λ−1L(Λ~p )
)

= D(j)
(

L−1(~p )
)

D(j)
(

Λ−1
)

D(j) (L(Λ~p ))
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where the left hand side is a (2j + 1) dimensional representation of a rotation, which is unitary,
while on the right hand side we have a product of (2j+1) dimensional non–unitary representations
of the SL(2, C) . The point is that only the product must be unitary not the individual factors.

If we multiply the last relation from the left with D(j) (L(~p )) we indeed achieve that

U (Λ)D(j) (L(~p ))j3j′3
a (~p, j′3) U−1 (Λ) = D(j)

(
Λ−1

)

j3j′3
D(j) (L(Λ~p ))j′3j

′′

3
a (Λ~p, j

′′

3 )

U (Λ)
{

D(j) (L(~p ))C−1
}

j3j′3

a+(~p, j′3) U−1 (Λ) = D(j)
(
Λ−1

)

j3j′3

{

D(j) (L(Λ~p ))C−1
}

j′3j
′′

3

a+(Λ~p, j
′′

3 )

such that we can identify the appropriate operators in the spinor basis

ã (~p, j3) =
(

D(j) (L(~p ))
)

j3j′3
a (~p, j′3)

ã+(~p, j3) =
(

D(j) (L(~p ))C−1
)

j3j′3
a+(~p, j′3) .

(B.31)

This is the crucial result. We now have creation and annihilation operators47 which have the
same p–independent transformation law and the Fourier transform of a linear combination of the
general form

ξ ã (~p, j3;m, j) e−ipx + η b̃+ (~p, j3;m, j) eipx

and thus
∫

dµ(p)
{

ξ ã(~p, j3)e−ipx + η b̃+(~p, j3)eipx
}

satisfy the required simple transformation law. As indicated, the creation operator b+ only need
have the same mass and spin as the annihilation operator a, not however the same charge–like
quantum numbers.

B.6 Fields

Now basic fields may be written down for all the irreducible representations of SL(2, C) . The
simplest one’s are the following:

Fields to the representation (j, 0)

ϕj3(x) =
∑

j′3

∫

dµ(p)
{

ξD(j) (L(~p ))j3j′3
a(~p, j′3) e−ipx + η D̂(j) (L(~p ))j3j′3

b+(~p, j′3) eipx
}

(B.32)

where D(j) (L(~p )) and D̂(j) (L(~p )) ≡ D(j) (L(~p ))C−1 represent one particle wave functions. We
will write them down in a more familiar form below.

Fields to the representation (0, j)

χj3(x) =
∑

j′3

∫

dµ(p)
{

ξ′D(j) (L(−~p ))j3j′3
a(~p, j′3) e−ipx + η′D̂(j) (L(−~p ))j3j′3

b+(~p, j′3) eipx
}

(B.33)

This field is obtained from the (j, 0) field by the substitutions D(j) (L(~p )) → D(j) (L(−~p ))
and by choosing independent linear combination coefficients ξ ′ and η′. Both fields satisfy the
Klein–Gordon equation (2.18) and transform according to the (2j + 1)–dimensional non–unitary
irreducible representations specified (see Eq. (2.19)). These irreducible fields, also called Joos–
Weinberg fields, do not obey any field equation other than the Klein–Gordon equation.

47Note that ã+ 6= (ã)+ in the spinor basis.

304



With the help of the commutation relations between annihilation and creation operators the field
commutator (anti–commutator) becomes

[

ϕj3(x), ϕ+
j′3

(x′)
]

∓
=

∫

dµ(p)
(

D(j) (L(~p ))D(j) (L(~p ))
+
)

j3j′3

{

|ξ|2e−ip(x−x′) ∓ |η|2eip(x−x′)
}

. (B.34)

This result may be obtained as follows:

1) Each field exhibits a summation over j3 and an integration over d3p

∑

j
′′
3

∑

j
′′′
3

∫

dµ(p)

∫

dµ(p′) · · ·

2) The non–vanishing commutators (anti–commutators) between annihilation and creation oper-
ators under the integrals are

[

a(~p, j
′′
3 ), a+(~p ′, j

′′′
3 )
]

∓
= δj′′3 j

′′′
3

(2π)3 2ωp δ
(3) (~p− ~p ′)

and
[

b+(~p, j
′′
3 ), b(~p ′, j

′′′
3 )
]

∓
= ∓δ

j
′′
3 j

′′′
3

(2π)3 2ωp δ
(3) (~p− ~p ′) .

3) The coefficients of the two terms are

D(j) (L(~p ))
j3j

′′
3
D+(j) (L(~p ′)

)

j
′′′
3 j

′
3
ξξ∗e−ipxeip

′x′

and
(

D(j) (L(~p ))C−1
)

j3j
′′
3

(

D(j) (L(~p ′)
)
C−1

)+

j
′′′
3 j

′
3

ηη∗eipxe−ip
′x′ ,

respectively.

4) One of the integrations is trivial:
∫

dµ(p′)(2π)3 2ωp δ
(3) (~p− ~p ′)F (~p, ~p ′) = F (~p, ~p ) ,

and because of m = m′, we note that ~p = ~p ′ implies ωp′ = ωp and p′ = p. Furthermore, also the

j
′′′
3 summation is trivial, as

∑

j
′′′
3
· · · δ

j
′′
3 j

′′′
3

= · · ·
∣
∣
∣
j
′′′
3 =j

′′
3

.

5) What remains is the integral
∫
dµ(p) · · · over the two terms as given in Eq. (B.34).

Using the known form of the boost matrices we obtain
(

D(j) (L(~p ))D(j) (L(~p ))
+)

= e2~χ ~J (j)
= e2χ~̂p ~J (j)

with coshχ = ωp/m and ~̂p = ~p/|~p |. This matrix may be easily computed for arbitrary j, by
expanding the exponential and using the angular momentum algebra. For j = 0 we have 1 for
j = 1/2 we found before 1

m pµσµ and for arbitrary spin we find a result of the form

(

e2χ~̂p ~J (j)
)

j3j′3
=

1

m2j
t
µ1...µ2j
j3j′3

pµ1 . . . pµ2j

where t is a constant, symmetric and traceless tensor. Equation (B.34) thus may be written in
the form

[

ϕj3(x), ϕ+
j′3

(x′)
]

∓
=

i2j

m2j
t
µ1...µ2j

j3j′3
∂µ1 . . . ∂µ2j

∫

dµ(p)
{

|ξ|2e−ip(x−x′) ∓ (−1)2j |η|2eip(x−x′)
}

. (B.35)
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Note the appearance of the crucial factor (−1)2j in the second term now, which comes from the
different sign of the argument in the exponential, when we replace the pµ factors by derivatives
with respect to x: (pµ → ±i∂µ) exp∓ipx.

We thus have derived the form Eq. (2.25) of the commutator (anti–commutator) and the require-
ment of locality implies the spin statistics (2.26) and the crossing (2.27) theorems, which require
±(−1)2j = 1 and |ξ| = |η|, respectively. For further discussion we refer to Sec. 2.4.

For the commutator (anti–commutator) of the (0, j) fields we just have to replace D by D̄ in
(B.34) and we obtain

[

χj3(x), χ+
j′3

(x′)
]

∓
=

i2j

m2j
t̂
µ1...µ2j

j3j′3
∂µ1 . . . ∂µ2j

∫

dµ(p)
{

|ξ′|2e−ip(x−x′) ∓ (−1)2j |η′|2eip(x−x′)
}

. (B.36)

where t̂ is obtained from t by replacing ~p by −~p in the definition of t. Thus we may write
t̂
µ1...µ2j
j3j′3

≡ tj3j′3 µ1...µ2j . The locality requirement for the (0, j) fields yield restrictions on the

coefficients ξ′ and η′, which have the same forms as the one’s obtained for ξ and η in case of the
(j, 0) fields. So far the constraints on ξ ′ and η′ are independent from the one’s on ξ and η.

Interesting is the relative locality of the (j, 0) and the (0, j) fields. For this we have to look at

[

ϕj3(x), χ+
j′3

(x′)
]

∓
= δj3j′3

∫

dµ(p)
{

ξξ
′∗e−ip(x−x

′) ∓ ηη′∗eip(x−x
′)
}

, (B.37)

which is obtained in the same way as (B.34). The only change is the replacement D → D̄ in the
second factor of the D’s in DD+ and the substitutions ξ → ξ ′ and η → η′ for one of the fields.
Since DD̄+ = DD−1 = 1 the result follows.

Locality requires ηη
′∗ = ξξ

′∗ for bosons and ηη
′∗ = −ξξ′∗ for fermions, thus

ηη
′∗ = (−1)2jξξ

′∗ .

This implies that the antiparticle operator of the (0, j) field must carry a phase (−1)2j with
respect to the antiparticle operator in the (j, 0) field ! An admissible normalization thus is

ξ′ = ξ = η = 1 and η′ = (−1)2j . (B.38)

We thus may set ξ = η = 1 in the (j, 0) field (B.32) and obtain the (0, j) field (B.33) from the
(j, 0) one by the substitutions D(j) (L(~p ))→ D(j) (L(−~p )) and b+ → (−1)2jb+.

With this choice of the phases the fields are local and local relative to each other, i.e., the
commutators (anti–commutators)

[ ϕj3(x), ϕ
(+)
j′3

(y)] , [ χj3(x), χ
(+)
j′3

(y)] and [ ϕj3(x), χ
(+)
j′3

(y)]

vanish for (x − y)2 < 0. This requirement is crucial for the Dirac field, which combines the two
fields ( 1

2 , 0) and (0, 1
2) into one reducible local field.

B.7 One particle wave functions for spin 1/2

In the following we use the labels r = j3 for the spinor components. Alternatively, we may use
the labeling r = 1, 2 or ↑, ↓ or + 1

2 ,−1
2 or +,− .

In the fields spinors of the form

D(j) (L(~p ))rr′ a(~p, r′ )
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show up, and if we write




a(~p, ↑)
a(~p, ↓)



 = U(↑) a(~p, ↑) + U(↓) a(~p, ↓)

we obtain the more familiar from

u(p, r′ ) a(~p, r′ ) = D(j) (L(~p ))U(r′ ) a(~p, r′ )

where summation over r′ is understood. This identifies

u(p, r) = D(j) (L(~p ))U(r)

as the relativistic wave function for the particles described by a(~p, r).

The conventional argumentation for the construction of the wave functions goes as follows: the
quantization for massive particles is performed by convention in the rest frame and the states are
eigenstates of the 3rd component of angular momentum J3. As mentioned above, this yields the
basic normalized two-component spinors:

U(↑) =




1

0



 , U(↓) =




0

1



 ; U+(r) U(r′) = δrr′ .

The wave function for the r component of a(~p, r), in the ( 1
2 , 0) field, is the undotted spinor

obtained from the spinor U(r) at rest by the appropriate boost. Thus, using Eq. (B.21), we
obtain

u(p, r) = D( 1
2

) (L(~p )) U(r)

=
1

√

2m (p0 +m)
(pµσµ +m)u(0, r) (B.39)

with

u(0, r) = U(r)

in the rest frame.

Also the wave function for the r component of b+(~p, r) is an undotted spinor. Again it is obtained
from the spinor U(r) at rest by a corresponding boost Eq. (B.31):

v(p, r) = D( 1
2

) (L(~p )) (−iσ2) U(r)

= D( 1
2

) (L(~p )) V (r)

=
1

√

2m (p0 +m)
(pµσµ +m) v(0, r) (B.40)

with

v(0, r) = V (r) ≡ −iσ2U(r)

the rest frame spinors. Explicitly,

V (↑) =




1

0



 , V (↓) = −



0

1



 ; V +(r) V (r′) = δrr′ .
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We may summarize our considerations by writing down the following

Result: Spin 1
2 fields

The representation ( 1
2 , 0) is described by the undotted spinor field

ϕa(x) =
∑

r

∫

dµ(p)
{

ua(p, r) a(~p, r) e−ipx + va(p, r) b
+(~p, r) eipx

}

. (B.41)

The conjugate representation (0, 1
2), obtained by the replacements D( 1

2
) (L(~p )) → D( 1

2
) (L(−~p ))

and b+ → (−1)2jb+ in the ( 1
2 , 0) field, is described by the dotted spinor field

χȧ(x) =
∑

r

∫

dµ(p)
{

ûȧ(p, r) a(~p, r) e−ipx + v̂ȧ(p, r) b+(~p, r) eipx
}

. (B.42)

where

ûȧ(p, r) =
1

√

2m (p0 +m)
(pµσ̂µ +m)u(0, r)

v̂ȧ(p, r) =
−1

√

2m (p0 +m)
(pµσ̂µ +m) v(0, r) (B.43)

are the dotted spinor one–particle wave functions. Note that ~p → −~p is accounted for by going
from σµ to σ̂µ, while b+ → −b+ is taken into account by a change of sign in the corresponding
wave function v̂.

The two–spinor fields satisfy the following linear coupled system of first order differential equa-
tions:

i(σ̂µ)ȧa∂µϕa(x) = mχȧ(x)

i(σµ)aȧ∂µχ
ȧ(x) = mϕa(x) . (B.44)

As we shall see below this is just an unusual form of the Dirac equation. It expresses the fact that
both fields are associated with the same states, respectively, with the same one–particle operators
a(p, r) and b+(p, r). Consequently, the two fields ϕ and χ are not independent, in spite of the
fact that they transform in a different way under SL(2, C) .

We can easily derive the Eqs. (B.44). We may write σ̂µp
µ = ωp 1 − ~σ ~p = 2|~p |( ωp

2|~p | 1 − h)

where h ≡ ~σ
2

~p
|~p | is the helicity operator, and for massless states, where ωp = |~p |, we have

σ̂µp
µ = 2|~p | ( 1

2 −h) as a projection operator on states with helicity − 1
2 , while σµp

µ = 2|~p | ( 1
2 +h)

is a projection operator on states with helicity + 1
2 .

For massive states we observe that pµpν σ̂µσν = pµpνσµσ̂ν = p2 · 1 = m2 · 1 (see Eq. (B.7)) and
therefore

ϕ(x) : σ̂µp
µu(p, r) = m√

2m(p0+m)
(σ̂µp

µ +m) U(r) = mû(p, r)

−σ̂µpµv(p, r) = −m√
2m(p0+m)

(σ̂µp
µ +m) V (r) = mv̂(p, r)

χ(x) : σµp
µû(p, r) = m√

2m(p0+m)
(σµp

µ +m) U(r) = mu(p, r)

−σµpµv̂(p, r) = −m√
2m(p0+m)

(σµp
µ +m) V (r) = mv(p, r) .

Finally, using
(i∂µ = ±pµ) e∓ipx
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implies Eqs. (B.44) for the local fields.

In the massless limit m→ 0 : p0 = ωp = |~p | we obtain two decoupled equations

i(σ̂µ)ȧa∂µϕa(x) = 0

i(σµ)aȧ∂µχ
ȧ(x) = 0 . (B.45)

These are the Weyl equations and the massless spinor fields are the Weyl fields or Weyl
spinors. They describe the neutrino, for example, and we have

σ̂µp
µu(p, r) = 0 ⇒ (p0 − ~σ ~p )u(p, r) = 0

σµp
µû(p, r) = 0 ⇒ (p0 + ~σ ~p )û(p, r) = 0

with p0 = |~p | and ~σ ~̂p = 2h and h the helicity operator, we may write hu = u and hû = −û
from which we learn that ϕa is a right–handed massless spin 1/2 field, while χȧ is its left–handed
parity partner.

