
A pedagogical review of electroweak symmetry breaking scenarios

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 Rep. Prog. Phys. 74 026201

(http://iopscience.iop.org/0034-4885/74/2/026201)

Download details:

IP Address: 128.141.229.248

The article was downloaded on 03/02/2011 at 08:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0034-4885/74/2
http://iopscience.iop.org/0034-4885
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS

Rep. Prog. Phys. 74 (2011) 026201 (38pp) doi:10.1088/0034-4885/74/2/026201

A pedagogical review of electroweak
symmetry breaking scenarios
Gautam Bhattacharyya

Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064, India

Received 8 July 2010, in final form 24 November 2010
Published 26 January 2011
Online at stacks.iop.org/RoPP/74/026201

Abstract
We review different avenues of electroweak symmetry breaking explored over the years. This
constitutes a timely exercise as the world’s largest and the highest energy particle accelerator,
namely, the Large Hadron Collider (LHC) at CERN near Geneva, has started running whose
primary mission is to find the Higgs or some phenomena that mimic the effects of the Higgs,
i.e. to unravel the mysteries of electroweak phase transition. In the beginning, we discuss the
Standard Model Higgs mechanism. After that we review the Higgs sector of the minimal
supersymmetric Standard Model. Then we take up three relatively recent ideas: little Higgs,
gauge–Higgs unification and Higgsless scenarios. For the latter three cases, we first present
the basic ideas and restrict our illustration to some instructive toy models to provide an
intuitive feel of the underlying dynamics, and then discuss, for each of the three cases, how
more realistic scenarios are constructed and how to decipher their experimental signatures.
Wherever possible, we provide pedagogical details, which beginners might find useful.

(Some figures in this article are in colour only in the electronic version)

This article was invited by S F King.
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1. Introduction

The theory of beta decay, which manifests weak interaction,
was first formulated by Fermi. Below we write down the
effective Lagrangian of beta decay. In doing so, we use modern
notation and rely on the (V − A) structure of currents [1]:

Leff = GF√
2
(p̄γµ(1 + αγ5)n)(ēγµ(1 − γ5)ν). (1.1)

Since every fermion field has mass dimension 3/2 (which
follows from power counting in Dirac Lagrangian), the
prefactor GF has clearly a mass dimension −2. From the
neutron decay width and angular distribution, one obtains
α � −1.2 and the ‘Fermi scale’ G

−1/2
F � 300 GeV. Particle

physics has gone through a dramatic evolution since the
time of Fermi [2]. The success of the Yang–Mills theory
revolutionized the whole scenario [3]. The charged W±

boson was eventually predicted by the Standard Model
(SM) [4] having a mass of around 80 GeV, which was later
experimentally confirmed by direct detection by the UA1
collaboration at CERN. This W± boson induces radioactivity
by mediating the beta decay process. However, a full
understanding of the dynamics that controls the Fermi scale and
hence the W boson mass still remains an enigma. This is the
scale of electroweak phase transition, and understanding the
origin of electroweak symmetry breaking (EWSB) constitutes
the primary goal of the Large Hadron Collider (LHC) at CERN.
The readers are strongly recommended to follow references
[5–10] to have a broad overview of different possible EWSB
mechanisms.

The SM reigns supreme at the electroweak scale. But
it cannot account for a few experimentally established facts:
neutrino mass, dark matter and the right amount of baryon
asymmetry of the universe. Any viable scenario beyond the
SM that is expected to trigger EWSB and to answer one or more
of the above questions must pass the strict constraints imposed
by the electroweak precision tests (EWPT) carried out mainly
at the Large Electron Positron (LEP) collider at CERN. Non-
abelian gauge theory as the theory for weak interaction has
been established to a very good accuracy: (i) the ZWW and
γWW vertices have been measured to a per cent accuracy
at LEP-2 implying that the SU(2) × U(1) gauge theory is
unbroken at the vertices, (ii) accurate measurements of the Z

and W masses have indicated that gauge symmetry is broken in
masses. Precision measurements at LEP have shown that the
ρ-parameter (introduced in section 3.6.4) is unity to a very good
accuracy. This attests the ‘SU(2)-doublet’ nature of the scalar
employed in the SM for spontaneous electroweak breaking.
Any acceptable new physics scenario should be in accordance
with the above observations. CMS and ATLAS are the two

general purpose detectors of the LHC which are expected to
answer a lot of such questions by hunting not only the Higgs but
also any possible ruler of the teraelectron volt (TeV) regime.

The primary concern is the following. Is the Higgs
mechanism as portrayed in the SM a complete story? Bluntly
speaking, nobody believes so! Then, what is the nature
of the more fundamental underlying dynamics? A more
pointed question is if the Higgs exists, is it elementary or
composite? The advantage of working with an elementary
Higgs, as in the SM, is that the two issues of generating
gauge boson masses and fermion masses are solved in
one stroke. Also, as it turned out, a theory relying on
elementary Higgs is perfectly comfortable with EWPT. The
disadvantage is that the Higgs mass receives quadratically
divergent quantum correction which inevitably calls for new
physics, e.g. supersymmetry, to solve the hierarchy problem
by taming the unruly quantum behavior. On the other hand,
when the Higgs is a composite object, e.g. in technicolor,
the hierarchy problem is not there any way because the
composite Higgs dissolves at the scale where new heavy
fermions (e.g. technifermions) condense to break EWSB. But
a major disadvantage of technicolor is that such models, in
general, inflict unacceptably large flavor changing neutral
currents (FCNC) and induce large contributions to the oblique
electroweak parameters T (or �ρ) and S. Although the FCNC
problem can be evaded by going to some more complicated
versions of technicolor models, general inconsistency with
EWPT in the post-LEP era has put technicolor far behind
supersymmetry in terms of acceptability. But the idea of
technicolor was too elegant to die. It simply went into slumber
only to reappear some years later in a different guise through
the AdS/CFT correspondence [11] as dual to some extra-
dimensional theories. Many modern non-supersymmetric
ideas, which we shall discuss in this review, are reminiscent of
technicolor, but sufficiently advanced and equipped over the
traditional versions to meet the FCNC and EWPT challenges.
At this point it is fair to say that supersymmetry and the
new avatars of technicolor/compositeness are the two most
attractive general classes of theories that may dictate the
EWSB mechanism and are expected to be observed at the
LHC. Therefore, before we get going into a systematic but
incremental elaboration of how the idea of EWSB evolved and
how the different concerns at different stages were sorted out,
we briefly touch upon the main features of two most important
conceptual pillars on which many specific models were built,
namely, supersymmetry and technicolor.

1.1. Supersymmetry

Supersymmetry is arguably the most favored extension of
physics beyond the SM. It all started more than 30 years ago
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Table 1. The particle content of the minimal supersymmetric SM: superparticles are marked by a superscript ‘tilde’.

Particles/superparticles Spin 0 Spin 1/2 SU(3)C × SU(2)L × U(1)Y

leptons, sleptons (L) (̃ν, ẽL) (ν, eL) (1, 2, −1/2)
(in 3 families) (Ec) ẽ∗

R ec
L (1, 1, 1)

quarks, squarks (Q) (̃uL, d̃L) (uL, dL) (3, 2, 1/6)
(in 3 families) (Uc) ũ∗

R uc
L (3̄, 1, −2/3)

(Dc) d̃∗
R dc

L (3̄, 1, 1/3)

Higgs, higgsinos (Hu) (H +
u , H 0

u ) (H̃ +
u , H̃ 0

u ) (1, 2, 1/2)
(up, down types) (Hd ) (H 0

d , H−
d ) (H̃ 0

d , H̃−
d ) (1, 2, −1/2)

particles/superparticles Spin 1 Spin 1/2 SU(3)C × SU(2)L × U(1)Y

gluon, gluino g g̃ (8, 1, 0)
W bosons, winos W±, W 0 W̃±, W̃ 0 (1, 3, 0)
B boson, bino B0 B̃0 (1, 1, 0)

from theoretical works pursued independently by Golfand and
Likhtman [12], Volkov and Akulov [13], and Wess and Zumino
[14]. For historical developments of the idea of supersymmetry
and subsequent model building and phenomenology, we
recommend the text books [15] and reviews [16, 17]. We
briefly outline the concept below.