B.8 The Dirac field: parity doubled spin 1
2

field

The Dirac field is the bispinor field obtained by combining the irreducible fields ϕa(x) and χȧ(x)
into one reducible field ( 1

2 , 0) ⊕ (0, 1
2 ). It is the natural field to be used to describe fermions

participating parity conserving interactions like QED and QCD. Explicitly, the Dirac field is
given by

ψα(x) =




ϕa

χȧ



 (x) =
∑

r

∫

dµ(p)
{

uα(p, r) a(~p, r) e−ipx + vα(p, r) b+(~p, r) eipx
}

. (B.46)

where

uα =




ua

ûȧ



 ; vα =




va

v̂ȧ



 .

Utilizing the explicit representation Eqs. (B.39), (B.40) and (B.43) of the two–spinors we obtain

uα(p, r) =
1

√

2m (p0 +m)




(pµσµ +m) U(r)

(pµσ̂µ +m) U(r)



 (B.47)

vα(p, r) =
1

√

2m (p0 +m)




(pµσµ +m) V (r)

−(pµσ̂µ +m) V (r)



 (B.48)

for the four-spinor one–particle wave functions.

The Dirac field has the following properties:

① it transforms according to the ( 1
2 , 0) ⊕ (0, 1

2) representation of SL(2, C)

U(Λ, a)ψα(x)U−1(Λ, a) = S(Λ−1)αβψβ(Λx+ a) , (B.49)

where S(Λ) ≡ SΛ is given by Eq. (B.19).

② ψα(x) satisfies the Klein-Gordon equation:

(2 +m2)ψα(x) = 0
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③ ψα(x) satisfies the Dirac equation:

(iγµ∂µ −m)αβ ψβ(x) = 0

where

γµ
.
=




0 σµ

σ̂µ 0





are the Dirac matrices in the helicity representation. The Dirac equation is nothing but
Eqs. (B.44) written in terms of the bispinor ψ. The crucial algebraic (representation inde-
pendent) properties of the Dirac matrices are the anti–commutator relations

{γµ, γν} = 2gµν · Id

and

{γµ, γ5} = 0 .

They follow directly from (B.7) and the definition of γ5 in Sec. B.3. By “Id” we denoted
the 4×4 unit matrix. Usually the unit matrix is not explicitly written if it is just a factor
of some other expression, like gµν on the r.h.s. of the Dirac algebra or as a factor of the
mass m in the Dirac equation.

④ Definition: The adjoint field ψ̄α(x) is defined such that

ψ̄α(x)ψα(x) is a scalar

under Lorentz transformations. By Theorem 6 in Sec. B.3, the adjoint spinor is given by

ψ̄α(x) ≡ ψ+
β (x)(γ0)βα .

⑤ the adjoint field satisfies:

1) U(Λ, a)ψ̄α(x)U−1(Λ, a) = ψ̄β(Λx + a) S(Λ)βα

2) ψ̄α(x)(
←
2 +m2) = 0

3) ψ̄α(x)
(

iγµ
←
∂ µ +m

)

αβ
= 0

Dirac equation:

A spin 1/2 particle has two degrees of freedom and hence should be described by a two component
field. For the given states described by the one–particle operators a(~p, r) and b+(~p, r) we may
associate two different local fields a undotted or a dotted spinor. The reducible field ψα(x) has
twice the number of components of the fields ϕa(x) and χȧ(x), which means that two components
are linearly dependent now. This linear dependence among the components requires the validity
of a linear relationship, which is known as the Dirac equation. Using (i∂µ = ±pµ) e∓ipx the Dirac
equation yields, in the integrand of the Fourier decomposition of the Dirac field,

(γµpµ −m)αβ uβ(p, r) = 0

(γµpµ +m)αβ vβ(p, r) = 0 .

The four–spinors thus are classical solutions of the Dirac equation.
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Remarks:

1) The normalizations which we obtained in a natural way for the massive particles are not
convenient because they do not allow us to take smooth limits m→ 0. This is obvious if we look
at the commutator (anti–commutator) formulae Eqs. (B.35) and (B.36), or, at the representations
of the spinors Eqs. (B.39),(B.40) and (B.43). Therefore, in the following, we are going to chose a
different normalization by multiplying the Weyl or Dirac spinors considered so far by

√
m. This

amounts to choose the normalization

ξ′ = ξ = η = mj and η′ = (−1)2j mj . (B.50)

in place of (B.38). For the spin 1/2 case, formally, we have to set u→ √mu , v → √mv etc., for
all one–particle wave functions. This is the normalization adapted henceforth (see Appendix A.3).

2) The representation obtained for the Dirac field is the so called helicity representation in
four–spinor space (spinors, Dirac algebra). This should not be confused with the choice of the
basis for the physical states in Hilbert space, where we distinguish between helicity states and
canonical states. In the helicity representation the spinors and spinor–fields transform according
to the reducible representation in block diagonal form (B.19). There is no a priori reason not to
use some other representation. In fact for massive fermions one commonly uses the standard
representation, which is chosen such that a particle at rest in momentum space is described by
spinors u and v which have, respectively, upper and lower components only. This is achieved by
the choice

ψstandard
α =




ξ

η





α

where

ξ =
1√
2

(ϕ + χ) , η =
1√
2

(ϕ− χ) .

In the rest frame we then have (using the new normalization)

u(0, r)standard =
√
m




U(r)

0



 , v(0, r)standard =
√
m




0

V (r)



 .

Thus the relationship between the helicity and the standard representation is determined by the
transformation of basis

ψstandard
α = S ψhelicity

α

γµstandard = S γµhelicity S
−1

where

S = S−1 =
1√
2




1 1

1 −1





.

In Appendix A.3 of Sec. 2 we have summarized properties of Dirac fields and the Dirac algebra.
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B.9 Majorana field:

This is a spin 1/2 field for which the antiparticle is identical to the particle (b = a). In order
that the two Weyl equations remain consistent we must have a further relationship, a reality
condition, between χȧ and ϕa. A solution is given by

χȧ = (iσ2)ȧaϕa
∗ . (B.51)

This may be checked by using the complex conjugation matrix C = iσ2 discussed earlier (see
Eq. (B.3) and (B.5)). Since we are more familiar with the four–spinor notation, we write the
Majorana field like a Dirac field

ψα(x) =




ϕa

χȧ



 (x) =




ϕa

(iσ2ϕ
∗)ȧ



 (x) . (B.52)

Explicitly we have

ψα(x) =




ϕ

iσ2ϕ
∗





α

(x) =
∑

r

∫

dµ(p)
{

uα(p, r) a(~p, r) e−ipx + vα(p, r) a+(~p, r) eipx
}

. (B.53)

Note: the Majorana field is formally identical to a Dirac field in the helicity representation and
setting b = a. It satisfies the Dirac equation is self–conjugate, however. It necessarily describes
a neutral spin 1/2 particle, usually called Majorana–neutrino.

B.10 One particle wave functions for spin 1: Polarization vectors

Although the irreducible fields (j, 0) and (0, j) are the simplest fields describing a spin j particle,
in physical applications, it is advantageous to use slightly different fields. The reason is that
strong and electromagnetic interactions are parity conserving and it is much more convenient to
work with fields which exhibits a symmetric pairing of parity partners. We already know that spin
1/2 particles are described by Dirac fields rather than by undotted or dotted two–spinors. Even
the parity violating weak interactions are written in terms of left– and right–handed Dirac fields
and not in terms of Weyl fields. Similarly, spin 1 particles are not described by the irreducible
2j + 1–component fields (1, 0) or (0, 1), usually. One rather uses a four–vector field V µ(x), which
corresponds to a ( 1

2 ,
1
2) representation , and which incorporates both parities in one field.

The representation ( 1
2 ,

1
2) is not irreducible with respect to the subgroup of rotations. The angular

momentum decomposition (see (2.30))

D(
1

2
,

1

2
) ⊃ D( 1

2
, 1
2

)

R = D
( 1
2

+ 1
2

)

R ⊕D( 1
2
− 1

2
)

R = D
(1)
R ⊕D

(0)
R

exhibits a spin 1 and a spin 0 part. The spin 0 part is described by a scalar field ϕ(x)
.
= ∂µV

µ(x).
We require V µ(x) not to create or destroy scalar particles, which is the case only if the field
satisfies ϕ(x) ≡ 0. This may be achieved for a massive spin 1 field by requiring it to be a solution
of the Proca equation (2 + m2)Vµ(x) − ∂µ(∂νV

ν) = 0. A real (neutral) massive spin 1 field is
then given by

V µ(x) =
∑

r=±1,0

∫

dµ(p)
{

εµ(p, r) a(~p, r) e−ipx + ε∗µ(p, r) a+(~p, r) eipx
}

,

where r = ±1 label the transversal degrees of freedom and r = 0 the longitudinal degree of
freedom.
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Construction of the polarization vectors:

Quantization may be performed in the rest frame and, conventionally, one of the following coor-
dinate systems is chosen:

a) Cartesian basis (real), J3 diagonal:

Generators:

J
(1)
1 =

1√
2








0 0 1

0 0 1

1 1 0








, J
(1)
2 =

1√
2








0 0 −i
0 0 i

i −i 0








, J
(1)
3 =








1 0 0

0 −1 0

0 0 0








Eigenvectors:

ε(1) =








1

0

0








, ε(2) =








0

1

0








, ε(3) =








0

0

1








with eigenvalues λ = +1,−1, 0.

b) Helicity basis (complex), ~J ′ = U ~J U+, ε′(r) = Uε(r):

The transition from Cartesian to spherical coordinates reads (x, y, z) ⇒ (−x−iy√
2
, x−iy√

2
, z). The

corresponding transformation matrix U is then given by

U =
1√
2








−1 1 0

−i −i 0

0 0
√

2








.

In the new basis the generators take the form:

J
′(1)
1 =








0 0 0

0 0 −i
0 i 0








, J
′(1)
2 =








0 0 i

0 0 0

−i 0 0








, J
′(1)
3 =








0 i 0

i 0 0

0 0 0








Eigenvectors:

ε′(1) =
1√
2








−1

−i
0








, ε′(2) =
1√
2








1

−i
0








, ε′(3) =








0

0

1








with eigenvalues λ = +1,−1, 0. One usually denotes ε′(1) = ε+, ε′(2) = ε− and ε′(3) = ε0 such
that J3ελ = λελ.

We are looking for three covariant polarization vectors εµ(p, r) which depend on one vector p,
only. The polarization vectors have to satisfy the conditions:

1) Absence of scalar mode: pµε
µ(p, r) = 0

2) Normalization: εµ(p, r) ε∗µ(p, r′) = −δrr′
3) Completeness:

∑

r εµ(p, r) ε∗ν(p, r) = −gµν +
pµpν
M2
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Note that the r.h.s. of the completeness relation had to be chosen compatible with the transver-
sality condition 1). Indeed, we find

pµ
(

−gµν +
pµpν
M2

)

= −pν + pν
p2

M2
= 0 as p2 = M2 .

We are going now to construct the polarization vectors in the artesian basis:

• In the rest frame:

pµε
µ(p0, r) = p0ε0 = Mε0 = 0

which implies

ε0(p0, r) = 0 ∀ r .

The three–vectors ~ε (p0, r) are required to be real eigenvectors of the 3rd component of the angular
momentum

J3 ~ε (p0, r) = λr ~ε (p0, r)

which yields

εk(p0, r) = δkr

for the normalized eigenvectors with the eigenvalues λr = 1,−1, 0 for r = 1, 2, 3.

• In an arbitrary frame:

The crucial point is that for a given mass M and a given three–momentum ~p there exist exactly
one boost matrix, such that

pµ = Lµν(p) pν0 , pν0 = (M,~0 )

and the polarization vectors at momentum p are obtained be the Lorentz boost

εµ(p, r)
.
= Lµν(p) εν(p0, r) .

Explicitly, we have

L0
0(p) = coshχ

Li0(p) = L0
i(p) = p̂i sinhχ

Lij(p) = δij + p̂ip̂j(coshχ− 1)

with coshχ = ωp/M , sinhχ = |~p |/M and ~̂p = ~p/|~p |. As a result we obtain




ε0(p, r)

εi(p, r)



 =





ωp

M
pj
M

pi
M δij + p̂ip̂j(

ωp

M − 1)








ε0(p0, r)

εj(p0, r)



 ,

or,

ε0(p, r) =
pr
M

, εk(p, r) = δkr + pkpr
1

M(ωp +M)
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where we used (ωp −M)/(M~p 2) = 1/(M(ωp +M)).

We have to show that the constructed vectors satisfy the conditions 1) to 3) stated above.

Proofs:

0) We first prove the covariance of the polarization vectors. Under a Lorentz transformation

pµ → Λµν p
ν = Λµν L

ν
ρ(p) pρ0 ≡ Lµρ(Λp) pρ0

and therefore

εµ(p, r)→ εµ(Λp, r) = Lµν(Λp) εν(p0, r) = Λµν L
ν
ρ(p) ερ(p0, r) = Λµν ε

ν(p, r) ,

which demonstrates the proper transformation law of a four–vector.

1) pµε
µ(p, r) = 0:

Since

p0ν
.
= pµL

µ
ν = ωpL

0
ν − piLiν = (M,~0 )

we have

pµε
µ(p, r) = p0νε

ν(p0, r) = Mε0(p0, r) = 0 ,

which proves the assertion.

2) Consider the tensor Xµν =
∑

r εµ(p, r)ε∗ν(p, r) which must satisfy

pµXµν = pνXµν = 0

and for the r.h.s of the completeness relation this holds, as we have checked before. Hence it
remains to be shown that the completeness relation itself is true. Using Lorentz covariance it
remains to be shown that the completeness relation is true in the rest frame: with p0 = (M,~0 )
we have

X0ν(p0) = 0 obviously since ε0(p0, r) = 0

X00(p0) = 0 = −g00 +
M2

M2
= 0

Xik(p0) =
∑

r

εi(p0, r) ε
∗
k(p0, r) = −gik = δik

and by the covariance the completeness holds in any frame.

3) Using the property

Lµρ = (L−1) µ
ρ ⇒ (L−1) µ

ρ L
ν
µ = δ ν

ρ

of a Lorentz transformation, we obtain

εµ(p, r) ε∗µ(p, r′) = L ν
µ L

µ
ρ εν(p0, r) ε

∗ρ(p0, r
′)

= εν(p0, r) ε
∗ν(p0, r

′) = ε0ε∗0 − ~ε ~ε ∗ = −δrr′ .

This completes the necessary proofs of the properties of the polarization vectors.

q.e.d.

The transition to helicity basis and the application to charged fields is straight forward and given
in Appendix A.5 and A.6 of Sec. 2
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C Massless particles

Peculiarities of massless particles and fields occur for particles with spin ≥ 1. The reason is
simple: for spin < 1 massless and massive states have the same number of degrees of freedom for
a given spin.

Spin 0: Taking the limit limm→0 ϕ(x) of a massive scalar field poses no problems. The massless
scalar field

ϕ(x) =

∫

dµ(p)
{

a(~p ) e−ipx + a+(~p ) eipx
}

,

is a solution of the d’Alembert equation 2ϕ(x) = 0. In momentum space p now is a light–like
vector, i.e., on the mass–shell p2 = 0 and hence p0 = ωp = |~p |. The invariant integration volume
is

dµ(p) = (2π)−3 d
3p

2|~p | , d3p = |~p |2 d|~p | dΩ3

where dΩ3 = sin θdθdφ with 0 ≤ θ ≤ π , 0 ≤ φ < 2π the surface element of the compact 3–sphere.

Spin 1/2: Also the massive spinor fields ϕa, χ
ȧ or ψα have proper massless limits, if they are

properly normalized.

Spin 1: (and higher) the zero mass limits lead to problems. While the massive spin j particle
has 2j + 1 degrees of freedom, the massless one has two, only. Starting point are the helicity
states. Since there is no rest frame for a massless particle, quantization is performed relative to
a light-like standard vector in z–direction qµ = (q, 0, 0, q) , usually.

C.1 Massless states

We first consider the subgroup of L↑+ which leaves the standard vector q invariant. This subgroup
is called little group of q:

Λq = q ↔ Λ ∈ LGq .

We consider the Pauli–Lubansky generators Lµ, defined in Eq. (2.4), which satisfies LµP
µ = 0

such that

LµP
µ|q, α >= qµLµ|q, α >= q (L0 − L3) |q, α >

and, furthermore,

L3|q, α >=
1

2
q ε30ρσMρσ |q, α >= qJ3|q, α >

such that L0 = L3 and L3 = qJ3 on standard states. We are left with the following commutation
relations for L1, L2, L3

[L1, L2] = 0 , [L3, L1] = iqL2 , [L3, L1] = −iqL1

which compares to

[P1, P2] = 0 , [J3, P1] = iP2 , [J3, P1] = −iP1

which is the Lie algebra of the group E(2), the group of rotations and translations in the xy–plane.
A crucial property of the group E(2) is its non–semi–simple nature, i.e., it has an invariant
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Abelian subgroup. The consequence of the cummutativity of L1 and L2 is that L2
1 + L2

2 and
hence LµL

µ may take any real value, which means that we may have “continuous spin”. We are
interested only in representations with discrete spin, i.e., for finite dimensional representations .
Defining the ladder operators L± = L1 ± iL2 we obtain the algebra

[L+, L−] = 0 , [L3, L±] = qL± .

The procedure then is the same as in the case of angular momentum. A finite dimensional
representation must have a lowest state |λ〉 ⇒ L−|λ〉 = 0. There also must exist a highest state
(L+)p|λ〉 ⇒ (L+)p+1|λ〉 = 0 for some integer p ≥ 0. However, L− and L+ commute such that
L−(L+)r|λ〉 = (L+)rL−|λ〉 = 0 for any integer r ≥ 0 and hence, L− = 0 and L+ = (L−)+ = 0 on
the entire representation space. |λ〉 is eigenstate of L3 = qJ3: J3|λ〉 = λ|λ〉. As a result we have
the

Theorem 7: All finite dimensional representations of L↑+ for m = 0 must be 1-dimensional.

States with arbitrary momentum

Let p be an arbitrary vector with p2 = 0 and p0 = |~p | > 0. The vector p can be obtained
from the standard vector q by a boost Lz(p, q) along the z–axis, which transforms (q, 0, 0, q) into
p̃ = (p0, 0, 0, p0), and a rotation Rϕ,θ(p) which rotates p̃ into p about an axis in the xy–plane.
Thus

p = Rϕ,θ(p) Lz(p, q) q

and we obtain arbitrary massless states by the

Definition:

|p, λ〉 .
= U(Rϕ,θ(p) Lz(p, q)) |q, λ〉
= U(Rϕ,θ(p)) |Lzq, λ〉 (C.54)

which is a rotated standard state of the requested momentum.

Theorem 8: |p, λ〉 is a helicity state:

h|p, λ〉 = λ|p, λ〉

Proof: as in massive case.

Theorem 9: The massless states |p, λ〉 transform diagonal in λ, according to

U(Λ, a) |p, λ〉 = eiaΛp e−iφλ |Λp, λ〉 (C.55)

Proof:

1. U(Λ, a) |p, λ〉 = U(1, a) U(ΛRϕ,θ(p) Lz(p, q)) |q, λ〉

2. U(ΛRϕ,θ(p) Lz(p, q)) |q, λ〉 =?

We first note that the momentum Λp is obtained from q by

Λp = ΛRϕ,θ(p)Lz(p, q)q

= Rϕ,θ(Λp)Lz(Λp, q)q .

317



Therefore

ΛRϕ,θ(p)Lz(p, q) = Rϕ,θ(Λp)Lz(Λp, q) Sq(Λ, p)

with Sq ∈ LGq, i.e., Sq(Λ, p)q = q. Sq may be represented as a product

S = S1S2Rz (C.56)

where S1, S2 and Rz are generated by L1, L2 and L3/q = J3, respectively.

3. On standard states we then have

U(Rz) |q, λ〉 = e−iφJ3 |q, λ〉 = e−iφλ|q, λ〉
U(S1) |q, λ〉 = U(S2) |q, λ〉 = |q, λ〉

since L1 = L2 = 0 on all standard states. Hence

U(Sq(Λ, p)) |q, λ〉 = e−iφλ|q, λ〉 .

4.

U(Λ, a) |p, λ〉 = U(1, a) U(Rϕ,θ(Λp)) U(Lz(Λp, q)) U(S(Λ, p)) |q, λ〉
= U(1, a) U(Rϕ,θ(Λp)) U(Lz(Λp, q)) e

−iφλ |q, λ〉
= U(1, a) e−iφλ |Λp, λ〉
= eiaΛp e−iφλ |Λp, λ〉

q.e.d.

Admitted λ–values for the discrete representations

Consider a rotation about the z–axis: Rzq = q

U(Rz)|q, λ〉 = e−iφλ|q, λ〉 .

A rotation by 2π yields
e−i2πλ = ±1

for a true representation of SL(2, C) . Thus the allowed values are

λ = 0,±1

2
,±1, . . .

and hence for each value of λ there exists exactly one irreducible representation . |λ| is the spin
of the massless particle.

As a result we have the following

Theorem 10: The finite dimensional irreducible and unitary representations of SL(2, C) to mass
0 and spin j are 1–dimensional and characterized by the helicity λ = ±j. To a given spin j > 0
there exist exactly two helicity states. Each of the two possible states is invariant by itself under
P↑+ . The states get interchanged under parity transformations:

U(P ) h U(P )−1 = −h , P ∈ P↑− .
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C.2 Massless fields

The construction of local massless fields is based on the transformation laws of the massless states
Eq. (C.55). Under homogeneous Lorentz transformations the states transform according to an
Abelian group, and the phase function is satisfying

φ(S1S2) = φ(S1) + φ(S2)

φ(S−1) = −φ(S) (C.57)

where

S = S(Λ, p) = L̃−1(Λp) ΛL̃(p) (C.58)

and

L̃(p) = Rϕ,θ(p)) Lz(p, q) . (C.59)

The states transform under L↑+ with a p–dependent phase ! Under complex conjugation we have
a change of sign and, consequently, we note

a+(~p, λ) and a(~p,−λ) transform identically

namely, by

U(Λ) a(~p, λ) U−1(Λ) = eiλφ(S(Λ,p))a(Λ~p, λ)

and hence, there are two linear combinations with a simple transformation law:

U(Λ)
{

ξa(~p, λ) e−ipx + ηb+(~p,−λ) eipx
}

U−1(Λ)

= eλiφ(S(Λ,p))
{

ξa(Λ~p, λ) e−ipx + ηb+(Λ~p,−λ) eipx
}

which are suitable for the construction of local fields. The real local field with normal inner parity
ηP = (−1)j = −1 obtained is

Aµ(x) =
∑

±

∫

dµ(p)εµ±(p)
{

a(~p,±) e−ipx − a+(~p,∓)eipx
}

(C.60)

where the polarization vectors εµ±(p) will be constructed below. Here, we only mention the
transformation property we read off if we consider U(Λ) Aµ(x) U−1(Λ) and change integration
variable Λp→ p we obtain

εµ±(p)→ e±iφ(S(Λ,p))εµ±(Λ−1p) (C.61)

which we will have to compare with the transformation law of a vector

εµ±(p)→ (Λ−1)µν ε
ν
±(p) (C.62)

expected if Aµ(x) would transform as a four–vector field U(Λ)Aµ(x)U−1(Λ) =
(
Λ−1

)µ
ν A

ν(Λx).

Polarization vectors for massless spin 1 particles:

The procedure to obtain the polarization vectors for massless spin 1 particles is similar, in spirit,
to the one applied in case of the spinors in Sec. B.7 and of the polarization vectors for massive
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spin 1 particles in Sec. B.10: One starts from a standard frame and then performs a boost to a
state with arbitrary momentum. The construction is as follows:

1) Standard vector in z–direction. Helicity basis:

ε1
± = ∓ 1√

2
, ε2

± = − i√
2
, ε3

± = ε0
± = 0

describe the two helicity states in the standard frame:

εµ+ =
1√
2











0

−1

−i
0











, εµ− =
1√
2











0

1

−i
0











,

and with the helicity operator

~̂p ~J (1) = J
(1)
3 =








0 −i 0

i 0 0

0 0 0








,

we find indeed

J3ε± = ±ε±

2) Arbitrary direction of the momentum:

Let R(p) denote the rotation of the z-axis into the direction of ~p, i.e., pµ = Rµν(p) pν0 where
pν0 = p0 (1, 0, 0, 1). Then

εµ±(p) = Rµν(p) εν±

and one easily verifies

εµ±(p)
∗

= −εµ∓(p)

ε±µ(p) εµ±(p) = ε±µε
µ
± = 0

ε±µ(p) εµ∓(p) = ε±µε
µ
∓ = 1 .

The orthogonality of the general polarization vectors follows from the one’s in the standard frame
by rotational invariance:

ελµ(p) εµλ′(p) = gµνε
ν
λ(p) εµλ′(p) =

gµνR
µ
ρR

ν
σε
σ
λε
ρ
λ′ = gρσε

σ
λε
ρ
λ′ .

3) Time component in standard representation:

ε0
±(p) = 0 : R0

ν(p) εν± = δ0
ν ε

ν
± = ε0

± = 0

4) Transversality:
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pµε
µ
±(p) = pµR

µ
ν (p) εν± = p0µε

µ
± = 0 ,

where we used the property that for a general Lorentz transformation Λµ
ν =

(
Λ−1

) µ
ν and hence

pµR
µ
ν (p) =

(
R−1

) µ
ν pµ = p0ν , since, pµ = Rµν (p) pν0 with pµ0 = p0 (1, 0, 0, 1).

5) Transformation properties of εµ±(p):

So far we have considered the construction of the polarization vectors relative to a light–like
standard four–vector qµ = q0 (1, 0, 0, 1) with q0 = p0 and obtained εµ±(p) = Rµν (p) εν± by
performing a rotation. If p0 6= q0 we first have to boost the momentum appropriately in the
z–direction. Thus in general we have

εµ±(p) = L̃µν (p) εν±

with L̃(p) defined in Eq. (C.59). We first consider Eq. (C.62)

(Λ−1)µν ε
ν
±(p) =

(

Λ−1L̃(p)
)µ

ν
εν±

=
(

L̃(Λ−1p) S(Λ−1, p)
)µ

ν
εν± (C.63)

where

S(Λ−1, p) = L̃−1(Λ−1p)Λ−1L̃(p) ∈ LGq ! (C.64)

Since S(Λ−1, p) leaves invariant the standard vector q, which is our reference vector for the
quantization, we must be able to choose S(Λ−1, p) ∈ LGq arbitrary. With other words, the
physics cannot depend on the choice of a particular element from LGq. We observe that the
polarization vectors of massless spin 1 particles cannot be unique, they must be considered to be
equivalence classes.

Generally, the transformation law for the polarization vectors may be written as

(S(Λ−1, p))µν ε
ν
± = e±iφ(S(Λ,p))εµ± +X±(Λ, p) qµ . (C.65)

Because the phase factors e±iφ show up in a canonical way via the transformation of the physical
states, we are interested here in the extra terms X±qµ, only, which occur, when S(Λ, p) has the
property that

φ(S(Λ, p)) = 0 . (C.66)

This condition defines a subgroup of LGq of elements
◦
Λ of the form

◦
Λ=











1 + |α|2 u1 −u2 −|α|2

u1 1 0 −u1

−u2 0 1 u2

|α|2 u1 −u2 1− |α|2











(C.67)

where u1 and u2 are two real parameters and α
.
= u1+iu2√

2
. One easily checks, that

10.
◦
Λ qν = qµ

321



20.
◦
Λ εν± = εµ± +X±(Λ, q) qµ

with

X+ = −α
∗

q
, X− =

α

q
.

Herewith, we have determined the equivalence classes of polarization vectors. They are given by

ε̃µ± = 1√
2

(ζ±,∓1,−i, ζ±) (C.68)

where ζ± are arbitrary parameters.

The general form of εµ±(p) then is given by

ε̃µ±(p) = L̃µν (p) ε̃ν±
= εµ±(p) + λ pµ (C.69)

since L̃(p)q = p and we have set X± → λ which is an arbitrary parameter.

For the Lorentz transformed vectors
(
Λ−1

)µ
ν ε

ν
±(p) we obtain

(Λ−1)µν ε
ν
±(p) =

(

L̃(Λ−1p) S(Λ−1, p)
)µ

ν
εν±

= e±iφ(S(Λ,p))εµ±(Λ−1p) +X±(Λ, p)(Λ−1p)µ

or

e±iφ(S(Λ,p)) εµ±(Λ−1p) = (Λ−1)µν
(

εν±(p)−X±(Λ, p) pν
)

We know that ε0
±(Λ−1p) vanishes identically by construction. We therefore are able to compute

X±(Λ, p):

0 = (Λ−1)0
ν

(
εν±(p)−X±(Λ, p) pν

)

or

X±(Λ, p) = (Λ−1)0
ν ε

ν
±(p)/(Λ−1p)0

and we have the final result

e±iφ(S(Λ,p)) εµ±(Λ−1p) =

[

(Λ−1)µν − (Λ−1)0
ν

(Λ−1p)µ

(Λ−1p)0

]

εν±(p) . (C.70)

This demonstrates the non-covariant transformation properties of the polarization vectors ! This
of course does not mean that the “physics” is not Lorentz invariant. But it is an unavoidable
technical complication, which is controlled be the requirement of gauge invariance.

6) Gauge invariance:

① Polarization vectors:

εµ±(p) is a 4–component quantity which we try to use to describe two physical degrees of freedom.
One of the 4 components can be eliminated in a manifestly covariant way by the Lorentz condition
(transversality) pµε

µ
±(p) = 0.

② Gauge invariance:
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In any case we must require the gauge invariance of physical predictions, i.e., the substitution

εµ±(p)→ εµ±(p) + λ pµ , λ arbitrary (C.71)

does not affect physical quantities. Which is the same as the well known invariance under local
gauge transformations

Aµ(x)→ Aµ(x) − ∂µα(x) (C.72)

of the vector potential.

Note: An immediate consequence of the non-covariant transformation properties of the polar-
ization vectors is the following: In the representation Eq. (C.60) Aµ(x) is not a Lorentz vector!
Instead, we have L–invariance up to a total divergence

U(Λ) Aµ(x) U−1(Λ) = (Λ−1)µν A
ν(Λx) + ∂µΦ(x) , (C.73)

of an arbitrary scalar function Φ(x). For the construction of a covariant photon field we refer to
Sec. 4.1.

C.3 Admitted representations for massless particles

The following theorem holds:

Theorem: Massless particles of helicity λ only can transform according to the representations

(A,B) = (A,A + λ) ,

where 2A and 2(A + λ) are non–negative integer numbers.