Supersymmetry is a new space–time symmetry inter-
changing bosons and fermions, relating states of different
spins. We first recall that Poincaré group is a semi-direct
product of translations and the Lorentz transformations (which
involve rotations and boosts), while a super-Poincaré group
additionally includes supersymmetry transformations linking
bosons and fermions. More specifically, the Poincaré group
is generalized to the super-Poincaré group by adding two an-
ticommuting generators Q and Q̄, to the existing p (linear
momentum), J (angular momentum) and K (boost), such that
{Q, Q̄} ∼ γ µpµ. Haag, Lopuszanski and Sohnius general-
ized the work of O’Raifeartaigh and by Coleman and Man-
dula to show that the most general symmetries of the S-matrix
are a direct product of super-Poincaré group with the internal
symmetry group. Since the new symmetry generators linking
bosons and fermions are spinors, not scalars, supersymmetry
is not an internal symmetry. Years ago, Dirac postulated a
doubling of states by introducing an antiparticle to every par-
ticle in an attempt to reconcile special relativity with quantum
mechanics. In a Stern–Gerlach experiment, an atomic beam
in an inhomogeneous magnetic field splits due to doubling of
the number of electron states into spin-up and -down modes
indicating a doubling with respect to angular momentum. So
it is no surprise that Q causes a further splitting into particle

and superparticle (f
Q→ f, f̃ ) [18]. Since Q is spinorial, the

superpartners differ from their SM partners in spin. The su-
perpartners of fermions are scalars and are called ‘sfermions’,
while the superpartners of gauge bosons are fermions and are
called ‘gauginos’. Put together, a particle and its superpartner
form a supermultiplet. The two irreducible supermultiplets
which are used to construct the supersymmetric SM are the
‘chiral’ and the ‘vector’ supermultiplets. The chiral super-
multiplet contains a scalar (e.g. selectron) and a 2-component
Weyl fermion (e.g. left-chiral electron). The vector supermul-
tiplet contains a gauge field (e.g. photon) and a 2-component
Majorana fermion (e.g. photino). We should remember that

(i) there is an equal number of bosonic and fermionic degrees
of freedom in a supermultiplet, and (ii) since p2 commutes
with Q, the bosons and fermions in a supermultiplet have the
same mass.

But, why don’t we see the superpartners? According to
supersymmetry every fermion should have a bosonic partner
and vice versa. Then the superpartner of electron which is a
scalar with the same mass as that of the electron should have
been found. This simply means that supersymmetry is not only
broken but very badly broken and the superpartners are heavy
enough to have escaped detection so far. There are quite a few
ideas as to how supersymmetry is broken. Supersymmetry
breaking can be mediated by supergravity, or by gauge
interactions, or superconformal anomaly, and so on. Although
we do not know exactly how it is broken, we know very well
how to parametrize this breaking. Recall that the SM has 18
parameters, but the minimal supersymmetric standard model
(MSSM) contains 106 additional parameters (see table 1 for the
particle content). But once we assume a particular mechanism
of supersymmetry breaking many of these parameters will be
related. The next question is how long the superparticles can
hide themselves? How good is the chance of finding them at
the LHC? In other words, is there a reason for expecting them
to appear at the TeV scale? An interesting observation is that
the gauge couplings measured at LEP do not unify at a high
scale when extrapolated using renormalization group (RG)
equations containing beta functions computed with the SM
particle content. But if we use supersymmetric RG equations,
i.e. with beta functions computed with the supersymmetric
particle content, the couplings do unify at a high (grand
unification) scale (MGUT) provided that the superparticle
masses lie in the 100 GeV–10 TeV range. Moreover, this
GUT scale is somewhat higher than what is obtained in
non-supersymmetric scenarios which makes the prediction of
proton lifetime more consistent with its non-observation. A
very attractive property of all supersymmetric models with
conserved R-parity is that they all include a stable electrically
and color neutral massive (∼100 GeV) particle which could
be an excellent candidate of the observed dark matter of
the universe. If R-parity is violated, even the gravitino
could make a reasonable dark matter candidate. Furthermore,
supersymmetry provides a framework to turn on gravity, as
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when global supersymmetry is promoted to a local one we
get supergravity. Supersymmetric theories have adapted very
well with the LEP data, because they are decoupling theories
in the sense that superparticle induced loop corrections to
electroweak observables, in general, rapidly decouple with
increasing superparticle masses.

Supersymmetry provides an important prediction on the
Higgs mass. In the (two-Higgs doublet) MSSM the lightest
Higgs cannot be heavier than about 135 GeV or so provided
the superparticles weigh around a TeV. If we do not find any
Higgs within that limit, the minimal version will be seriously
disfavored. We have discussed in detail the properties of both
neutral and charged scalars of the supersymmetric Higgs sector
in section 6.3. But in this review we refrain from discussing
their collider search strategies—for detailed search studies see
Djouadi’s review in [17].

1.2. Technicolor

Here we present an outline of the main idea behind
technicolor theories. For a detailed survey of the historical
development and the evolution of different concepts of
dynamical electroweak symmetry breaking (DWSB) the
readers are recommended to go through the early papers of
Susskind [19] and Weinberg [20] and consult the reviews on
DWSB breaking and technicolor [21–23]. We also recommend
the readers to subsequently follow two recent papers on Higgs
as a pseudo-Goldstone boson which discuss from a modern
perspective as to how the difficulties of traditional technicolor
models are overcome [24, 25].

QCD provides a strong force that binds the colored
quarks. Can it induce EWSB by creating a bound state
of strongly interacting sector which receives a non-zero
expectation value in the vacuum? This is the central theme of
technicolor (TC). Let us for the moment consider only SU(3)C
interaction and switch off the electroweak gauge force of the
SM. Let us assume only one generation of massless quark
doublet, both left-handed and right-handed: QL = (u, d)T

L and
QR = (u, d)T

R. The QCD Lagrangian is invariant under a global
chiral symmetry

SU(2)L × SU(2)R.

The symmetry is spontaneously broken down to the
diagonal subgroup SU(2)L+R, which corresponds to isospin
symmetry, when

〈ūu〉vac = 〈d̄d〉vac �= 0.

This chiral symmetry breaking is accompanied by three
massless pseudoscalars which are identified with the pions.
These are associated with three axial currents (q ≡ (u, d)T)

j
µ

Aa = fπ∂µπa = q̄γ µγ 5 τ a

2
q,

where τ a are the three Pauli matrices (a = 1, 2, 3) and fπ

is the pion decay constant. When the electroweak interaction
is switched on, the massless pions are eaten up by the as yet
massless gauge bosons to form the longitudinal components

of those gauge bosons which in turn become massive. The W

and Z boson masses are given by

MW = gfπ±/2, MZ =
√

g2 + g′2fπ0/2.

Isospin symmetry guarantees that fπ ≡ fπ± = fπ0 . This
picture is not phenomenologically acceptable as by putting
fπ ∼ 93 MeV, we obtain MW ∼ 30 MeV, while in reality
MW ∼ 80 GeV. So the QCD force of the SM is not strong
enough to generate the correct EWSB scale. TC does precisely
this job. It is a scaled-up version of QCD, where fπ → Fπ ∼
v ≈ 246 GeV. So the W and Z bosons do not eat up the ordinary
pions but the technipions. The beauty of this theory is that
the hierarchy problem is solved by dimensional transmutation.
Recalling that the QCD beta function is negative (β < 0),
the electroweak scale (v) is dynamically generated when the
TC gauge coupling gTC diverges in the infrared, in complete
analogy with the dynamical generation of 
QCD:

dgTC(µ)

d ln µ
= β

16π2
g3

TC(µ) ⇒ v = MPl exp

(
8π2/β

g2
TC(MPl)

)
.

The next important question is how fermion masses are
generated [26]. Let us consider an example by enlarging the
TC group GTC to an extended technicolor (ETC) group GETC

in which both SU(3)C and GTC are embedded:

GETC ⊃ SU(3)C × GTC.

It is assumed that GETC is spontaneously broken at a scale
ETC.
The gauge bosons corresponding to broken ETC generators
would connect ordinary quarks (q) which transform under
SU(3)C to the TC quarks (�TC) which transform under GTC,
and would generate effective four-fermion operators (after
appropriate Fierz transformations)

g2
ETC


2
ETC

(q̄q)(�̄TC�TC).

At a lower scale 
TC, a condensation takes place: 〈�̄TC�TC〉 ∼

3

TC ∼ F 3
π ∼ v3. This immediately generates the ordinary

quark mass

mq ∼ 
TC

(

TC


ETC

)2

.