Note: This means that for massless particles there is an essential restriction of the general angular
momentum rule valid for massive particles presented in Sec. 2.6.

Thus the simplest representations for massless fields are:

λ = −1
2 : (1

2 , 0), (1, 1
2 ), . . . left− handed

+1
2 : (0, 1

2), (1
2 , 1), . . . right− handed

−1 : (1, 0), ( 3
2 ,

1
2 ), (2, 1), . . . left− handed

+1 : (0, 1), ( 1
2 ,

3
2 ), (1, 2), . . . right− handed

Not admitted is the representation ( 1
2 ,

1
2), which is precisely the one needed for the description

of massless spin 1 fields, which show up in physics as gauge fields associated with local gauge
symmetries as we shall see in Secs. 4 and 6.

Other representations are possible only if iSL(2, C) is no longer unitarily represented on the
Hilbert space of physical states. This means that, creation and annihilation operators, and the
states they describe, do not transform according to unitary representations. The representation
space then necessarily has indefinite metric and hence differs from the physical Hilbert space.
For a detailed discussion we refer to Sec. 4.1.

Proof of the theorem:

The restriction obtained for massless fields is a consequence of the properties of the little group
E(2) of a light–like four–vector. E(2) is not semi–simple, i.e., it has an Abelian subgroup. This
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is very different from the massive case, where the standard vector (m,~0 ) has O(3) as a stability
group, which is semi–simple.

We consider a representation U(S) of the little group of the light–like vector q: Sq = q. The
infinitesimal form reads

U(S) = 1− iχ̂1L1 − iχ̂2L2 − iφJ3

where we used the form (C.56). From our discussion in Sec. C.1 we know that for standard states
L0 = L3 = qJ3 and furthermore

L1 =
q

2
[ε10ρσMρσ + ε13ρσMρσ] = q(J1 +K2)

L2 =
q

2
[ε20ρσMρσ + ε23ρσMρσ] = q(J2 −K1) .

Setting χi = χ̂i q we find for the representations (A,B) of SL(2, C) the following:

U(S) = 1− iχ1(J1 +K2)− iχ2(J2 −K1)− iφJ3

= 1− iφ(A3 +B3)− iχ+A−iχ−B+

with A− = A1 − iA2 and B+ = B1 + iB2 are the lowering and raising ladder operators for the
“angular momenta” A and B, respectively, and χ± = χ1 ± iχ2. Remember that ~J = ~A + ~B,
~K = −i( ~A− ~B and Ai and Bi satisfy two independent angular momentum algebras.

For a representation this translates into

D(A,B)(S) = 1− iϕ(A3 + B3)− iχ+A−iχ−B+

Now, the crucial point is that physics cannot depend on the specific choice of S ∈ LGq. More
specifically, D(A,B)(S) acting on a one–particle wave function u(λ) describing a massless particle
of helicity λ must yield:

D(A,B)(S)u(λ) = e−iλφ(S)u(λ)

and for infinitesimal transformations we have

e−iλφ(S) = e−iφ(S) J3 ' e−iφ J3

and hence

φ(S) ' ϕ

(A3 + B3) u(λ) = λu(λ)

(A−) u(λ) = 0

(B+) u(λ) = 0

Since [C3, C±] = ±C± where C± = C1± iC2 independently for Ci = Ai, Bi and the same algebra
holds for the representations Ai,Bi we infer the following: (A−) u(λ) = 0 tells us that u(λ) is an
eigenvector of A3 to the lowest eigenvalue, which is (A3)u(λ) = −Au(λ) . Similarly, (B+)u(λ) = 0
implies that u(λ) is an eigenvector of B3 to the highest eigenvalue, which is (B3) u(λ) = Bu(λ) .
Thus (A3 + B3) u(λ) = (B −A) u(λ) = λu(λ) such that B = A + λ .

q.e.d.

324



D.4 Manipulations of perturbation series

1. Vacuum graphs and the normalization of perturbative amplitudes

In quantum field theory normalizations, such as < 0|S|0 >= 1 of the S–matrix or Z {0} = 1 of
a generating functional Z {J}, are usually nontrivial, i.e., they are not automatic and must be
performed explicitly. In perturbation theory the rule how to get the proper normalization, for
the examples mentioned at least, is very simple: proper normalization is achieved by omitting all
vacuum diagrams.

In order to show this we introduce the following notation:

<< T {φ(x1) φ(x2) · · · φ(xn) } >>=in< 0|T{φ(in)(x1) φ(in)(x2) · · · φ(in)(xn) ei
∫
ddx L(in)

int
(x)}|0 >in

< 0|T {φ(x1) φ(x2) · · ·φ(xn) } |0 >=in< 0|T{φ(in)(x1) φ(in)(x2) · · · φ(in)(xn) ei
∫
ddx L(in)

int (x)}|0 >in⊗

and

Z =in< 0|T{ei
∫
ddx L(in)

int (x)}|0 >in

Proposition: Omission of all vacuum diagrams (the ⊗ prescription) is identical to the division
by Z, i.e.,

Z· < 0|T {φ(x1) φ(x2) · · · φ(xn) } |0 >≡<< T {φ(x1) φ(x2) · · · φ(xn) } >>

Proof: in the perturbation expansion a Feynman graph contributing to << · · · >> consists of
two parts factorizing parts

∫
ddy1 · · · ddym << T {φ(x1) · · ·φ(xn)Lint(y1) · · · Lint(ym)} >>

=
∑m
k=0




m

k




∫
ddy1 · · · ddym

< 0|T {φ(x1) · · ·φ(xn)Lint(y1) · · · Lint(ym−k)} |0 >⊗ ·
< 0|T {Lint(ym−k+1) · · · Lint(ym)} |0 >

The first factor belongs to a group of k internal vertices where each connected component connects
to at least one external vertex xi. The remaining m− k internal vertices do not connect to any
external vertex and hence belong to vacuum graphs. Because all internal vertices are integrated
out, there are (mk ) equal possibilities to choose k vertices out of m.

Since the double summation over m and k may be written as a double sum over l = m− k and
k as follows:

∞∑

m=0

im

m!

m∑

k=0




m

k



 · · ·

=
∞∑

l=0

il

l!
· · ·

∞∑

k=0

ik

k!
· · ·

the proposition is proven.

2. Connected Green functions
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A full Green function is determined by a sum of graphs which may have several connected
components:

< 0|T {φ(x1) φ(x2) · · · φ(xn) } |0 > =
∑

Γ
⊗

Γ

< 0|T {φ(x1) φ(x2) · · · φ(xn) } |0 >conn ≡
∑

Γ
⊗ conn

Γ

and they are related by the

Theorem 1:

< 0|T {φ(x1) φ(x2) · · ·φ(xn) } |0 >

=
∑

partitions
i

< 0|T{φ(xi11) φ(xi12 ) · · ·φ(xi1n1
) }|0 >conn · · · < 0|T{φ(xik1

) φ(xik2
) · · ·φ(xiknk

) }|0 >conn

where the sum extends over all partitions of (1, · · · , n) into k classes (i11, · · · , i1n1) · · · (ik1, · · · , iknk
)

with n1 + n2 + · · · + nk = n.

Proposition: If Z {J} is the generating functional of the full time ordered Green functions ,
then G {J} = lnZ {J} is the generating functional of the connected Green functions:

G {J} .=
∞∑

n=1

1

n!

∫

ddx1 . . .

∫

ddxn J(x1) . . . J(xn) G(n)(x1, . . . , xn)

where

G(n)(x1, . . . , xn) ≡< 0 | T {ϕ(x1) . . . ϕ(xn)} | 0 >conn

Proof:

δnZ{J}
δJ(x1)···δJ(xn)

∣
∣
∣
J=0

= δn

δJ(x1)···δJ(xn) expG {J}
∣
∣
∣
J=0

< 0|T {φ(x1) · · · φ(xn) } |0 > =
∑n
k=0

1
k!

δn

δJ(x1)···δJ(xn) (G {J})k
∣
∣
∣
J=0

=
n∑

k=0

∑

partitions
i

G(n1)(xi11 , · · · , xi1n1
) · · ·G(nk)(xik1 , · · · , xiknk

)

with the sum over all partitions of n into k classes. The inverse relationship is obtained by
calculating

G(n)(x1, . . . , xn) =
δn

δJ(x1) · · · δJ(xn)
lnZ {J}

∣
∣
∣
∣
J=0

The proof that G(n)(x1, . . . , xn) is given by a sum of connected diagrams only proceeds by assum-
ing that G(n)(x1, . . . , xn) contains two disconnected pieces and thus factorizes into two factors.
This can be shown to lead to a contradiction to the above recurrence relation.

3. Vertex functions

The generating functional of the vertex functions is the functional Legendre transform of the
generating functional of the connected Green functions:
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Definition: The functional Γ {K} is defined be the functional Legendre transform

Γ {K} = G {J} − i
∫

ddy
(

K(y) +G(1)
)

J(y)

with

K(y) = −i δG {J}
δJ(y)

−G(1) ; J(y) = i
δΓ {K}
δK(y)

.

where

G(1) =< 0|φ(y)|0 >= constant

and

Γ {0} = G {0} ; K(y)|J=0 = 0

Proposition:

Γ {K} .=
∞∑

n=2

1

n!

∫

ddy1 . . .

∫

ddyn K(y1) . . . K(yn) Γ(n)(y1, . . . , yn)

generates the amputated one–particle irreducible (1pi) Green functions, called vertex functions.

A Feynman diagram is 1pi if it cannot be divided into two disconnected parts by cutting one line.

Examples:

one particle reducible one particle irreducible

Amputation: is defined by convolution with the inverse propagator
∫

dy1 G
(2)−1(x1 − y1)G(n)(y1, x2, · · · , xn) ≡ G(n)(x1, x2, · · · , xn) =

such that conversely

∫
dy1 G

(2)(x1 − y1) G(n)(y1, x2, · · · , xn) ≡ G(n)(x1, x2, · · · , xn)

=

The

Inverse propagator: satisfies
∫

dy G(2)−1(x− y)G(2)(y − z) = δ(d)(x− z)

Proof of the proposition:

G(n)(x1, · · · , xn) =
δn

δJ(x1) · · · δJ(xn)

{

Γ {K}+ i

∫

dy
(

K(y) +G(1)
)

J(y)

}∣
∣
∣
∣
J=0

=
n∑

k=2

k∑

`=1

(−1)k−`

(k − `)!
∑

partitions
i

∫

dy1 · · · dyk Γ(k)(y1, · · · , yk)

× G(n1+1)(xi11 , · · · , xi1n1
; y1) · · ·G(n`+1)(xi`1 , · · · , xi`n`

; y`)

× G(1)(y`+1) · · ·G(1)(yk)
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Graphically this reads:

G(n) =
∑

Γ
⊗ conn

n > 2

is a connected tree (no loops) in the Γ(i)’s:

Γ(i) =
∑

Γ
⊗

conn
1pi

(n ≥ i > 2)

connected by propagators G(2) = and tadpoles G(1) = . All loops are

contained in the vertices Γ(i), which do not exhibit any “one particle lines”.

Reverse relationship:

Γ(n)(x1, · · · , xn) =
δn

δK(x1) · · · δK(xn)

{

G {J} − i
∫

dx
(

K(x) +G(1)
)

J(x)

}∣
∣
∣
∣
K=0

=
n∑

k=2

(−1)k
∑

partitions
i

∫

dy1 · · · dyk G(k)(y1, · · · , yk)×

Γ(`1+1)(xi11 , · · · , xi1`1 ; y1) · · ·Γ(`k+1)(xik1 , · · · , xik`k ; yk)

where 0 < `i < n− 1.

The proof proceeds as follows: Γ(i) is given by 1pi diagrams, if not, then there exists a line such
that omission of that line implies that Γ(i) consists of disconnected parts and thus factorizes. But
this leads to a contradiction to the recurrence relation.

By definition:

Γ(2) = −G(2)−1 (D.1)

G(2) = + + + · · ·

= G
(2)
0

(

1 + Γ̃(2)G
(2)
0 +

(

Γ̃(2)G
(2)
0

)2
+ · · ·

)

= G
(2)
0 ·

1

1− Γ̃(2)G
(2)
0

=
1

G
(2)−1
0 − Γ̃(2)

=
1

p2 −m2 − Γ̃(2)

Γ(2) = −G(2)−1 + Γ̃(2) = −G(2)−1

= − −1 +
∑

Γ
⊗

conn
1pi

Examples: we assume G(1) = 0 for simplicity

G(3) = =
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=

∫

dy1 dy2 dy3 G
(2)(x1, y1) G(2)(x2, y2) G(2)(x3, y3) Γ(3)(y1.y2, y3)

G(4) = = + + crossed diagrams
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D.5 Unitarity and Locality

The aim of this section is to discuss the tools by which unitarity and locality can be proven to all
orders in perturbation theory. In order to keep notation simple we will often restrict ourselves to
prove the relevant relationships for the scalar self-interacting φ4-model. The relevant properties
which allow to generalize the proofs to an arbitrary renormalizable field theory will be discussed
as well.

D.5.1 Generalized (off-shell) unitarity

1. On-shell unitarity

The physical unitarity is a property of S –matrix elements between scattering states with the
particles on their mass-shells ( p2 = m2) and thus having energy p0 = ωp =

√

~p 2 +m2. The
unitarity is usually formulated for the related T–matrix elements and reads (see Eq. 3.19):

∑

n

∑

α1···αn

∫ ∏n
i=1 dµ(pi) (2π)4 δ(4)(

∑ni
i=1 p

′
i −

∑n
i=1 pi)

T ∗(p1α1, . . . , pnαn|p
′′
1α

′′
1 , . . .) · T (p1α1, . . . , pnαn|p

′
1α

′
1, . . .)

= i
{

T ∗(p
′
1α

′
1, . . . |p

′′
1α

′′
1 , . . .) − T (p

′′
1α

′′
1 , . . . |p

′
1α

′
1, . . .)

}

(D.1)

where {piαi} denotes a complete set of quantum numbers characterizing particle number i in the
scattering state. By |p′

1α
′
1, . . . , p

′
ni
α

′
ni
> we denoted the in–state, |p′′

1α
′′
1 , . . . , p

′′
ni
α

′′
ni
> denotes

the out–state, while |p1α1, . . . , pnαn > is a n–particle intermediate state.

The on–shell unitarity relation, known as the optical theorem, graphically may be represended
as:

∑
∫

n
nT T

+
= i






T

+ − T







2. Off-shell generalized unitarity

The aim is to turn the above relationship between S–matrix elements into a relationship between
the corresponding time ordered Green functions from which the S–matrix elements follow via
the LSZ reduction formulae (see Sec. 3.3). Thus, the external on–shell particles are replaced by
virtual off–shell particles, with p0 as an independent variable. We first consider the time ordered
Green functions in configuration space and later transform the result to momentum space.

Let us denote by T (x1, . . . , xn)
.
= T{φ(x1) · · · φ(xn)} the time–ordered , and by T̄ (x1, . . . , xn)

.
=

T̄{φ(x1) · · · φ(xn)} the anti time–ordered products of interacting fields. The following important
identity holds:

∑

(i1,...,iν)(−1)ν T (xi1 , . . . , xiν ) T̄ (xiν+1 , . . . , xin) = 0 (D.2)
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where (i1, . . . , iν , iν+1, . . . , in) is a permutation of (1, . . . , n), the indices labeling the external lines
(fields) .

Proof (by induction):
For n = 2 the identity reads

T (x1, x2) − T (x1) T̄ (x2) − T (x2) T̄ (x1) + T̄ (x1, x2) = 0

and is true by definition of the time ordering operation:

x0
1 > x0

2 : φ(x1)φ(x2) − φ(x1)φ(x2) − φ(x2)φ(x1) + φ(x2)φ(x1) = 0

x0
2 > x0

1 : φ(x2)φ(x1) − φ(x1)φ(x2) − φ(x2)φ(x1) + φ(x1)φ(x2) = 0 .

The identity then follows by induction: Let x0
n > x0

j for all j 6= n. Then we may write

∑

(i1 ,...,iν)(−1)ν T (xi1 , . . . , xiν ) T̄ (xiν+1 , . . . , xin)

=
∑

n∈ (i1,...,iν)(−1)ν φ(xn) T (xi1 , . . . , x̌n, . . . , xiν ) T̄ (xiν+1 , . . . , xin)

+
∑

n6∈ (i1,...,iν)(−1)ν T (xi1 , . . . , xiν ) T̄ (xiν+1 , , . . . , x̌n, . . . , xin) φ(xn)

= −φ(xn)
∑

(i
′
1,...,i

′
ν′)

(−1)ν
′
T (xi′1

, . . . , xi′
ν′

) T̄ (xi′
ν′+1

, . . . , xi′n−1
)

+
∑

(i
′
1 ,...,i

′
ν)

(−1)ν T (x
i
′
1
, . . . , xi′ν

) T̄ (x
i
′
ν+1

, . . . , x
i
′
n−1

) φ(xn) = 0

where (i
′
1, . . . , i

′
n−1) is a permutation of (1, . . . , n − 1) and ν

′
= ν − 1. By x̌i we indicate

that the argument xi has to be omitted at that position. The result is zero since the sums
∑

(i1,...,iν′′ )
(−1)ν

′′
T (xi1 , . . . , xiν′′ ) T̄ (xiν′′+1

, . . . , xin−1) = 0 by the induction hypothesis. This
proves the identity as the induction hypothesis has shown to be true for n = 2.

We know may apply the reduction formula (see Eq. 3.20):

< 0|T{φ(x1) · · · φ(xm)}|p1, · · · , pn >in= in
∫

dy1 · · · dyne−i(y1p1+···+ynpn) ×

(2y1 +m2) · · · (2yn +m2) < 0|T{φ(x1) · · ·φ(xm) φ(y1) · · ·φ(yn)}|0 > .

We will denote < 0|T{φ(x1) · · ·φ(xm) φ(y1) · · · φ(yn)}|0 >= τ(x1, . . . , xm, y1, . . . , yn) and define
amputated arguments by

(2yi +m2) τ(x1, . . . , yi, . . . , yn)
.
= τ(x1, . . . , yi, . . . , yn) .

Inserting the completeness relation (we suppress explicit summation over the other quantum
numbers α which were exhibited in Eq. D.1)

∑

n

∫

dµ(p1) · · · dµ(pn) |p1, . . . , pn >in in< p1, . . . , pn| = 1

into our identity D.2 and taking the vacuum expectation value we have

0 =
∑

(i1,...,iν)(−1)ν
∑

m

∫
dµ(p1) · · · dµ(pm)

< 0|T (xi1 , . . . , xiν ) |p1, . . . , pm >in in< p1, . . . , pm|T̄ (xiν+1 , . . . , xin)|0 >
=

∫
dy1 · · · dymdy

′
1 · · · dy

′
m

∑

m

∑

(i1,...,iν)(−1)ν
∫
dµ(p1) · · · dµ(pm) e−i

∑m

1
pi(yi−y

′
i)

τ(xi1 , . . . , xiν , y1, . . . , ym) · τ̄(xiν+1 , . . . , xin , y
′
1, . . . , y

′
m)

=
∑

m

∑

(i1,...,iν)(−1)ν
∫
dy1 · · · dy

′
m

τ(xi1 , . . . , xiν , y1, . . . , ym)
∏m
i=1(−i∆+(yi − y

′
i)) τ̄(xiν+1 , . . . , xin , y

′
1, . . . , y

′
m)

(D.3)
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this is the generalized unitarity relation in configuration space we were looking for. Note that
∫

dµ(p) e−ipy = −i∆+(y)

is the positive frequency part of the free field commutator. Performing the Fourier transformation

τ(x1, . . . , xn, y1, . . . , ym) =

∫
d4q1

(2π)4
· · · d

4p1

(2π)4
· · · e−i

∑n

i=1
qixie+i

∑m

i=1
piyi τ(q1, . . . , qn, p1, . . . , pm)

τ̄(x1, . . . , xn, y
′
1, . . . , y

′
m) =

∫
d4q

′
1

(2π)4
· · · d

4p
′
1

(2π)4
· · · e−i

∑n

i=1
q
′
ixie−i

∑m

i=1
p
′
iy

′
i τ̄ (−q′1, . . . ,−q

′
n, p

′

1
, . . . , p

′

m
)

inserting this into D.3 and taking the Fourier transform

∫ n∏

i=1

d4qi
(2π)4

e−i
∑n

i=1
qixi . . .

then yields

0 =
∑

m

∑

(i1,...,iν)(−1)ν
∫
dµ(p1) · · · dµ(pm)

τ(qi1 , . . . , qiν , p1, . . . , pm) τ̄(−qiν+1 , . . . ,−qin , p1, . . . , pm)

=
∑

m

∑

(i1,...,iν)(−1)ν
∫ ∏m

i=1
d4pi
(2π)4

τ(qi1 , . . . , qiν , p1, . . . , pm)
(∏m

i=1 2πΘ(p0
i ) δ(p

2
i −m2

i )
)
τ̄(−qiν+1 , . . . ,−qin , p1, . . . , pm)

(D.4)

which is the generalized unitarity in momentum space.
Note: For real fields (neutral particles) we have

in< p1, . . . , pm|T̄{φ(x1) · · · φ(xn)}|0 >=< 0|T{φ(x1) · · · φ(xn)}|p1, . . . , pm >∗in

= (−i)n ∫ dy1 · · · dymei
∑m

i=1
yipi(2y1 +m2) · · · (2ym +m2) < 0|T̄{φ(x1) · · · φ(ym)}|0 >

= (−i)n ∫ dy1 · · · dymei
∑m

i=1
yipi τ̄(x1, . . . , xn, y1, . . . , ym)

= (−i)n ∫ dy1 · · · dymei
∑m

i=1
yipiτ(x1, . . . , xn, y1, . . . , ym)∗

and thus the following reality properties

τ̄(x1, . . . , xn, y1, . . . , ym) = τ(x1, . . . , xn, y1, . . . , ym)∗

τ̄(q1, . . . , qn, p1, . . . , pm) = τ(q1, . . . , qn, p1, . . . , pm)∗

hold for the τ–functions of neutral particles.

Finally, we may write Eq. D.4 in diagrammatic form as follows:

∑

m

∑

(i1,...,iν)

(−1)ν
qi1
qi2

qiν
m

qiν+1

qiν+2

qin

= 0 (D.5)

For a given diagram with n fixed external fields the sum extends over all possible cuts of lines
which separate the diagram into two parts. For each cut diagram (”unitarity graph”) we distin-
guish three types of lines:
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1. To the left of the cut, excluding the cut lines, the normal Feynman rules for time-ordered
Green functions apply with lines representing standard Feynman propagators.

Graphically:

τ(q1, . . . , qν , p1, . . . , pm) :=
q1
q2

qν

T
p1
p2

pm

where the q–lines represent external propagators, the p–lines are amputated (for scalar fields
i(−p2

i + m2
i )

i
p2i−m2

i +iε
= 1) . T stands for the time ordered amplitude (product of Feynman

propagators).

2. To the right of the cut we have anti time–ordered propagators and amplitudes.

Graphically:

τ̄(−qν+1, . . . ,−qn, p1, . . . , pm) :=
p1
p2

pm
T

+
qν+1

qν+2

qn

T̄ represents the complex conjugate amplitude of the hermitian conjugate fields.

3. The cut–lines represent real physical (on–shell) particles

:= δ+(p2
i −m2

i ) = 2π Θ(p0) δ(p2 −m2)

and are integrated over their n–particle phase space. Thus, for the cut lines the Feynman
propagators have been replaced by positive on-shell distributions:

i

p2 −m2 + iε
⇒ 2π Θ(p0) δ(p2 −m2)

Example: Propagator identity n = 2; ν = 0, 1, 2; momentum q = q1 = −q2 with q0 > 0

τ(q1, q2) + τ̄(−q1,−q2) =
∑

m

∫ m∏

i=1

d4pi
(2π)4

τ(q1, p1, . . . , pm)
m∏

i=1

δ+(p2
i −m2

i )τ̄(−q2, p1, . . . , pm)

Graphically:

−2 ∆̃
′
F (p) =

∑

m
m .

The second term with

τ(q2, p1, . . . , pm)
m∏

i=1

δ+(p2
i −m2

i )τ̄(−q1, p1, . . . , pm)

vanishes for q0 > 0, which we assumed.

In terms of the full propagator i∆̃
′
F (q) the τ–function reads

τ(q1, q2) = i∆̃
′
F (q1) (2π)4 δ(4)(q1 + q2)

τ̄(−q1,−q2) = τ(−q1,−q2)∗ = −i∆̃′∗
F (−q1) (2π)4 δ(4)(q1 + q2)
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and hence

τ(q1, q2) + τ̄(−q1,−q2) = i
{

∆̃
′
F (q1) − ∆̃

′∗
F (q1)

}

(2π)4 δ(4)(q1 + q2)

= −2Im∆̃
′
F (q1) (2π)4 δ(4)(q1 + q2) .

Above, we have used the symmetry ∆̃
′
F (−q1) = ∆̃

′
F (q1) valid for the propagator of scalar fields.

If we factor out the four-momentum conservation δ–function (”truncation”)

τ(q1, . . . , qn, p1, . . . , pm) = (2π)4 δ(4)(
∑

qi −
∑

pj) τ(q1, . . . , qn, p1, . . . , pm)trunc

we find the absorptive part of the propagator

τ(q1, q2)|absorptive part = −2Im∆̃
′
F (q)

=
∑

m

∫ ∏m
i=1

d4pi
(2π)4 (2π)4 δ(4)(q −∑m

1 pi)
∏m
i=1 δ+(p2

i −m2
i )|τ(q, p1, . . . , pm)trunc|2

≥ 0

(D.6)

this is non–negative because | · · · |2 is integrated over the phase space.

Physical interpretation: Let us assume that the field theory model under consideration has a
mass gap, i.e., no massless particles and the lightest particle has mass m. Then for q2 < 4m2

the absorptive part vanishes, only elastic processes take place. For q2 ≥ 4m2 the right hand
side of Eq. D.6 is positive if the production of two real physical particles of mass m is allowed
by the dynamics, kinematically the process is allowed for q0 ≥ 2m. The role of the dynamics
may be easily illustrated for scalar self-interacting fields. In the φ4–model, with unbroken discrete
symmetry φ→ −φ only the φ4 interaction vertex exists and thus a transition φ→ φφ is forbidden.
If the symmetry is broken a φ3 interaction term is present and the process is allowed. In the
symmetric φ4-model the threshold for the inelastic channels therefore is q0 ≥ 3m (i.e. q2 ≥
9m2), in spite of the fact that two–particle production is kinematically allowed. In the symmetric
φ4-model the lowest non-trivial contribution to the propagator is the two–loop self-energy diagram

while in the broken case we the one–loop diagram

contributes. Note that the one–loop diagram

possible in the symmetric case is just a constant (which only can contribute to the mass counter
term) and can not contribute to the imaginary part.
In general the full renormalized scalar propagator has the form

i∆̃
′
F (q) =

i

q2 −m2 −Π(q2)
with Π(q2) = ReΠ(q2) + iImΠ(q2) (D.7)
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and thus

Im∆̃
′
F (q) = ImΠ(q2)/

(

(q2 −m2 −ReΠ(q2))2 + (ImΠ(q2)2
)

. (D.8)

This may be expanded into a perturbation series for |q2−m2| � O(λ2) if we denote the coupling
constant with λ and note that ReΠ(q2), ImΠ(q2) = O(λ2). If there exist a physical particle , φ

′

say, with mass M larger than 2m and which is allowed to decay (“on it’s mass-shell” q2 'M2) as
φ

′ → φφ, then φ
′

is an unstable particle and strictly speaking can not appear as an asymptotic
state in the S–matrix. If, however, ImΠ(q2)/M � M for q2 ' M2, then φ

′
is quasi stable

and, for example, could leave a classical track in a particle detector. In this case it still might be
helpful to treat the particle like a stable one. We mention that ImΠ(M 2)/M = Γ may be used
as a definition of the width of the instable particle 1/Γ = τ being its life–time.

D.5.2 Veltman’s cutting formula

Veltman’s cutting formula is an important tool which allows us to write down simple proofs of
unitarity and locality in perturbation theory. Let us denote by ∆F (x) a generalized Feynman
propagator 48 with the following properties

∆F (x) : generalized Feynman propagator

∆F (x) = Θ(x0) ∆+(x) −Θ(−x0) ∆−(x)

∆±(x) = ±i
(2π)d−1

∫
ddk e−ikx Θ(±k0) Θ(k2) ρ(k2)

∆+(x) positive frequency part

∆−(x) negative frequency part

∆−(x) = (∆+(x))
∗

; ∆−(x) = −∆+(−x)

(D.9)

k0

k| |
−>

+

−

with ρ a positive spectral function.

Consider Feynman integrand in configuration space: Typically

F (x1, . . . , xn) = (−ig)n
∏

`∈L
i∆F`(x` i − x` f ) (D.10)

where L is the set of lines of the Feynman diagram and

x i x f
: i∆F (xi − xf ) propagators

: −ig vertices

Define:

F (x1, . . . , x̌i1 , . . . , x̌im , . . . , xn | xi1 , . . . . . . . . . , xim)

unmarked vertices

(unshaded part)

marked vertices

(shaded part)

= (−ig)n−m (ig)m
∏

`∈L f`(x` i − x` f )× (−1)m

= (−ig)n
∏

`∈L f`(x` i − x` f )

(D.11)

48This may be a free or a full propagator of any spin and in particular it may be a regularized propagator. Of
course the required properties are only true for particular regularizations, like e.g. for dimensional regularization
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where

f`(x` i − x` f ) =







i∆F`(x` i − x` f ) x` i, x` f ∈ L− L∗

−i∆∗F`(x` i − x` f ) x` i, x` f ∈ L∗

i∆+
` (x` i − x` f ) x` i ∈ L− L∗, x` f ∈ L∗

−i∆−` (x` i − x` f ) x` i ∈ L∗, x` f ∈ L− L∗

(D.12)

or graphically

: i∆F

: −i∆∗F

: i∆+

: −i∆−

Lemma: Let x0
a ≤ x0

k for all k = 1, . . . , n then

F (x1, . . . , x̌a, . . . , x̌i1 , . . . , x̌im , . . . , xn, xa|xi1 , . . . , xim)

= F (x1, . . . , x̌a, . . . , x̌i1 , . . . , x̌im , . . . , xn|xi1 , . . . , xim , xa) ,

i.e., F ( | ) does not change if the argument with the smallest x0 is moved from the unmarked
to the marked side and vice versa.
Proof: By inspection of the left hand side:

a)
x i x a

: +i∆F (xi − xa) = +i∆+(xi − xa)

b)
x a x f

: +i∆F (xa − xf ) = −i∆−(xa − xf )

c)
x a x i

: −i∆−(xi − xa)

d)
x a x f

: +i∆+(xa − xf )
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and of the right hand side:

a)
x i x a

: −i∆∗F (xi − xa) = −i∆−(xi − xa)

b)
x a x f

: −i∆∗F (xa − xf ) = +i∆+(xa − xf )

c) : +i∆+(xi − xa)

d) : −i∆−(xa − xf )

the identity is satisfied.