To generate the mass hierarchy among ordinary quarks, one has
to first put all those ordinary quarks in a single ETC multiplet
and arrange to break the multiplet through different cascades,
thus generating different scales. But the exchanges of the same
ETC gauge fields also generate operators with four ordinary
quarks, namely, (q̄q)2/
2

ETC, which severely violate flavor and
CP particularly because all those SM quarks are in the same
multiplet. Data on K and B mixing as well as rare meson
decays introduce a very strong constraint 
ETC > 103–5 TeV,
which is at least two to four orders of magnitude larger than
the value of 
ETC, required to predict the correct strange quark
mass. How to resolve this tension between large enough quark
mass vis-à-vis too large FCNC rates? Here comes the rôle
of walking technicolor [27]. Without going into a detailed
discussion, we just point out that the dimension of the operator
(q̄q)(�̄TC�TC) could be (6+γ ), instead of the classical value 6,
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where γ is the anomalous dimension generated by the TC
group. The TC coupling gTC may have a large fixed point
value at µ ∼ 
TC and its evolution above 
TC may be slow
(hence, ‘walking’, instead of ‘running’). The formula for the
ordinary quark mass is then modified to

mq ∼ 
TC

(

TC


ETC

)(2+γ )

.

If γ is large and negative, then for a given mq , one can
accommodate a larger 
ETC than when γ = 0, i.e. one can
have a large 
ETC without suppressing the quark mass. On the
other hand, the suppression of FCNC rates still goes as 1/
2

ETC
since the SM color group cannot generate any large anomalous
dimension. This way the quark mass versus FCNC tension is
considerably ameliorated in the walking technicolor scenario.

We conclude our discussion on technicolor by just
mentioning the idea of top quark condensates. Although
Nambu first postulated it, Bardeen, Hill and Lindner
formulated the theory of dynamical breaking of electroweak
theory in the SM by a top quark condensate [28]. Here the
Higgs boson is a t̄ t bound state. Essentially, one implements
the BCS or Nambu–Jona-Lasinio mechanism in which a new
interaction at a high scale 
 triggers a low energy condensate
〈t t̄〉. Generally, top quark mass turns out to be somewhat larger
than the presently known value. This minimal scheme was
further extended by Hill in a specific topcolor scheme [29]. In
a subsequent development it was shown that in an ETC theory,
where it is hard to generate a large top quark mass without
adversely affecting the ρ parameter, a substantial part of the
top quark mass may be generated by additionally incorporating
the topcolor dynamics [30].

1.3. Plan of the review

We shall start our discussion with a brief recapitulation of
the idea of gauge invariance. In the subsequent sections, we
shall briefly review the essential structure of the electroweak
part of the SM, illustrate the Higgs mechanism and raise the
issue of the quantum instability of the scalar potential. We
shall then demonstrate how the quadratic divergence is tamed
in a toy scenario reminiscent of a supersymmetric model.
Then we go on to explore different avenues through which
one can successfully realize electroweak phase transition. In
the process, we shall discuss minimal supersymmetry (only
the Higgs sector), and some relatively recent ideas like little
Higgs, gauge–Higgs unification and Higgsless scenarios. The
latter two scenarios explicitly rely on the existence of extra
dimension with a TeV-size inverse radius of compactification.
It should be noted that many of these non-supersymmetric
scenarios are often reminiscent of the technicolor models from
the standpoint of AdS/CFT correspondence, which we shall
just mention in passing without actually going into details.
For each of these modern non-supersymmetric scenarios, we
shall first illustrate the basic concepts using simple toy models,
and then discuss, without going into calculational details, their
phenomenological features and the strategies for detecting
their signatures at the LHC. Finally, we shall conclude with a
brief stock-taking of different aspects that the model-builders

should keep in mind, followed by a short discussion on how to
distinguish the different EWSB models at the LHC.

2. A short recap of the idea of gauge invariance

This is a brief survey of the idea of gauge invariance required
to formulate the basic structure of the SM. Let us first consider
QED, which is governed by a U(1) gauge symmetry. We start
with the Lagrangian of the electron field ψ(x) with a mass m:

L = ψ̄(iγ α∂α − m)ψ, (2.1)

where ∂α ≡ ∂/∂xα . Observe that for ψ(x) → ψ ′(x) =
ei
ψ(x), where 
 = real constant, the Lagrangian remains
unaltered: L(ψ) = L(ψ ′). Various transformations of the
group U(1) commute. Such groups are called ‘abelian’. Since

 is a constant, the group is also called ‘global’.

Now suppose that the group is still U(1), but ‘local’, i.e.

 ≡ 
(x). Then ψ ′(x) = ei
(x)ψ(x) ≡ U(x)ψ(x). Let us
see how the derivative ∂αψ(x) transform:

∂αψ(x) = ∂αU−1(x)ψ ′(x) = U−1(x) U(x)∂αU−1(x)︸ ︷︷ ︸ψ ′(x){
(1 + i
)∂α(1 − i
)ψ ′(x)

= (∂α − i∂α
(x))ψ ′(x)

= U−1(∂α − i∂α
(x))ψ ′(x). (2.2)

Although for illustration we used infinitesimal transformation,
it is actually not a necessary condition. Note that in the
first term on the rhs the derivative acts on everything on its
right, but in the end where we obtain (∂α − ∂α
(x))ψ ′(x),
the second ∂α acts only on 
(x) and not on ψ ′(x). The
message is the following: although ψ(x) = U−1(x)ψ ′(x),
∂αψ(x) �= U−1(x)∂αψ ′(x), i.e. the field and its derivative do
not transform the same way under a local transformation. For
the global case, if we recall, they did transform in the same
way, and the Lagrangian remained invariant. But now for the
local case, L (ψ) �= L (ψ ′).

Now, we write the Lagrangian in equation (2.1) with
Dα ≡ ∂α − ieAα(x) instead of ∂α , where e is a coupling
constant. Dα is called the covariant derivative. We now
observe the following:

[∂α − ieAα(x)]ψ(x)= U−1U(x)[∂α− ieAα(x)]U−1(x)ψ ′(x)

= U−1(x)[U(x)∂αU−1(x)− ieU(x)Aα(x)U−1(x)]ψ ′(x)

= U−1(x)[∂α − i∂α
(x) − ieAα(x)]ψ ′(x)

= U−1(x)[∂α − ieA′
α(x)]ψ ′(x), (2.3)

where

A′
α ≡ Aα(x) +

1

e
∂α
(x). (2.4)

We observe that the covariant derivative transforms like the
field itself: Dαψ(x) = U−1(x)D′

αψ ′(x), where D′
α ≡ ∂α −

ieA′
α(x). This ensures that L of equation (2.1), after replacing

∂α by Dα , is invariant under the gauge transformation.
The gauge field strength tensor is defined as

Fαβ ≡ ∂αAβ − ∂βAα . Under gauge transformation

F ′
αβ = ∂α

(
Aβ +

1

e
∂β


)
− ∂β

(
Aα +

1

e
∂α


)
= Fαβ. (2.5)

5
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The kinetic term of gauge field is given by
Lkin = − 1

4FαβFαβ . One can also write Fαβ = (1/e)[Dα, Dβ].
It is instructive to check, in terms of the electric and magnetic
field components that

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (2.6)

It follows immediately that − 1
4FµνF

µν = 1
2 ( �E2 − �B2), which

is the kinetic term.
Let us now concentrate on the non-abelian group SU(2).

Consider a fermion field ψ(x) which transforms as a doublet
under SU(2): ψ(x) = (

ψ1(x)
ψ2(x)

)
. Let us follow its local SU(2)

transformation: ψ → ψ ′ = ei(τa/2)
a(x)ψ(x), and ψ̄ →
ψ̄ ′ = ψ̄(x)e−i(τa/2)
a(x), where τa(a = 1, 2, 3) are the Pauli
matrices which satisfy [τa, τb] = 2iεabcτc. It is easy to
check that ∂αψ(x) = U−1(x)[∂α − i(τa/2)∂α
a(x)]ψ ′(x),
i.e. ψ(x) and ∂αψ(x) do not transform identically, and hence
the Lagrangian is not invariant under SU(2) transformation.
To ensure gauge invariance we must start with the covariant
derivative Dαψ(x) ≡ [∂α − ig(τa/2)Aa

α(x)]ψ(x), where g is
the coupling constant (like the symbol e used for U(1)). We
obtain

Dαψ(x) = U−1 U(x)
(
∂α − ig

τa

2
Aa

α(x)
)

U−1(x)︸ ︷︷ ︸ψ ′(x)

= ∂α − ig
τa

2
A′a

α ≡ D′
α

= U−1D′
αψ ′(x), (2.7)

where

A′a
α = Aa

α +
1

g
∂α
a + εabcAαb
c. (2.8)

If we do a straightforward generalization of the abelian case
and construct Ga

αβ = ∂αAa
β − ∂βAa

α , the product Ga
αβG

αβ
a is

not gauge invariant. We must redefine field the strength tensor
in the non-abelian case as

Fa
αβ ≡ (∂αAa

β − ∂βAa
α) + gεabcAαbAβc. (2.9)

It is instructive to use the transformation properties of the gauge
fields, discussed above, to check that Fa

αβF
αβ
a remains invariant

under gauge transformation, and constitutes the gauge boson
kinetic term in the Lagrangian.

3. The Standard Model Higgs mechanism

Now we will discuss the idea and implementation of
spontaneous symmetry breaking (SSB). Whenever a system
does not show all the symmetries by which it is governed,
we say that the symmetry is ‘spontaneously’ broken. More
explicitly, when there is a solution which does not exhibit
a given symmetry which is encoded and respected in the
Lagrangian, or Hamiltonian, or the equations of motion, the
symmetry is said to be spontaneously broken. In the context of
the SM, the SSB idea is used to generate gauge boson masses
without spoiling the calculability (which we technically call
renormalizability) of the theory. To gain insight into different
aspects of SSB, we will consider different cases one by one.

3.1. SSB of discrete symmetry

Consider a real scalar field ϕ(x). The Hamiltonian is given by

H = 1
2 ϕ̇2 + 1

2

( ��ϕ
)2

+ V (ϕ),

where V (ϕ) = 1
2m2ϕ2 + 1

4λ2ϕ4. (3.1)

Above, we have assumed a ϕ ↔ −ϕ discrete symmetry which
prohibits odd powers of ϕ. Clearly, the minimum of V (ϕ) is
at ϕ = 0. Now, as the next step, consider

V (ϕ) = − 1
2m2ϕ2 + 1

4λ2ϕ4, where m2 > 0. (3.2)

Since V ′(ϕ)|ϕ=0 = 0, it follows that ϕ = 0 is indeed an
extremum. Moreover, V ′′(ϕ)|ϕ=0 = −m2 implies that ϕ = 0
is rather a maximum and not a minimum. Stable minima occur
at two points ϕ = ±m/λ, where V (m/λ) = −m4/4λ2. Recall,
we can always add a constant term in V (ϕ), which does not
change the physics. Using this idea, we can write the potential
as a complete square as such

V (ϕ) = 1
4λ2(ϕ2 − v2)2, (3.3)

where v = m/λ. With this redefined potential, the system
can be at either of the two minima (±v). Once one solution
is chosen, the symmetry breaks spontaneously. Note, the
potential V (ϕ) attains its minimum value zero for a non-zero
value of ϕ. The zero energy state, characterized by V (ϕ) = 0,
is called the ground state or the minimum energy state, while
v ≡ 〈0|ϕ|0〉 is called the ‘vacuum expectation value’ (VEV).

We should remember two points:

• When we consider the VEV of a field, this field
has to be a ‘classical’ field. Remember, a quantum
field can always be expanded in terms of creation and
annihilation operators whose vacuum expectation would
always vanish.

• When we write v ≡ 〈0|ϕ(x)|0〉, a naı̈ve question comes
to mind as to how the lhs is independent of x while the
rhs is a function of x. It happens because the translational
invariance of the vacuum can be used to write

〈0|ϕ(x)|0〉 = 〈0|eipxϕ(0)e−ipx |0〉 = 〈0|ϕ|0〉 = v.

3.2. SSB of global U(1) symmetry

For U(1) symmetry, we must start with a complex scalar field
ϕ. The scalar potential is given by

V (|ϕ|) = 1
2λ2(|ϕ|2 − 1

2v2)2. (3.4)

This potential has a global U(1) symmetry: ϕ → ϕ′ = eiαϕ,
where α is any real constant. The potential is minimum (which
is zero) at all points on the orbit of radius |ϕ| = v/

√
2, different

points corresponding to different values of Arg(ϕ). The shape
of the potential takes the form of a ‘Mexican hat’—see figure 1.
We write

ϕ(x) = 1√
2

(v + χ(x) + iψ(x)) , (3.5)
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Figure 1. The Mexican hat potential.

where χ(x) and ψ(x) are the two components of the complex
quantum field around the stable minima. The Lagrangian in
terms of the χ and ψ fields can be expressed as

L = K − 1
2λ2

[
1
2 |v + χ + iψ |2 − 1

2v2
]2

= K − 1
8λ2

[
χ2 + 2vχ + ψ2

]2
, (3.6)

where K = 1
2 (∂µχ)2 + 1

2 (∂µψ)2 is the kinetic term. It is
clear from equation (3.6) that the component of excitation
along the v-direction (χ ) acquires a mass (mχ = λv), while
the component (ψ), which is in a direction tangential to the
orbit, remains massless (mψ = 0). That ψ is massless is
not surprising as traversing along the orbit does not cost any
energy. What is important is that as a result of a spontaneous
breaking of a continuous global symmetry, a massless scalar
has been generated. Such a massless scalar field is called the
‘Nambu–Goldstone boson’ or often the ‘Goldstone boson’.

3.3. SSB of global SU(2) symmetry

Here, the complex scalar field is a doublet of SU(2), given by
� = (

ϕ+
ϕ0

)
. The Lagrangian is given by

L = (∂µ�)†(∂µ�) − V (�†�), (3.7)

where �†� = ϕ∗
+ϕ+ + ϕ∗

0ϕ0. Here ϕ+ and ϕ0 have two
real components each, i.e. there are in total four degrees of
freedom (d.o.f.). At this level, the subscripts + and 0 are simply
labels. We will see later on that these labels would correspond
to electric charge +1 and 0, respectively. After SSB, three
d.o.f. remain massless, one becomes massive. It can be
proved that the number of Goldstone bosons is the number of
broken generators. To appreciate this from a geometric point
of view, note that a 4d sphere has three tangential directions,
and clearly, quantum oscillations along these directions yield
massless modes.

Of course, the next question is what happens when a global
symmetry is gauged?

3.4. SSB with local U(1) symmetry

Now we deal with a local U(1) symmetry. The Lagrangian can
be written as

L = |Dµ�|2 − 1

2
λ2

(
|�|2 − v2

2

)2

− 1

4
FµνF

µν. (3.8)

Here we have used a slightly different notation compared with
the global U(1) case. The complex scalar will be denoted by
�, which can be written as �(x) = ϕ(x)eiθ(x) where ϕ(x) and
θ(x) are the two real d.o.f. Recall that the covariant derivative
and the gauge field strength tensors are given by

Dµ = ∂µ − ieAµ, Fµν = ∂µAν − ∂νAµ.

Now, under gauge transformation � → �′ = eiα(x)� and the
Lagrangian still remains invariant. This phase α(x) is different
at different space–time points, but it is not a physical parameter
and at each and every such point one has the liberty to choose
it in such a way that it precisely cancels the θ(x) at that point.
This choice of gauge is called unitary gauge. In other words,
�(x) can be chosen to be real everywhere, and can be written,
without any loss of generality, as

�(x) = ϕ(x) = 1√
2
(v + χ(x)). (3.9)

The Lagrangian takes the following form:

L = |(∂µ − ieAµ)ϕ(x)|2 − λ2

2

[
1

2
(v + χ(x))2 − 1

2
v2

]2

−1

4
FµνF

µν = 1

2
(∂µχ(x))2 +

e2

2
AµAν(v

2 + 2vχ(x)

+χ2(x)) − λ2

8
(2v + χ(x))2χ2(x) − 1

4
FµνF

µν. (3.10)

This describes a real scalar field χ(x) with mass λv and a
massive vector field Aµ with a mass ev. Note that SSB resulted
in a redistribution of fields: one of the two real fields forming
the complex scalar has been gauged away but it has reappeared
in the form of a longitudinal component of the vector field Aµ.
The total number of d.o.f. thus remains unaltered: 2+2 = 3+1.
The Goldstone boson is eaten up by the gauge boson. This is
called the Higgs mechanism and χ(x) is called the Higgs field1.