Theorem (an identity for integrands): Let {y1, . . . , yp} ⊂ {x1, . . . , xn} and xa ∈ {y1, . . . , yp}
where xa is the argument with the earliest time component,i.e., x0

a ≤ x0
i ∀i. Furthermore, let us

denote by {x1, . . . , xn−p} the arguments belonging to the complement of {y1, . . . , yp}. This is
always possible by relabeling the variables. Then we have

p
∑

q=0

∑

{q}
(−1)q F (x1, . . . , xn−p, y1, . . . , yp|xi1 , . . . , xim , yj1 , . . . , yjq) = 0 (D.13)

where {q} is a ordered choice j1, . . . , jq of indices out of the set 1, . . . , p with j1 < . . . < jq. Proof:
The identity holds because xa ∈ {y1, . . . , yp} appears always twice, once on the l.h.s and once on
the l.h.s. According to the Lemma all terms cancel pairwise.

The identity stated in the previous theorem may be integrated within its domain of validity:

i) Since xa ∈ {y1, . . . , yp} and x0
i ≤ x0

a for all i = 1, . . . , n−p the variables x1, . . . , xn−p cannot
be integrated (in the range −∞ to +∞).

ii) Therefore, all integration variables must be in the set {y1, . . . , yp}, which in addition must
contain the earliest non integrated variable.

This implies the following theorem, called Veltman’s cutting formula:

∫

dyα1 . . . dyαr

p
∑

q=0

∑

{q}
(−1)q F (x1, . . . , xn−p, y1, . . . , yp|xi1 , . . . , xim , yj1 , . . . , yjq) = 0 (D.14)

whenever there exist an index i 6= {α1, . . . , αr} with y0
i ≤ x0

i for i = 1, . . . , n− p. Necessarily we
must have r ≤ p− 1. Note: For obvious reasons the vertices {yα1 . . . yαr} are called inner ver-
tices (the variables integrated over) while {x1 . . . xn−p} plus the remaining y–vertices are called
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external vertices (the variables not integrated over).

Graphically:
∑

all cuts

= 0 .

unmarked marked

Example: x1, x2, y1 external vertices; y2, y3 internal vertices

y

xx

y y

1

21

2
3

= 0

x1 is unmarked, X2 marked and y0
1 ≤ x0

1, x
0
2. Using the cutting formula one can show,

• if propagators satisfy the general properties needed for the cutting formula to hold and
couplings (and counterterms) are real then:

Unitarity: SS+=1

./
∑

all cuts

= 0

Locality (causality): [O1(x),O2(y)] = 0 ; (x− y)2 < 0

./
∑

all cuts

y0 < x0

{ x

y
+

x

y

}

= 0

The Oi(x) are vertex operators as they appear in the Lagrangian. The relative + sign of the
two contributions refers to a convention where the vertex operators do not include the i, which
usually is included in the Feynman rules.

As a consequence, proofs of unitarity and causality require propagators and vertices to satisfy
some general requirements as specified above. In gauge theories we have a particular problem:
the above proofs only work
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(1) for spin 1 particles the mentioned conditions (e.g. positivity) only are satisfied in the Proca
gauge form of the massive propagators;

(2) no ghosts are admitted.

This means that these properties can only be satisfied off-shell in the unitary gauge. The trick
to control both renormalizability and unitarity is the use the renormalizable ’t Hooft gauge as
a one parameter family of renormalizable gauges which for S–matrix elements has a continuous
limit ξ → ∞ representing the unitary gauge. The key point of course is that the S–matrix is
gauge inependent, such that it does not depend on ξ per se. This will be proven in the next
subsection.
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D.6 Gauge invariance of the S–matrix

The gauge transformation of fields is of the form

δ̂GµA = DµABηB = δAB∂µηB + D̂′AB GµAηB

δ̂ϕj = D̂′jj′B ϕj′ηB

δ̂ψi = D̂′ii′B ψi′ηB

where the D̂ are coupling matrices, i.e. they are of higher order in the couplings. If we change
the gauge fixing

C → C ′ = C + εR;

the Lagrangian changes by

L → L′ = L− εC R + ε η̄ (r̂ + ρ̂) η +O(ε2)

where r̂ denotes a field independent derivative term and ρ̂ is the field dependent part and higher
order in g. The effect on a time–ordered Green function may be represented by

Ġ = lim
ε→0

1

ε
(GL′ −GL)

and is graphically represended by

−

C R

+

η η
_r̂

+

η η
_ρ̂

Opening up the extra vertex, taking into account the factors −1 when opening a FP loop, we have

− C

R

− η η
_

r̂

− η η
_

ρ̂

= 0

by the ST identity if all other legs are physical (on–shell).

Next we consider th generalized ST–identities:

C

R

R
R

1

i

n

+
∑

i

η η
_

r̂

R

R

1

n

i

+
∑

i

η η
_

ρ̂

R

R

1

n

i

= 0 .

For the dimensionally regularized theory in d = 4− ε dimensions we have:

−

C R

R

R

1

n

2

−

η η
_r̂

R

R

1

n

2

−

η η
_ρ̂

R

R

1

n

2
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−

η

r̂

R

R

1

n

−

η

ρ̂

R

R

1

n

+ · · · = 0 .

Now the S–matrix elements we obtain when we take R2 , · · · Rn to be physical fields and we put
them on–shell: (p2 −m2)G(· · ·)

∣
∣
p2→m2 . What happens is the following:

i) composite external vertices have no poles and thus do not contribute on–shell;

ii) except for the Feynman gauge, where the η± ghosts have mass MW and the neutral η ghost
has mass MZ we have mghost 6= mphysical and the ghost amplitudes do not contribute.

For a more detailed insight, which also covers what happens in the Feynman gauge, we need to
consider the decomposition into the 1PI parts

η

ρ̂

R

R
 a) 

n

η

ρ̂

R

R
 b) 

n

η

r̂

R

R
 c) 

n

η

ρ̂

R

R
 d) 

n

η

r̂

R

R
 e) 

n

If ξ 6= 1 we have mη 6= mphys such that only diagram a) is contributing. In general, the condition
for a field (source) to be physical reads

1

ξ
〈0|T{CC(x)GA1(x1) · · · GAn(xn) |0〉

=
∑

i

〈0|T{GA1(x1) · · · η̄C (DAiBηB) (xi) · · · GAn(xn) |0〉 = 0

if GAi(xi) is taken on–shell, i.e.

η

r̂
+

η

ρ̂
= 0 ,

such that, b) + c) =0, as well as, d) + e) =0, if the corresponding physical field is on–shell. In
contrast, diagram a) affects the matrix element: it corresponds to a change in the wave function
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renormalization
η

ρ̂

R

=
δZ

Z
.

Here a detailed consideration of the LSZ–asymptotic condition is needed in order to get a
quantitative statement. The S–matrix element is given by (for simplicity we consider a physical
scalar)

= lim
p2→m2

Z
(

p2 −m2
)

by amputation of the normalized full propagator (extracting the 1PI part): we thus look at

Z
p2 −m2

p2 −m2
0 + Π(p2)

∣
∣
∣
∣
∣
p2→m2

after mass renormalization: m2
0 = m2 + δm2 with δe

e ; am2 = Π(p2 = m2) . The residue of the pole
of the full propagator

= +
,

may be read off after the mass renormalization from

1

p2 −m2
0 + Π(p2)

=
1

(p2 −m2)
(

1 + Π(p2)−Π(m2)
p2−m2

)

=
1

p2 −m2

1

Z2
,

and is given by
1

Z2
=

1

1 + dΠ
dp2 (m2)

=
1

1 + F
.

A change of gauge is graphically represented by

Ġ(2) = −
C R

+

η η
_r̂

+

η η
_ρ̂

+

η

ρ̂

R

+

η

ρ̂

R

and the residue is changing by

2α

1 + F
with α =

η

ρ̂

R

.

Since

δ

(
1

1 + F

)

=
2α

1 + F
= δ

(
1

Z2

)

= − 2

Z2

δZ

Z

we obtain

α = −δZ
Z

!
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This proves that gauge invariance and unitarity of the S–matrix require particular wave–function
renormalization, namely the one required by the LSZ asymptotic condition. Often it is argued
that the ST identities require that under renormalization the gauge symmetry multiplets, like a
lepton doublet, for example, only allow for one overall renormalization constant. In the case of the
electroweak SM, where the gauge symmetry is broken by the Higgs mechanism, it is definitely so
that physical fields have to be treated individually in their renormalization in order to obtain the
correct S–matrix elements. The distortion of the classical form of the ST identities by individual
field renormalization does not spoil those identities, but just let them look like somewhat more
complicated, i.e. their form looks slightly different for different fields in a given multiplet. The
path integral formalism allows this to be controlled quite easily. As the value of the integral
does not depend on the choice of the integration variables (the fields) means that the choice
of the wave function renormalizations only affects the external vertices, while inside diagrams
effects from vertices and propagators cancel. Therefore, MS wave function renormalization as an
intermediate renormalization procedure removing the UV singularities is the most adequate thing
to do. The proper S–matrix elements are then obtained by a finite renormalization by imposing
the asymptotic condition. Infrared singularities showing up in this case for the charged states
have to be treaded in the usual way by the Bloch-Nordsieck prescription (Bloch and Nordsieck
1937) or improvements of it ( Yennie, Frautschi and Suura 1961). Also in QED, gauge invariance
of the on–shell S–matrix elements is ony obtained after gauge dependent LSZ renormalization
condition is imposed (Bia lynicki-Birula, 1970). Bare on-shell matrix elements are unphysical and
dependent on the gauge.
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E Solved Problems

E.1 Exercises: Section 1

① Calculate the conversion factors using the values for c, h̄ and ε0 in standard units.

✎

The conversion factors fom CGS to natural units (1.4) directly follow by assigning the value unity
to the l.h.s. of (1.3) ans solving for cm, sec, gr, and Cb. In order to get gr we need the conversion
of energy to erg = gr cm2/sec2 as given by (1.1). ✌

② The width of the Z boson has been measured at LEP (October 2001) to be

ΓZ = (2.4952 ± 0.0023) GeV.

Calculate the Z lifetime τZ = Γ−1
Z in seconds.

✎

The Z lifetime is

τZ =
1

2.4952 ± 0.0023
GeV−1 =

1

(2.4952 ± 0.0023) × 1.5193
× 10−24 sec

= (2.638 ± 0.002) × 10−23 sec .

This very short decay time is characteristic for unstable particles like the heavy massive gauge
bosons W and Z which have widths of about 2.5 GeV. The heaviest known “particle”, the top
quark, with a mass of about 175 GeV has a width of about Γt ' 0.1 GeV and thus lives about
10 times longer. ✌

What distance (in mm) does a Z particle travel before it decays (length of track in the
detector) ? Hint: Use the velocity v (in units of c), which is determined by the magnitude

of the momentum |~p | = vMZ√
1−v2 =

√

E2
CM −M2

Z . The distance traveled in the laboratory

frame is then given by (Lorentz contraction!)

`Z(Eb) =
v√

1− v2
cτZ '

√

E2
CM

M2
Z

− 1 × 7.9 × 10−14 mm .

The experimental value for the Z mass is

MZ = (91.1875 ± 0.0021) GeV.

The Z is produced as a real (though unstable) particle provided ECM > MZ . Consider
typical LEP energies ECM = MZ + nΓZ for n = 1, 2, 5.

✎

We note that ΓZ �MZ and hence

√

E2
CM

M2
Z

− 1 =

√

(1 + n
ΓZ
MZ

)2 − 1 '
√

2nΓZ/MZ '
√
n× 0.234
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and thus
`Z(Eb) = (1.85, 2.61 , 4.13) × 10−14 mm for n = (1, 2, 5) .

These numbers tell us that the traveling distance of a heavy gauge boson is by far too small to
be resolved by any particle detector. Typical vertex detectors have resolutions of about 10 µm
and allow vertex tagging for B mesons, for example. ✌

Use the Boltzmann constant k = 8.6173 · 10−5 eV ◦K−1 to evaluate the equivalent “tem-
perature of a Z event” at LEP.

✎

T =
E

k
=

(91.1875 ± 0.0021) · 109

8.6173 · 10−5
◦K ' 1.058 · 1015 ◦K ' 1.856 × 1011 × T�

where T� ∼ 5700 ◦K is the temperature at the surface of the sun. ✌

In nature such temperatures must have existed in our universe shortly after the big bang.
In the early universe the time–temperature relationship (in the radiation dominated era) is
given by

t =
2.42

√

N(T )

(
1MeV

kT

)2

sec .

where

N(T ) =
∑

B

gB +
7

8

∑

F

gF

counts the effectively massless (mi � kT ) degrees of freedom of bosons and fermions.
Calculate at what time in the history of the universe the temperature of the universe was
equivalent to the mass of the Z boson.

✎

At kT ∼MZ N(T ) ∼ gγ + 7/8 (3gν + 2gl + 3×3× gq) = 2 + 7/8 (3×2 + 2×4 + 3×3×4) = 183/4
(counting the photon, the three neutrinos, the electron, the muon and the three lightest quarks
of color multiplicity three as effectively massless). gi are the numbers of degrees of freedom per
particle species i (helicity and particle–antiparticle counting). Thus we find the above temperature
at times

t ∼ 4× 10−11 sec after the big bang.

Thus LEP experiments probe the state of matter in this age of the history of our universe.

✌

③ The QED cross section for µ–pair production in e+e− annihilation at high energies (s� m2
µ)

is given by
dσ

dΩ

(
e+e− → µ+µ−

)
=

α2

8E2
b

1 + cos2 θ

2
,
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where Eb is the e−–beam energy and θ the µ− production angle <)(e−, µ−) in the center
of mass frame. Calculate σtotal in cm2 for Eb=1 GeV. What is the event rate if the beam
luminosity is L = 1032 cm−2sec−1?. The luminosity measures the incoming flux of particles
per cm2 and per second.

✎

As dΩ = dϕ d(cos θ) we obtain

σtot =

2π∫

0

dϕ

+1∫

−1

d(cos θ)
dσ

dΩ
=
π

3

α2

E2
b

= 5.576 × 10−5GeV−2 = 2.171 × 10−32 cm2

and the number of events per unit time at the above luminosity is

dN

dt
= 2.171 sec−1

Note that we need high incoming particle fluxes in order to obtain reasonable counting rates.
We also mention that the above form of the cross section is typical in a renormalizable quantum
field theory which exhibits dimensionless coupling constants and masses which become negligible
at high energies (mi � Eb). By dimensional counting the cross section must drop like 1/E2

b (at
higher orders in a perturbative expansion up to powers of logarithms ln(E 2

b /m
2
i ). This does not

mean that physics becomes uninteresting at higher energies. In the past when going to higher
energies thresholds of new particles have been found again and again, the last in 1995 when the
top quark was discovered at Fermilab with a mass of about 175 GeV. The new degrees of freedom
add to the coefficient in front of the asymptotic 1/E2

b behavior. Thus going to higher energies
the “canonical” droping of the cross section is counteracted by the opening of new channels.
Nonetheless, increasing luminosity is mandatory to investigate details of the branching structures
of an increasing number of channels at higher energies. ✌

④ Range of interactions : the range of a field and the mass m of the corresponding field
quantum are related by the Compton wave length

r0 =
h̄

mc
,

where r0 appears in the static potential (Yukawa)

Φ(r) ∝ e−r/r0

r
.