3.5. SSB with local SU(2) symmetry

Denoting the complex scalar doublet as �, the Lagrangian can
be written as

L = |Dµ�|2 − 1
2λ2(|�|2 − 1

2v2)2 − 1
4Fa

µνF
a
µν, (3.11)

where

� =
(

ϕ+

ϕ0

)
= 1√

2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
, (3.12)

Dµ� =
(

∂µ − ig

2
τ aWa

µ

)
�,

Fa
µν = ∂µWa

ν − ∂νW
a
µ + gεabcW

b
µWc

ν (a, b = 1, 2, 3).

(3.13)

1 The basic idea of the Higgs mechanism was borrowed from condensed
matter physics. Similar things happen in the BCS theory of superconductivity.
Electromagnetic gauge invariance is spontaneously broken and a photon
becomes massive inside a superconductor from where magnetic fields are
repelled due to the Meissner effect. For historical reasons, the mechanism
is also known as the Anderson–Higgs mechanism and Higgs–Brout–Englert–
Guralnik–Hagen–Kibble mechanism.
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Note that the definition of the field strength tensor Fa
µν follows

from equation (2.9). Here, |�|2 = ϕ∗
+ϕ+ +ϕ∗

0ϕ0 = 1
2 (ϕ2

1 +ϕ2
2 +

ϕ2
3 + ϕ2

4). The potential is minimum when
∑

i ϕ
2
i = v2, where

v is the radius of the orbit. Without any loss of generality
we can assume that the entire VEV is in the ϕ3 direction, i.e.
〈�〉 = �0 = 1√

2

(
0
v

)
. The Higgs field h(x) is the real excitation

around the VEV. Thus, in the unitary gauge where the scalar
field has only the real component, �(x) = 1√

2

(
0

v + h(x)

)
.

The gauge boson masses arise from the expansion of
|Dµ�|2-piece of the Lagrangian. This gives

g2

8

∣∣∣∣τ aWa
µ

(
0
v

)∣∣∣∣2 = g2

8

∣∣∣∣( W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)(
0
v

)∣∣∣∣2
=
(gv

2

)2
W +

µW−
µ +

1

2

(gv

2

)2
W 3

µW 3
µ,

where W± ≡ (W 1
µ ∓ iW 2

µ)
√

2. This means that all the three
gauge bosons have the same mass (gv/2). The equality of
W± and W 3 masses does not follow from gauge symmetry
but results from a global ‘custodial’ symmetry. What is
this custodial symmetry? Looking at the orbit structure,
ϕ2

1 + ϕ2
2 + ϕ2

3 + ϕ2
4 = v2, we note that before the SSB the

potential had a SO(4) symmetry, which is reduced to SO(3)
once one direction is fixed for the VEV. The group SO(3) is
isomorphic to SU(2). This SU(2) is global and should not be
confused with the SU(2) we gauged. It is this SU(2) that we
call the custodial SU(2). This remains unbroken even after the
VEV is generated, and this unbroken symmetry enforces the
equality of the gauge boson masses. The bottom line is that
all the three Goldstone bosons related to the global SU(2) have
now disappeared, and three massive (but degenerate) gauge
bosons have emerged.

3.6. SSB with local SU(2) × U (1) symmetry (the electroweak
part of the SM)

3.6.1. Why SU(2) × U (1)? Obviously we need two gauge
bosons to meet the observations already made. There has
to be a massive charged gauge boson which would mediate
beta decay. The smallest unitary group which provides an off-
diagonal generator (corresponding to the charged gauge boson)
is SU(2). The relevant generators are τ 1 and τ 2. We further
need a massless gauge boson. Any association of a photon
with the neutral generator τ 3 would lead to contradiction with
respect to the charge assignment of particles. The gauge
charges of fermions in a doublet coupling to W 3 are ± 1

2 , clearly
different from the electric charges. Moreover, W 3 couples to
a neutrino, but a photon does not. All in all, just with SU(2)
gauge theory we cannot explain both weak and electromagnetic
interactions. The next simplest construction is to avoid taking
a simple group, but consider SU(2) × U(1).

The covariant derivative will now contain gauge bosons
of both SU(2) and U(1):

Dµ = ∂µ − ig
τa

2
Wa

µ − ig′ Y
2

Bµ, (3.14)

where the quantum number Y is the ‘hypercharge’ of the
particle on which Dµ acts.

The SM contains five representations of fermions (quarks
and leptons) for each generation—two doublets and three
singlets:

L ≡
(

ν

e

)
L

, eR, Q ≡
(

u

d

)
L

, uR, dR.

�L and �R are left- and right-chiral states of a fermion field
�, such that γ5�L = −�L and γ5�R = �R.

3.6.2. Notion of hypercharge.

ν

e


L

↙ t3 = 1
2 , Q = 0 ∴ Q − t3 = − 1

2

↖ t3 = − 1
2 , Q = −1 ∴ Q − t3 = − 1

2u

d


L

↙ t3 = 1
2 , Q = 2

3 ∴ Q − t3 = 1
6

↖ t3 = − 1
2 , Q = − 1

3 ∴ Q − t3 = 1
6 .

Note that the (Q−t3) assignments are the same for all members
inside a given multiplet, i.e. the generator corresponding to
(Q − t3) commutes with all the SU(2) generator τa . Hence,
either (Q − t3) or some multiple of it can serve as the
hypercharge quantum number of U(1)Y . We follow the
convention

2(Q − t3) = Y �⇒ Q = t3 +
Y

2
. (3.15)

It is instructive to check that the currents satisfy
JQ

µ = J 3
µ + 1

2J Y
µ .

3.6.3. How is the symmetry broken? If a generator Ô is
such that the corresponding operator eiÔ acting on the vacuum
|0〉 cannot change it, i.e. eiÔ |0〉 = |0〉, then obviously the
operation corresponds to a symmetry of the vacuum and the
corresponding generator kills the vacuum, i.e. Ô|0〉 = 0. In the
context of gauge theory, when the vacuum is left unbroken by
a generator, the gauge boson corresponding to that generator
would remain massless. Let us now check how the neutral
(diagonal) generators of SU(2) and U(1) act on the scalar VEV:

t3�0 = 1

2
√

2

(
1 0
0 −1

)(
0
v

)
= 1

2
√

2

(
0

−v

)
�= 0,

Y

2
�0 = 1

2
√

2

(
1 0
0 1

)(
0
v

)
= 1

2
√

2

(
0
v

)
�= 0, (3.16)

but (t3 + Y
2 )�0 = 0. This means that Qem = t3 + Y

2 is indeed the
electromagnetic charge generator and consequently a photon
is massless. This is the only combination that yields a massless
gauge boson, and the massless state is neither a SU(2) nor a
U(1) state, but a mixed state. In other words, the masslessness
of a photon is a consequence of the vacuum being invariant
under the operation by eiQem .

An electrically charged field does not acquire any VEV, as
otherwise charge will be spontaneously broken in the following
way: If ϕ+ is the charge (+) field, then one can write [Q, ϕ+] =
+ϕ+. This means that if 〈0|ϕ+|0〉 = v �= 0, then using the
commutator relation one can show that Q|0〉 �= 0, i.e. electric
charge is spontaneously broken!

8
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3.6.4. Masses of the gauge bosons. There are four gauge
bosons. One of them is the massless photon, but the other
three are massive. Here we calculate their masses. To do this
we look into the kinetic term with the covariant derivative:

|Dµ�|2 �⇒
∣∣∣∣(− ig

2
τ aWa

µ − ig′

2
Bµ

)
�0

∣∣∣∣2
= 1

8

∣∣∣∣∣
(

gW 3
µ + g′Bµ

√
2gW−

µ√
2gW +

µ −gW 3
µ + g′Bµ

)(
0
v

)∣∣∣∣∣
2

=
(

1

2
gv

)2

W +
µW−

µ +
1

8
v2(W 3

µ Bµ)

×
(

g2 −gg′

−gg′ g′2

)(
W 3

µ

Bµ

)
. (3.17)

Clearly, the charged W± gauge boson mass is given by
MW = gv/2. Recall, W±

µ has been constructed out of W 1
µ

and W 2
µ, the gauge bosons corresponding to the off-diagonal

generators τ 1 and τ 2.
We now look into the neutral part. The mass matrix in the

(W 3
µ, Bµ) basis has zero determinant. This is not unexpected

as one of the states has to be the massless photon (A). The
other eigenstate is the Z boson. Thus the orthogonal neutral
states and their masses are

Aµ = gBµ + g′W 3
µ√

g2 + g′2 : MA = 0,

Zµ = gW 3
µ − g′Bµ√
g2 + g′2 : MZ = v

2

√
g2 + g′2. (3.18)

Introducing cos θW ≡ g√
g2+g′2 , sin θW ≡ g′√

g2+g′2 , where θW is

called the weak angle, one can express

Aµ = cos θWBµ + sin θWW 3
µ,

Zµ = cos θWW 3
µ − sin θWBµ,

MW

MZ

=
1
2gv

v
2

√
g2 + g′2 = cos θW .

(3.19)

Observe that MZ > MW , i.e. the custodial symmetry
associated with the SU(2) gauge group is broken, and it
has been broken by hypercharge mixing, i.e. by expanding
the gauge group to SU(2) × U(1). One can easily check
that in the g′ → 0 limit, one recovers the custodial
symmetry. Experimentally, MZ = 91.1875 ± 0.0021 GeV
and MW = 80.399 ± 0.025 GeV, which are almost the same
values as predicted by the SM. The weak mixing angle is given
by sin2 θW � 0.23.

We will here define an important parameter:

ρ ≡ M2
W

M2
Z cos2 θW

. (3.20)

With the SU(2) doublet scalar representation (and at tree level),
one can easily check from the above relations that ρ = 1.
Experimental measurements on the Z pole at LEP also indicate
ρ to be very close to unity within a per mille precision.

If there are several representations of scalars whose
electrically neutral members acquire VEVs vi , then

ρ ≡ M2
W

M2
Z cos2 θW

=

N∑
i=1

v2
i

[
Ti(Ti + 1) − 1

4
Y 2

i

]
N∑

i=1

1
2v2

i Y
2
i

, (3.21)

where Ti and Yi are the weak isospin and hypercharge of the
ith multiplet. It is easy to check that only those scalars are
allowed to acquire VEVs which satisfy (2T + 1)2 − 3Y 2 = 1,
as otherwise ρ = 1 will not be satisfied at the tree level. The
simplest choice is to have a scalar with T = 1

2 and Y = 1,
which corresponds to the SM doublet �. More complicated
scalar multiplets, e.g. one with T = 3 and Y = 4, also satisfy
this relation.

3.6.5. Couplings of a photon, Z and W± with fermions. The
interaction of the gauge bosons with the fermions arise from
i�̄γ µDµ�, where Dµ = ∂µ − ig τa

2 Wa
µ − ig′ Y

2 Bµ. In the SM,
a generic fermion field (�) has a left-chiral SU(2)-doublet
representation: �L = (

ψ1
ψ2

)
L
, and right-chiral SU(2)-singlet

representations: ψ1R and ψ2R.
Now we look into the charged-current interaction. We

write the relevant part of the Lagrangian as

LCC = g

2
(J 1

µW 1
µ + J 2

µW 2
µ),

where J 1,2
µ = �̄γµPLτ 1,2�, (3.22)

using PL,R ≡ (1∓γ5)/2. Expressing W±
µ = (W 1

µ ∓ iW 2
µ)/

√
2,

we rewrite the charged-current Lagrangian as

LCC = g√
2

[ψ̄1γµPLψ2W
+
µ + ψ̄2γµPLψ1W

−
µ ]. (3.23)

Now we come to the neutral-current part. We can express the
Lagrangian as

LNC = g

2
J 3

µW 3
µ +

g′

2
J Y

µ Bµ,

where

J 3
µ = �̄γµPLτ 3�,

J Y
µ = �γµPLYL� + ψ̄1γµPRY 1

Rψ1 + ψ̄2γµPRY 2
Rψ2, (3.24)

and where YL is the hypercharge of the left-handed doublet
while Y 1

R and Y 2
R are hypercharges of the two right-handed

singlets. Now rewriting W 3 and B in terms of the photon
(A) and the Z boson, as W 3

µ = cos θWZµ + sin θWAµ

and Bµ = − sin θWZµ + cos θWAµ, one can write the neutral
current Lagrangian in the (A, Z) basis as

LNC = JQ
µ Aµ + JZ

µ Zµ,

where

JQ
µ = eQiψ̄iγµψi, with e ≡ g sin θW ,

and the sum over i is implied, (3.25)

JZ
µ = g

cos θW

[ai
Lψ̄iγµPLψi + ai

Rψ̄iγµPRψi],

with ai
L ≡ t i3 − Qi sin2 θW , ai

R ≡ −Qi sin2 θW .

(3.26)
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As we observe, the Z boson couples to the left- and right-
handed fermions with different strengths. Quite often the
Z boson’s interaction with fermions are expressed in terms
of vector and axial-vector couplings, which are simply linear
combinations of aL and aR. Thus, for a given fermion f , the
Zf f̄ vertex is given by

g

cos θW

γµ(a
f

L PL + a
f

RPR) ≡ g

2 cos θW

γµ(vf − af γ5),

where vf ≡ t
f

3 − 2Qf sin2 θW , af ≡ t
f

3 , (3.27)

are the tree level couplings of the Z boson to the fermion f .

3.6.6. The decay width of the Z boson. The Z boson decays
into all f f̄ pair, except the t t̄ because mt � 173 GeV, while
MZ � 91 GeV. The expression of the decay width of the Z

boson in the f f̄ channel is given by (the derivation can be
found in text books)

�f = GF

6π
√

2
M3

Z(v2
f + a2

f )f

(
mf

MZ

)
, (3.28)

where

f (x) = (1 − 4x2)1/2

(
1 − x2 + 3x2

v2
f − a2

f

v2
f + a2

f

)
.

One can easily verify some of the SM predictions of the Z

boson properties: total decay width �Z � 2.5 GeV, hadronic
decay width �had � 1.74 GeV, charged lepton decay width
(average of e, µ, τ ) �� � 84.0 MeV, invisible decay width
(into all neutrinos) �inv � 499.0 MeV, hadronic cross section
(peak) σhad � 41.5 nanobarn [31].

While doing the algebraic manipulation it will be useful
to remember that the Fermi coupling GF can be expressed in
many ways:

GF√
2

= g2

8M2
W

= 1

2v2
= g2

8M2
Z cos2 θW

= e2

8M2
Z sin2 θW cos2 θW

. (3.29)

4. The LEP legacy

4.1. Cross section and decay width

Let us consider the total cross section of e+e− → µ+µ−

mediated by the photon and the Z boson. It is given by
(
√

s = c.m. energy)

σ = 4πα2

3s
(1 + a1), (4.1)

where

a1 = 2v2
�fZ + (v2

� + a2
� )

2f 2
Z, with

fZ = s

s − M2
Z

(
1

sin2 2θW

)
.

Note that the effect of the Z mediation is encoded in a1,
whereas setting a1 = 0 we get the contribution of the photon.

For the leptons � = e, µ, τ , v� ∝ (1 − 4 sin2 θW ) ∼ zeroish.
Therefore,

σ(e+e− −→γ,Z

µ+µ−) � 4πα2

3s

[
1 +

1

16 sin4 2θW

s2

(s − M2
Z)2

]
.

(4.2)

Thus, in the vicinity of
√

s = MZ , we would expect a sharp
increase of cross section. This is the sign of a resonance of the
Z boson mediation. But, in reality, the cross section does not
diverge at s = M2

Z . The reason is that the Z boson has a decay
width �Z , which would lead to the following modification:

s2

(s − M2
Z)2

→ s2[
s − |MZ − i

2�Z|2]2 .

The factor 1
2 in front of �Z comes from the definition of the

width as half-width at the maximum. Consequently,

σmax � 4πα2

3M2
Z

[
1 +

1

16 sin4 2θW

M2
Z

�2
Z

]
� 4

27

πα2

�2
Z

. (4.3)

In general, for e+e− → f f̄ , (v2
� + a2

� )
2 should be replaced by

(v2
e + a2

e )(v
2
f + a2

f ), i.e. f is not necessarily µ. Therefore,

σ(e+e− → f f̄ )|
s=M2

Z− �2
Z
4

� 4πα2

3M2
Z

[
1 +

(v2
e + a2

e )(v
2
f + a2

f )

sin4 2θW

M2
Z

�2
Z

]
. (4.4)

Substituting �f = αMZ(v2
f + a2

f )/(3 sin2 2θW ), we obtain

σmax(e
+e− → f f̄ ) � 4πα2

3M2
Z

(
1 +

9

α2

�e�f

�2
Z

)
. (4.5)

Numerically, 9�e�f � α2�2
Z . Thus we arrive at the master

formula:

σf
max � 12π

M2
Z

�e�f

�2
Z

. (4.6)

Now, we make some important observations.