Calculate the range of the strong, the weak and the electromagnetic interaction in cm under
the assumption that the interactions are mediated by exchange of a pion (mπ = 135 MeV),
a W boson (MW ' 80.45 ± 0.04 GeV) and a photon (mγ < 2 · 10−16 eV experimental
bound), respectively. In QED, mγ = 0. Discuss this limiting case and the role played by
Gauss’s law. Hint: Look for static, spherically symmetric solutions of the Klein-Gordon
(KG) equation.

✎

For static solutions of the KG–equation we have

(2 +m2) Φ = (−∆ +m2) Φ = 0
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and since, in polar coordinates,

∆ Φ =
1

r2 sin2 θ

∂2Φ

∂ϕ2
+

1

r2 sin θ

∂

∂θ

(

sin θ
∂Φ

∂θ

)

+
1

r2

∂

∂r

(

r2∂Φ

∂r

)

for spherically symmetric solutions

∆Φ(r) =

(

d2

dr2
+

2

r

d

dr

)

Φ(r) = m2 Φ(r) .

The solution is the one given above provided r0 = 1/m (in natural units). Verify this.

The ranges of the different interactions then are:

force range r0 = 1/m

strong 1/mπ = 1/(0.135 GeV) ' 1.462 × 10−13 cm

weak 1/MW = 1/(80.45 GeV) ' 2.453 × 10−16 cm

electromagnetic 1/mγ > 1/(2× 10−25 GeV) ' 0.987 × 106 km

Electromagnetic gauge invariance requires the photon to be strictly massless, i.e., ∆Φ = 0 and
hence Φ ∼ 1/r has infinite range.

Note that in case of the strong interaction we took the pion as carrier of the short ranged strong
force. We know that in “reality” the strong interactions between hadrons (strongly interacting
particles) derives from quantum chromodynamics (QCD). The latter is the fundamental theory
of strong interactions with quarks as the matter fields and massless gluons as the force carriers
(gauge fields). Why does the above arguments about the range of interaction fail for gluons?

Gauss’s law
∮

Σ

~E · d~S =

∫

V

~∇ · ~E d3x

applied to the electric field ~E = −~∇Φ implies that the electric flux integrated over a closed surface
Σ (surface element d~S)

Q =
1

4π

∮

~E · d~Σ

yields the net charge Q =
∑

i
qi which is enclosed by the surface. The l.h.s is the spacial volume

integral over the charge density ~∇· ~E = −∆Φ = ρ. This is true only iff the potential is of Coulomb
type. For a potential of finite range the surface integral vanishes in any case in the limit of large
volumes (charge screening). ✌
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E.2 Exercises: Section 2

① Determine the matrix Λµ
ν for

a) a rotation by an angle ϕ about the z-axis

b) a special Lorentz transformation of velocity ~v in z-direction.

Write down the operators U(Λ) for the above transformations.

✎

a) Rotation by an angle ϕ about the z-axis:

A spatial rotation about the z–axis reads: which as a L–transformation takes the form

Λµν =











1 0 0 0

0

0 R

0











with

R =








cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1








.

The corresponding operator representing a right rotation about the z–axis reads:

U(Λ) = e−iϕJ3

with J3 the 3rd component of the total angular momentum operator.

On a state space of spin 1 objects we have a 3–dimensional representation of the rotation group
with

J3 =








1 0 0

0 -1 0

0 0 0








(note the Pauli matrix τ3 in the upper left corner of the matrix). Since for n = 1, 2, · · ·

J2n
3 = J2

3 =








1 0 0

0 1 0

0 0 0
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and J2n+1
3 = J3 the expansion of the exponential

exp(−iϕJ3) =
∑

n

(−iϕ)n

n!
Jn3

=








0 0 0

0 0 0

0 0 1








+ cosϕ








1 0 0

0 1 0

0 0 0







− i sinϕ








1 0 0

0 -1 0

0 0 0








=








cosϕ− i sinϕ 0 0

0 cosϕ + i sinϕ 0

0 0 1








can be easily worked out with the result given above.

b) Special Lorentz transformation of velocity ~v in z-direction:

Pure L–transformation in x3–direction (hyperbolic or pseudo rotation)

x0′ = γ (x0 − βx3) = x0 coshχ− x3 sinhχ

x1′ = x1

x2′ = x2

x3′ = γ (x3 − βx0) = −x0 sinhχ+ x3 coshχ

χ = arctgh
v

c

Λµν =











coshχ 0 0 − sinhχ

0 1 0 0

0 0 1 0

− sinhχ 0 0 coshχ











Infinitesimal transformation:

Λµν =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











+











0 0 0 −χ
0 1 0 0

0 0 1 0

−χ 0 0 0











+O(χ2)
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Fig. E.1: How to get a boost: a particle of momentum ~p and spin ~s may be
constructed by

① a rotation of ~p into a momentum vector ~pz pointing into the z–
direction (viewed as a rotation in the rest frame),

② a boost in z–direction by ~pz and

③ a rotation back to ~p.

A short note on arbitrary boosts:
The special L–transformation L(p) which transforms from a state in the rest frame (m,~0 ) to a
state of momentum pµ may be written as (verify it)

Li j = δij + p̂ip̂j(coshβ − 1)

Li0 = L0
i = p̂i sinhβ

L0
0 = coshβ

with ~̂p = ~p/|~p|, coshβ = ω/m, sinhβ = |~p|/m and tanhβ = |~p|/ω = v the velocity of the
state. The boost operator U(L(p), 0) may always be represented by a combination of rota-
tions by an angle ±φ about the z–axis, rotations by an angle ±θ about the y–axis and a
boost in z–direction (see Fig. E.1). The angles are determined by writing the momentum
~p = |~p |(sin θ cosϕ, sin θ sinϕ, cos θ) in polar coordinates. If we rotate ~p into the direction of
the z–axis then perform a boost along the z–axis and rotate back to the original direction of ~p
we obtain

U(L(p), 0) = U(Rϕ,θ, 0) U(Lz(|~p |), 0) U(R−1
ϕ,θ, 0)

with U(Lz(|~p |), 0) = eiβK3 , tanhβ = |~p |/p0 = v the velocity and U(Rϕ,θ, 0) = e−iϕJ3e−iθJ2eiϕJ3 .
Thus the four momentum eigenstates (2.1) may be constructed by

|p, j, j3〉 = U(Rϕ,θ, 0) U(Lz(|~p |), 0) U(R−1
ϕ,θ, 0)|m, j, j3〉 .

Note that in first place

U(Rϕ,θ, 0) = exp(−i~ω ~J)

where ~ω is the appropriate rotation vector, i.e., it has modulus θ and rotation axis ~n =
(− sinϕ, cosϕ, 0) in the x− y–plane (see Fig. E.1). Show that

U(Rϕ,θ, 0) = e−iθ (− sinϕJ1+cosϕJ2)

≡ e−iϕJ3e−iθJ2eiϕJ3 .
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The latter representation as a sequence of simple rotations about the y– or the z–axis is most
transparent (e−iϕJ3 is a right rotation about the z–axis and e−iθJ2 is a right rotation about the
y–axis).

✌

② Show that for a general Poincaré transformation U(Λ, a) the generators of the Poincaré
group satisfy

U(Λ, a)PµU
−1(Λ, a) = Λν µ Pν , (E.1)

and

U(Λ, a)MµνU(Λ, a)−1 = Λρµ Λσν (Mρσ − Pρaσ + Pσaρ) . (E.2)

While the first equation tells us that Pµ transforms as a covariant four-vector, the second
proves that Mµν is a 2nd rank tensor only with respect to homogeneous Poincaré transfor-
mation.

✎

Proof of (E.1):

1. U−1(Λ, a) = U(Λ−1,−Λ−1a)

since

U−1(Λ, a)U(Λ, a) = U(Λ−1,−Λ−1a)U(Λ, a) =

U(Λ−1Λ,Λ−1a− Λ−1a) = U(1, 0) = 1

2. U(Λ, a)U(1, b)U−1(Λ, a) = U(1,Λb)

since

U(Λ, a)U(1, b)U−1(Λ, a) = U(Λ,Λb + a)U−1(Λ, a)

= U(Λ,Λb + a)U(Λ−1,−Λ−1a) = U(1,Λb + a− a) = U(1,Λb) .

Expansion for small B yields

U(1, b) = 1 + ibµPµ +O(b2)

U(1,Λb) = 1 + iΛµ
ν b

νPµ +O(b2)

and hence

U(Λ, a) (1 + ibµPµ) U−1(Λ, a) = 1 + iΛν
µ b

µPν +O(b2) .

As the unit operator drops out one may factor out ibµ and take the limit b→ 0 in the remaining
factor. This then proves the assertion.

Proof of (E.2):
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1.

U(Λ, a)U(Σ, 0)U−1(Λ, a) = U(ΛΣ, a)U(Λ−1,−Λ−1a) = U(ΛΣΛ−1, a− ΛΣΛ−1a)

2.

U(Σ, 0) = 1 + i
ωµν

2
Mµν +O(ω2)

U(ΛΣΛ−1, a− ΛΣΛ−1a) = 1 + i
Λρµ Λσν ω

µν

2
(Mρσ − (aσPρ − aρPσ)) +O(ω2)

and then proceeding as in the case of Pµ above.
In order to obtain these expansion coefficients a few additional considerations may be helpful:
1) From the basic property of L–transformations

Λµν Λρσ g
νσ = gµρ

we get

Λµν Λρσ g
νσgρλ = gµρgρλ = δµλ

thus Λµν Λ ν
λ = δµλ or Λµν

(

Λ−1
)ν
λ = δµλ which means

(

Λ−1
)ν

λ
= Λ ν

λ

which means that the inverse of Λ is equal to the transposed matrix.
2) We now may work out

(

ΛΣΛ−1
)ρ

σ
= Λρµ Σµ

ν

(

Λ−1
)ν

σ

= Λρµ δ
µ
ν

(

Λ−1
)ν

σ
+ Λρµ Λ ν

σ ωµν + · · ·
= δρσ + Λρµ Λ ν

σ ωµν + · · · .

Thus
(

ΛΣΛ−1
)ρσ

= gρσ + Λρ µ Λσν ω
µν + · · ·

and
(

a− ΛΣΛ−1a
)ρ

= aρ − aρ − Λρµ Λσν ω
µνaσ + · · ·

= −Λρµ Λσν ω
µνaσ + · · ·

and finally

Λρµ Λσν ω
µνaσPρ = Λσµ Λρ ν ω

µνaρPσ = −Λρµ Λσν ω
µνaρPσ

where we utilized the antisymmetry of ωµν . ✌
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③ Use the previous result to derive the Lie algebra of P ↑+ by expanding U(Λ, a) to first order.
The result should be

[Pµ, Pν ] = 0 , (E.3)

[Pρ,Mµν ] = −i (gρµPν − gρνPµ) , (E.4)

[Mµν ,Mρσ] = i (gµρMνσ − gµσMνρ + gνσMµρ − gνρMµσ) . (E.5)

Give a physical interpretation.

✎

The commutation relations (E.3) and (E.4) follow directly from (E.1) and (E.2), respectively,
by setting U(Λ, a) = 1 + iaµPµ. Similarly, (E.5) is obtained from (E.2) by choosing U(Λ, a) =
1 + iω

µν

2 Mµν . These CR’s characterize the Poincaré group locally in a neighborhood of unity.
Wanted are the representations of this Lie–algebra, this will yield at the same time the physical
interpretation of the elements of the algebra. ✌

④ Prove that

d3p

ωp
and ωpδ

(3)(~p ′ − ~p ) with ωp =
√

~p 2 +m2

are relativistically invariant. Hint: Use

Θ(p0) δ(p2 −m2) d4p =
d3p

2ωp
.

✎

For any function f(p), starting from the manifestly invariant integration measure (l.h.s. of last
relation)

I{f} =

∫ +∞

−∞
dp0

∫

d3pΘ(p0) δ(p2 −m2) f(p0, ~p ) =

∫ +∞

0
dp0

∫

d3p δ((p0)2 − ω2
p) f(p0, ~p )

and a change of variable p0 → (p0)2 yields dp0 = (2p0)−1d(p0)2 (since p0 > 0 the mapping is
unambiguous) and hence

I{f} =

∫ +∞

0

d(p0)2

2p0

∫

d3p δ((p0)2 − ω2
p) f(p0, ~p )

∣
∣
∣
∣
∣
p0=+
√

(p0)2

=

∫
d3p

2ωp
f(p0, ~p )

∣
∣
∣
∣
∣
p0=ωp

we infer that d3p
ωp

is an invariant integration measure. As

∫
d3p

ωp
ωpδ

(3)(~p ′ − ~p ) ≡ 1

also ωpδ
(3)(~p ′ − ~p ) must be relativistically invariant. ✌
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⑤ Show that the Fourier transform of a distribution φ̃(p) = 2πδ(p2 −m2)ξ̃(p) with support
on the hyperbola p2 = m2 has the form

φ(x) =
1

(2π)3

∫
d3p

2ωp

(

e−ipxξ̃(ωp, ~p ) + eipxξ̃(−ωp,−~p )
)

which is a decomposition into a positive and a negative frequency part. Hint: Use
∫ +∞

−∞
dp0 f̃(p0, ~p ) =

∫ ∞

0
dp0

(

f̃(p0, ~p ) + f̃(−p0, ~p )
)

and
∫ +∞

−∞
d3p ei~p~x g̃(~p ) =

∫ +∞

−∞
d3p e−i~p~x g̃(−~p ) .

Compare the form obtained with the representation of a free field in terms of creation and
annihilation operators.

✎

φ(x) =
1

(2π)4

∫

d4pe−ipx φ̃(p)

=
1

(2π)3

+∞∫

0

dp0
∫

d3pei~p~x δ((p0)2 − ω2
p)
(

e−ip
0x0 ξ̃(p0, ~p ) + e+ip0x0 ξ̃(−p0, ~p )

)

=
1

(2π)3

∫
d3p

2ωp
ei~p~x

(

e−ip
0x0 ξ̃(p0, ~p ) + e+ip0x0 ξ̃(−p0, ~p )

)∣
∣
∣
p0=ωp

=
1

(2π)3

∫
d3p

2ωp

(

e−ip
0x0ei~p~xξ̃(p0, ~p ) + e+ip0x0e−i~p~xξ̃(−p0,−~p )

)∣
∣
∣
p0=ωp

which proves the claim. ✌

⑥ Show that

∆(x) =
i

(2π)3

∫
d3p

2ωp

(

e−ipx − eipx
)∣
∣
∣
p0=ωp=

√
~p 2+m2

= 0 if x2 < 0

✎

We first check that ∆(x) solves the Lorentz (L) invariant Klein–Gordon equation: utilizing
∂µe
−ipx = −ipµe−ipx and hence 2 e−ipx = gµν∂µ∂νe

−ipx = −p2e−ipx and the fact that p0 = ωp
such that p2e−ipx = m2e−ipx we immediately obtain

2 ∆(x) = −m2∆(x)

by applying 2 to the integral representation. Since ∆(x) is L–invariant we most easily evaluate
the defining integral for the space–like hyperplane x0 = 0, where x2 = −~x2 < 0. The integrand
thus reads

(ei~p~x − e−i~p~x)

which is an odd function in pi (i = 1, 2, 3) and thus the integral vanishes. By L–invariance it then
vanishes for arbitrary space–like hyperplanes. This proves the assertion. ✌
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⑦ For a system of free particles and antiparticles the four-momentum operator can be ex-
pressed in the simple form

P µ =
∑

r

∫

dµ(p)pµ
{
a+(~p, r)a(~p, r) + b+(~p, r)b(~p, r)

}
.