1. From the peak position of the Breit–Wigner resonance,
we can measure MZ for any final state f .

2. The half-width at the maximum gives us the total width
�Z for any final state f .

3. By measuring Bhabha scattering cross section (σ e) at the
Z pole, we can calculate �e.

4. By measuring the peak cross section for any other
final state (f = e, µ, τ, hadron), we can calculate the
corresponding �f .

5. Since neutrinos are invisible, we cannot directly measure
the neutrino decay width. But the total invisible decay
width �inv = �Z − �visible = �Z − �e − �µ − �τ − �had.

6. The number of light neutrinos is Nν = �inv/�SM
ν =

2.984 ± 0.008, which for all practical purposes is 3.
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4.2. Forward–backward asymmetry

The differential cross section in the �+�− channel (� = µ, τ )
is given by

dσ

d�
(e+e− γ,Z−→ �+�−)

= e4

64π2s

[
(1 + a1)(1 + cos2 θ) + a2 cos θ

]
, (4.7)

where, a1 has been defined in equation (4.1), and
a2 = 8v2

�a
2
�f

2
Z + 4a2

�fZ .
The a1 contribution has the same angular dependence—

(1 + cos2 θ)—as in QED. The a2 contribution makes a vital
qualitative and quantitative difference by introducing a term
proportional to cos θ . This term arises due to interference
between vector and axial-vector couplings. This gives rise to
the forward–backward asymmetry, which is defined as

Al
FB =

∫ π/2

0
dθ sin θ

dσ

d�
−
∫ π

π/2
dθ sin θ

dσ

d�∫ π/2

0
dθ sin θ

dσ

d�
+
∫ π

π/2
dθ sin θ

dσ

d�

= 3

8

(
a2

1 + a1

)
. (4.8)

Even though the top quark could not be produced at LEP
due to kinematic reasons, its existence was inferred from the
measurement of �b ≡ �(Z → bb̄) and the forward–backward
asymmetry Ab

FB in the following way. Note

�SM
b = GFM

3
Z

3π
√

2
[(ab

L)2 + (ab
R)2]

= GFM
3
Z

3π
√

2
[(tb3 − Qb sin2 θW )2 + (−Qb sin2 θW )2]

= 1.166 × 10−5 GeV−2 × (91.2 GeV)3

3π
√

2

×
[(

−1

2
+

1

3
× 0.23

)2

+

(
1

3
× 0.23

)2
]

� 376 MeV. (4.9)

If the top quark did not exist, i.e. the bottom quark were
a SU(2) singlet, its isospin would have been zero. In that
situation, by putting tb3 = 0 in the above formula, we would
get �b � 23.5 MeV. Even though the lighter quarks could
not be well discriminated from one another, bottom tagging
was quite efficient thanks to the micro-vertex detector at LEP.
As a result, �b could be measured with good accuracy and the
measurement was very close to the SM value. The discrepancy
(between 376 and 23.5 MeV) was too much to be put down to
radiative corrections! The immediate conclusion was that the
bottom quark should have a partner: the top quark. But is the
bottom an isospin ‘minus half’ or a ‘plus half’ quark? The
measured decay width is consistent with tb3 = − 1

2 . One could
reach the same conclusion from the measurement of Ab

FB. If
the bottom quark were an SU(2) singlet, its coupling to the Z

boson would have been vector-like and Ab
FB would have been

identically zero. But LEP measured a statistically significant
non-vanishing asymmetry. Moreover, Ab

FB is sensitive to

ab = tb3 (not a2
b). This way too it was settled that tb3 = − 1

2 .
Thus even before the top quark was discovered, not only
its existence was confirmed but also all its gauge quantum
numbers were comprehensively established by studying how
the Z boson couples to the bottom quark. Measurements of
electroweak radiative effects at LEP further provided some hint
of what would be the expected value of the top mass. This will
be discussed in the context of the quantum corrections to the
tree level value of the ρ parameter.

4.3. Main radiative corrections

The main radiative corrections relevant at the Z-pole originate
from one particle irreducible gauge boson two-point functions.
A generic fermion-induced two point correlation function with
gauge bosons in the two external lines has the following
structure (λ and λ′ can be +1 or −1):

Xµν(m1, m2, λ, λ′) = (−)

∫
d4k

(2π)4

×
Tr

{
γ µ

1 − λγ5

2
(/q + /k + m1)γ

ν 1 − λ′γ5

2
(/k + m2)

}
{(q + k)2 − m2

1}(k2 − m2
2)

= i

16π2

∫ 1

0
dx

[
�− ln

{−q2x(1 − x)+ m2
1x+ m2

2(1 − x)

µ2

}]
×
[

2(1+ λλ′)x(1 − x)(qµqν − q2gµν)

+(1 + λλ′)(m2
1x+ m2

2(1 − x))gµν − (1− λλ′)m1m2gµν

]
.

(4.10)

Above, m1 and m2 are the masses of the fermions inside
the loop, and �(≡ 2/(4 − d) − γ + ln 4π) is a measure of
divergence in the dimensional regularization scheme. The
terms of our interest are proportional to gµν , which we will
call X. Below, we will write the �-functions, which are
defined as �(q2, m1, m2) = −iX(q2, m1, m2). By putting
λ = 1 and λ′ = 1, we will get the left–left (LL) �-function,
given by

�LL(q2, m2
1, m

2
2)

= − 1

4π2

∫ 1

0
dx

[
� + ln

µ2

−q2x(1 − x) + M2(x)

]
×
[
q2x(1 − x) − 1

2
M2(x)

]
,

where M2(x) = m2
1x + m2

2(1 − x). (4.11)

As before, we denote the SU(2) currents by J i
µ. Then

�33(q
2) = 〈J 3

µ, J 3
µ〉 = t2

3L�LL(q2, m2, m2), (4.12)

�11(q
2) = 〈J +

µ, J−
µ 〉 = 1

2
�LL(q2, m2

1, m
2
2). (4.13)

Now, supposing m1 and m2 are the masses of the two fermion
states appearing in a SU(2) doublet, it immediately follows that

�33(q
2) = 1

4 [�LL(q2, m2
1, m

2
1) + �LL(q2, m2

2, m
2
2)],

�11(q
2) = 1

2�LL(q2, m2
1, m

2
2). (4.14)

11



Rep. Prog. Phys. 74 (2011) 026201 G Bhattacharyya

The ρ parameter, which is unity at tree level (discussed
earlier), receives a one-loop radiative correction due to the
mass splitting m1 �= m2. This is a consequence of the breaking
of custodial SU(2) due to weak isospin violation. The effect
is captured by

�ρ ≡ αT = α
4π

sin2 θW cos2 θWM2
Z

[�11(0) − �33(0)].

(4.15)

The dominant effect of isospin violation indeed comes from
top–bottom mass splitting, given by

�ρt−b = α
4π

sin2 θW cos2 θWM2
Z

Nc

32π2

×
[
m2

t + m2
b

2
− m2

t m
2
b

m2
t − m2

b

ln
m2

t

m2
b

]
� α

π

m2
t

M2
Z

. (4.16)

The last step follows from the approximation that the ratio
(m2

b/m2
t ) is very small. The dependence on the fermion mass is

quadratic because the longitudinal gauge bosons are equivalent
to the Goldstones whose coupling to fermions are proportional
to the fermion mass. Also note that in the limit mt = mb, the
contribution to �ρ vanishes, as expected.

The Higgs contribution is milder in the sense that the
dependence on the Higgs mass is logarithmic. The contribution
arises from ZZh and W +W−h interactions. It turns out that

�ρh = − 3GF

8π2
√

2
(M2

Z − M2
W) ln

(
m2

h

M2
Z

)
� − α

2π
ln

mh

MZ

.