Show that P µ has the properties

P µ | 0 > = 0

P µ | ~p, r, α > = pµ | ~p, r, α >

and satisfies the commutation relations

[P µ, a (~p, r)] = −pµa(~p, r)
[
P µ, a+(~p, r)

]
= +pµa+(~p, r) etc.

Give a physical interpretation of these properties.

✎

We first verify the last of the above relations: look at

P µa+(~p, r) =
∑

r′

∫

dµ(p′)p′µ
{
a+(~p ′, r′)a(~p ′, r′) + b+(~p ′, r′)b(~p ′, r′)

}
a+(~p, r)

and use the (anti–)commutation relations of the creation and annihilation operators to (anti–
)commute a+(~p, r) to the left of P µ. What one obtains is a+(~p, r)P µ plus one term from the only
non-vanishing (anti–)commutator [a(~p′, r′), a+(~p, r)]± = δr′r(2π)3 2ωpδ

(3)(~p ′ − ~p ) which yields

′∑

r

∫

dµ(p′)p′µ a+(~p ′, r′) δr′r(2π)3 2ωpδ
(3)(~p ′ − ~p ) = pµ a+(~p, r)

with p0 = ωp. Thus [Pµ, p
µ a+(~p, r)] = pµ a+(~p, r). Taking the Hermitean conjugate we immedi-

ately get [Pµ, p
µ a(~p, r)] = −pµ a(~p, r). Corresponding relations follow for b+ and b.

The physical interpretation follows by verifying that P µ indeed has the properties of the rela-
tivistic four–momentum operator: As each of the two terms in the representation of P µ exhibits
an annihilation operator to the right P µ | 0 >= 0 is trivially satisfied. Thus the vacuum is
an eigenstate of P µ with eigenvalue zero. Let [Pµ, p

µ a+(~p, r)] = pµ a+(~p, r) act onto the vac-
uum to the right: [Pµ, p

µ a+(~p, r)] | 0 >= Pµ, p
µ a+(~p, r) | 0 >= pµ a+(~p, r) | 0 > which reads

P µ | ~p, r >= pµ | ~p, r >. Thus the one particle states | ~p, r > are indeed eigenstates of P µ

with eigenvalues the relativistic four–momentum. This shows that P µ acts as a four–momentum
operator on the one particle states. One still has to show that P µ acts on multi–particle states
appropriately, which means the the states (2.15) are eigenstates of P µ with eigenvalue the total
four–momentum pµ =

∑n
i=1 p

µ
i . In fact our considerations of the one particle states may be easily

extended to the multi particle states. ✌

⑧ For a Dirac field the charge operator is given by

Q =

∫

d3x j0(x) =

∫

d3x : ψ+
α (x) ψα(x) :
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where

jµ = ψ̄γµψ , ∂µj
µ = 0

is the conserved electromagnetic current operator. Show that

Q =
∑

r

∫

dµ(p)
{

a+(~p, r)a(~p, r)− b+(~p, r)b(~p, r)
}

is time independent. Give a physical interpretation of Q by means of the commutation
relations

[Q, a] = −a , [Q, b+] = −b+ , [Q,ψ] = −ψ .

✎

✌

⑨ Prove that for a Dirac particle

(Λ+)αβ =
1

2m

∑

r

uα(p, r)ūβ(p, r) =
1

2m
(p/ +m)αβ

(Λ−)αβ = − 1

2m

∑

r

vα(p, r)v̄β(p, r) = − 1

2m
(p/−m)αβ

are projection operators with property

Λ+u(p, s) = u(p, s) , Λ+v(p, s) = 0

Λ−u(p, s) = 0 , Λ−v(p, s) = v(p, s) .

Give a physical interpretation of this result.

Note: In the space of four-spinors the usual Hermitean conjugation is replaced by going to
the adjoint

Γ→ Γ† = γ0Γ+γ0 .

Thus, the usual Hermitecity Γ = Γ+ requirement is replaced be self–adjointness requirement
Γ = Γ†, because the L–invariant scalar product between two spinors u and v is ūv ≡ u+γ0v,
and not u+v. The latter is not L–invariant.

✎

✌

⑩ Prove that

Π± =
1

2
(1± γ5n/)

for n a space-like vector orthogonal to the momentum p of a Dirac particle

n2 = −1 ; n · p = 0

are projection operators with the property

Π±u(p, s) = u(p, s) δs,±
Π±v(p, s) = v(p, s) δs,± .

Give a physical interpretation of the latter properties.

356



E.3 Exercises: Section 4

① Show that the Maxwell equation ∂µF
µν = 0 as a field equation for the vector potential

takes the form

2Aν(x)− ∂ν (∂µA
µ(x)) = 0 .

Show that Aν(x) is not determined by this equation because the operator 2 gµν − ∂µ∂ν
has no inverse. Hint.: ϕµ = ∂µα(x), α(x) an arbitrary scalar function, is a solution of the
above equation with eigenvalue 0.

✎

Maxwell’s equation ∂µF
µν = 0 with F µν = ∂µAν − ∂νAµ reads

∂µ∂
µAν − ∂µ∂νAµ = 0

or by appropriate interchange of derivatives, relabeling of indices and using ∂µ∂
µ = 2, ∂νA

ν ≡
∂νAν and Aµ = gµνAν we obtain

(2 gµν − ∂µ∂ν) Aν = 0

q.e.d.

Next consider

(2 gµν − ∂µ∂ν) ∂να(x) = 2 ∂µα− ∂µ2 α

= 2 ∂µα−2 ∂µα

≡ 0

which vanishes identically for any differentiable scalar function α(x). In Fourier space ∂µ → −ipµ
we have

(

−p2gµν + pµpν
)

Ãν(p) = 0

and we see that pν is a solution of this equation with eigenvalue 0, i.e., the (c–number) operator
(−p2gµν + pµpν) has no inverse.

✌

② Show that for a massive spin 1 field the Proca equation
(

2 +m2
)

Aν(x)− ∂ν (∂µA
µ(x)) = 0

implies ∂µA
µ(x) ≡ 0 automatically. Comment on the number of degrees of freedom ! Show

that the Proca equation is the Euler-Lagrange equation of the Lagrangian

L = −1

4
FµνF

µν +
m2

2
AµA

µ ; Fµν = ∂µAν − ∂νAµ .

Discuss the invariance properties of L under gauge transformations.
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✎

Taking the derivative ∂ν of the Proca equation
(

2 +m2
)

Aν(x)− ∂ν (∂µA
µ(x)) = 0

we get
(

2 +m2
)

∂νA
ν −2 ∂µA

µ = m2∂νA
ν = 0

such that for m 6= 0 indeed ∂νA
ν ≡ 0. Thus the massive spin one field Aν as a solution of the

Proca equation has automatically three degrees of freedom only, which is the correct number as
the field j = 1, j3 = ±1, 0 should describe two transversal and one longitudinal degree of freedom.

The naive guess to require a massive spin one field to satisfy the Klein–Gordon equation
(

2 +m2
)

Aν(x) = 0

would lead to unphysical degrees of freedom, namely, a non-vanishing scalar component ∂νA
ν(x) 6=

0.

The propagator (Green’s function) is the inverse of the Proca differential operator
(

(2 +m2) gµν − ∂µ∂ν
)

Aν(x) = 0 ,

i.e.,
(

(2 +m2) gµν − ∂µ∂ν
)

Dνρ(x) = δµρ δ
(4)(x) .

In momentum space the differential operator becomes a c–number expression which reads
(

(−p2 +m2) gµν + pµpν
)

D̃νρ(p) = δµρ

with D̃νρ(p) a symmetric 2nd tensor which must have the form D̃νρ(p) = A(p2) gνρ +B(p2) pνpρ.
One easily determines A and B, with the result A = 1/(m2 − p2) and B = −1/(m2(m2 − p2)),
and hence

D̃µν(p) = −
(

gµν − pµpν

m2

)
1

p2 −m2 + iε
.

Note that the Proca propagator is transverse pνD̃
µν(p) = 0 and pµD̃

µν(p) = 0 on the mass-shell
p2 = m2 while this would not be the case for the “Klein–Gordon propagator”

D̃µν(p) =
−gµν

p2 −m2 + iε
.

Now we consider the Euler–Lagrange equations for the Proca Lagrangian. Hint: write

L = −1

4
gαρgβσFαβFρσ

= −1

4
gαρgβσ (∂αAβ − ∂βAα) (∂ρAσ − ∂σAρ)

to calculate

∂L
∂∂µAν
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which gives

∂L
∂∂µAν

= −Fµν .

One easily evaluates

L
∂Aν

= m2Aν

such that the Euler–Lagrange equation

∂L
∂∂µAν

=
L
∂Aν

reads

−∂µFµν = m2Aν .

After rewriting Fµν as the curl of Aν one easily identifies the last equation as the Proca equation.

What about gauge invariance? In the Proca Lagrangian the first term proportional to FµνF
µν is

invariant under local transformations Aµ(x)→ Aµ(x)−∂µα(x) while the mass term proportional
to AµA

µ evidently is not. Is this a problem? For the free massive spin 1 field it is not a problem
because the Proca field describes the correct number of physical degrees of freedom from the very
beginning. In the massless case (see Sec. 4) invariance under local gauge transformations was a
necessary tool to disentangle the two transversal physical degrees of freedom from ghosts inherent
in the four component gauge potential Aµ(x). However, for the case of interacting spin one fields
the physical “Proca gauge” or unitary gauge will lead to problems with manifest renormalizability.
This is an important subject which will be discussed later on.

✌

③ Prove that under local gauge transformations

ψ → e−ieα(x)ψ , Aµ(x)→ Aµ(x)− ∂µα(x)

the covariant derivative Dµ = ∂µ − ieAµ has the property: Dµψ transforms identical to ψ
and ψ̄ΓDµψ is gauge invariant provided Dµ commutes with the 4 by 4 matrix Γ.

✎

By direct calculation we find

Dµψ = (∂µ − ieAµ) ψ

→ (∂µ − ie(Aµ − ∂µα(x))) e−ieα(x)ψ

= e−ieα(x)e+ieα(x) (∂µ − ieAµ + ie∂µα(x)) e−ieα(x)ψ

= e−ieα(x) (∂µ − ieAµ) ψ

where we used ∂µe
−ieα(x) = e−ieα(x)∂µ − ie(∂µα)(x) e−ieα(x). Thus

Dµe
−ieα(x) = e−ieα(x)Dµ ,

359



i.e.,

e+ieα(x)Dµe
−ieα(x) = Dµ

q.e.d.

Gauge invariance of

ψ̄ΓDµψ → ψ̄e+ieαΓe−ieαDµψ

= ψ̄ΓDµψ

provided the group transformation commutes with Γ:

e+ieαΓ = Γe+ieα

which for tha Abelian group is trivially satisfied for any 4 by 4 matrix in spinor space.

✌
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E.4 Exercises: Section 5

① Show that 8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10∗ ⊕ 27.

✎

8⊗ 8 = × = × a

b

a

= a

a b

⊕ a

b

a

⊕ a

a

b

⊕ a a

b

⊕ a

a b ⊕ a a

b

In order to append to the first octet the second one in all admissible ways which respect the
(anti-) symmetrization, we replace the second one by letters with identical letters in the rows
(symmetrized). The different elements of a column if they appear in the same column of the
enlarged tableau must appear in the old order (anti-symmetrized). Hence append the elements
from the first row in all possible ways to the first tableau, then to the such enlarged ones the
elements of the second row etc. For our case one easily reads off the result.

Note that the tableau

a

a

is not allowed. Also

a a b

is not allowed, since baa is not an admissible sequence of letters.

✌

② Discuss the iso-spin properties of the triplet of pions (π+, π0, π−) .

The iso-spin symmetry of the scattering operator S not only leads to relations between
matrix elements but also to selection rules: Suppose

(a) T is a generator of a symmetry transformation such that [T, S] = 0 ,

(b) | α > and | β > are eigenstates of T i.e. T | α >= tα | α >, T | β >= tβ | β >

What does this imply for the S-matrix elements

Sβα =< β | S | α > ?

Find a few examples.

✎

✌
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③ Use the Young tableaus to construct the meson states in

3⊗ 3∗

and the baryon states in

3⊗ 3⊗ 3 .

The states in the pseudo-scalar meson octet of flavor SU(3) are characterized by the 3rd

component of iso-spin and by hypercharge Y = B+S (B baryon number B = 0 for mesons,
S strangeness S = 0 for pions). Display the weight diagram (I3 − Y plot) of the meson
states. How are they composed of u, d and s quarks in the SU(3)flavor quark model ?

✎

✌

④ The structure constants cikl of a Lie-algebra [Ti, Tk] = iciklTl satisfy the Jacobi identity.

cikncnlm+ terms cyclic in (ikl) = 0

Use this to show that (T̃i)kl = −icikl also satisfies the Lie-algebra (adjoint representation).

✎

✌

⑤ Lepton number Le is another additive quantum number which is strictly conserved. Le(e
−) =

1 by convention. Determine Le for the other particles from the observed reactions:

1. Le(e
+) = −1, Le(γ) = 0 :

p+ e → p+ e + γ

γ∗ → e+ + e−

2. Le(π
0) = Le(π

±) = 0 :

π0 → 2γ, γ + e+ + e−

p+ π− → n+ π0

p+ π0 → n+ π+

3. Le(ν̄e) = −1, Le(νe) = 1 :

π− → e− + ν̄e

π+ → e+ + νe

From the last two reactions we learn the important result νe 6= ν̄e !

✎

✌
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⑥ Baryon number conservation is responsible for the stability of the proton. By convention
B(p) = 1, B(e−) = 0 . Determine the baryon numbers of particles from the observation of
the following reactions:

a.) Baryons and mesons:

1. B(π0) = 0 :

p+ p → p+ p+ π0

2. B(n) = B(p), B(π±) = B(π0) = 0 :

p+ p → p+ n+ π+

π− + p → n+ π0

3. B(K±) = B(K0) = 0 :

K± → π± + π0

K0 → π+ + π−, π+ + π− + π0

4. B(Λ), B(Σ) = 1 :

π− + p → Λ0 +K0, Σ− +K+

π+ + p → Σ+ +K+, Σ0 + Λ0

5. B(Ξ), B(Ω−) = 1 :

K− + p → Ξ− +K+, Ξ0 +K0, Ω− +K+ +K0
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b.) Antibaryons:

6. B(p̄) = −1 :

p+ p → p+ p+ p+ p̄

7. B(B̄) = −1 :

p+ p̄ → n̄+ n, Λ̄0 + Λ0, Σ̄0 + Σ0, Σ̄± + Σ∓, Ξ̄+ + Ξ−

c.) Photon:

8. B(γ) = 0 :

p → p+ γ

d.) Leptons: All leptons are produced in pairs, B(e−) = 0 by convention.

9. B(e) = B(µ) = 0 :

γ∗ → e+ + e−, µ+ + µ−

10. B(νe) = B(νµ) = 0 :

n → p+ e− + ν̄e

µ− → e− + ν̄e + νµ

µ+ → e+ + νe + ν−µ

π− → µ− + ν̄µ

π+ → µ+ + νµ

✎

✌
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