(4.17)

The Higgs contribution to �ρ follows from custodial SU(2)
violation due to hypercharge mixing, i.e. the fact that the
gauge group is not just SU(2) but SU(2) × U(1). Besides
T (≡�ρ/α), two more parameters S (isospin preserving) and
U (isospin violating but less important than T ) capture the
radiative effects. The S parameter is particularly sensitive to
non-decoupled types of physics (see definition below). The
Higgs contribution to the S parameter is again logarithmic:

S ≡ 16π

M2
Z

[�3Y (0) − �3Y (M2
Z)] −→Higgs 1

6π
ln

(
mh

MZ

)
. (4.18)

Note that Bose symmetry does not admit Zhh coupling.
The Z boson is a spin-1 particle. If it has to decay into
two scalars, then the system of two scalars would be in an
antisymmetric l = 1 state and there is no other quantum
number to symmetrize the system of two identical Bose
particles. One can also argue as follows: The Z boson couples
in a gauge invariant manner through the corresponding Fµν , but
∂µh∂νh being symmetric in (µ, ν) would not couple to Fµν .

S, T , U : why just three? There are four two-point
functions: �γγ (q2), �γZ(q2), �ZZ(q2), �WW(q2). Mea-
surements have been made at two energy scales: q2 = 0, M2

Z .
So there are eight two-point correlators (four types at two dif-
ferent scales). Of these eight, �γγ (0) = �γZ(0) = 0 due to
the QED Ward identity. Of the remaining six, three linear com-
binations are absorbed in the redefinition of the experimental
inputs: α, Gµ (Fermi coupling extracted from muon decay)
and MZ . The remaining three independent combinations are
S, T and U . The parameters T and U capture the effects of

custodial and weak isospin violation, while S is custodially
symmetric but weak isospin breaking [32]2.

Through the total and partial Z decay width measure-
ments, LEP settled the number of light families to be just
3. What about heavier (>MZ/2) families, which cannot be
produced at LEP due to kinematic inaccessibility? If the heav-
ier generations are chiral, i.e. receive mass through the Higgs
mechanism, then no matter how heavy they are, there is a (non-
decoupled) contribution to the S parameter (S = 2/3π for each
degenerate chiral family) [32]. After maintaining consistency
with precision electroweak data, a heavy fourth chiral family
can be barely accommodated. This has a lot of interesting
consequences, e.g. it broadens the allowed range of the Higgs
mass [34].

4.4. Measurements of the radiative effects

The ρ parameter is essentially the wavefunction renormaliza-
tion of the external Z boson line. Therefore, it is of paramount
importance in the context of LEP physics. There are three
places where radiative corrections enter in a sizable fashion:
(i) the vector (vf ) and axial vector (af ) couplings receive an
overall

√
ρ multiplication, (ii) the weak angle θW is modi-

fied to effective θ̄W and (iii) the Zbb̄ vertex receives a large
(m2

t -dependent) radiative correction. We will not talk about
the Zbb̄ vertex any more. The other corrections are called
‘oblique’ corrections which are lumped inside the following
parametrization:

vf = √
ρ(t

f

3 − 2Qf sin2 θ̄W ), af = √
ρt

f

3 . (4.19)

Now note that the width �f ∝ (v2
f + a2

f ), while the forward–

backward asymmetry A
f

FB is a function of vf /af . So, through
a combined measurement of �f and A

f

FB, one can measure vf

and af . It is then straightforward to compare the measured
vf and af with their radiatively corrected SM expectations.
Noting, sin2 θ̄W � sin2 θW − 3

8�ρ, it is intuitively clear that
one can make a prediction on the Higgs mass, as the top quark
mass is now known to a pretty good accuracy.

To appreciate why radiative corrections became necessary
not long after LEP started running, let us look back
into the situation in the summer 1992 [35]: the measured
v

exp
� = −0.0362+0.0035

−0.0032, when compared with its tree level

SM prediction v
(SM,tree)
� = −0.5 + 2 sin2 θW = −0.076

(sin2 θW obtained from the muon decay data: Gµ =
πα(0)/

√
2M2

Z sin2 θW cos2 θW ), showed a 13σ discrepancy,
inevitably calling for the necessity of dressing the Born-
level prediction with radiative corrections. However, just
the consideration of running of the electromagnetic coupling
α(0) → α(mZ) and extracting sin2 θ (to replace sin2 θW in the
expression of v�) from cos2 θ sin2 θ = πα(MZ)/

√
2GµM2

Z ,
enabled one to obtain v� = −0.037, i.e. within 1σ of its
experimental value at that period. The essential point is that
it was possible to establish a significant consistency between
data and predictions just by considering the running of α and it
was only much later, with significantly more data, that the weak
loop effects (O(GFm

2
t )) were felt. In fact, before the discovery

2 A generalization of the number of such parameters required to cover all
electroweak results was done in [33].
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Figure 2. (a) Left panel: the blue-band plot showing the Higgs mass upper limit [36]. (b) The upper limits on the Higgs mass from different
measurements. The central band corresponds to the ‘average’ [36].

of the top quark at Fermilab in 1995, the main indirect
information on the top quark mass used to come from �ρ.

5. Constraints on the Higgs mass

5.1. Electroweak fit

As emphasized in the previous section, the Higgs mass enters
EWPT through �ρ and S. The quantum corrections, as
we noticed in equations (4.16)–(4.18), exhibit a logarithmic
sensitivity to the Higgs mass:

�ρSM � α

π

m2
t

M2
Z

− α

2π
ln

(
mh

MZ

)
,

Sh(SM) � 1

6π
ln

(
mh

MZ

)
. (5.1)

At present, the CDF and D0 combined estimate is mt =
173.3±1.1 GeV (updated July 2010 [36]). This translates into
an upper limit on the Higgs mass: mh < 186 GeV at 95% CL
The lower limitmh > 114.4 GeV on the Higgs mass is obtained
from non-observation of the Higgs by direct search at LEP-2
via the Bjorken process e+e− → Zh [36]. Why the limit is so
is not difficult to understand: simple kinematics tells us that
the limit should roughly be

√
s −MZ � 205−91 = 114 GeV,

where
√

s is the maximum c.m. energy at LEP-2.
Figure 2(a) is the famous blue-band plot (August 2009

update shown) which is generated using electroweak data

obtained from LEP and by SLD, CDF and D0, as a function
of the Higgs mass, assuming that Nature is completely
described by the SM. The preferred value for the Higgs mass,
corresponding to the minimum of the curve, is 87 GeV, with
an experimental uncertainty of +35 and −26 GeV (68% CL
which corresponds to �χ2 = 1). This serves as a guideline
in our attempt to find the Higgs boson. The 95% CL upper
limit (corresponding to �χ2 = 2.7) on the Higgs mass is
157 GeV, which is pushed up to 186 GeV when the LEP-2
direct search limit of 114 GeV is taken as a constraint in the fit.
In a recent development, the Tevatron experiments CDF and
D0 have excluded the Higgs mass in the range 160–170 GeV at
95% CL In figure 2(b) we see that the extraction of the Higgs
mass from individual measurements indicates different ranges,
though all are consistent within errors.

5.2. Theoretical limits

5.2.1. Perturbative unitarity. Unitarity [37] places an
upper bound on mh beyond which the theory becomes non-
perturbative. Here, we shall call it a ‘tree level unitarity’ as we
would require that the tree level contribution of the first partial
wave in the expansion of different scattering amplitudes does
not saturate unitarity (in other words, some probability should
not exceed unity). The scattering amplitudes involving gauge
bosons and Higgs can be decomposed into partial waves, using
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the ‘equivalence theorem’, as (θ is the scattering angle)

A =
∞∑

J=0

(2J + 1)PJ (cos θ)aJ , (5.2)

where aJ is the J th partial wave and PJ is the J th Legendre
polynomial (where P0(x) = 1, P1(x) = x, P2(x) =
3x2/2 − 1/2, . . .). Using the orthogonality of the Legendre
polynomials, the cross section can be written as

σ = 16π

s

∞∑
J=0

(2J + 1)|aJ |2 = 16π

s

∞∑
J=0

(2J + 1) Im aJ .

(5.3)

The second equality in equation (5.3) is obtained using optical
theorem. Therefore,

|aJ |2 = Re (aJ )2 + Im (aJ )2 = Im aJ . (5.4)

This translates to the bound

|Re(aJ )| � 1
2 . (5.5)

For the channel W +
L W−

L → W +
L W−

L , and for s � m2
h, the

J = 0 mode is given by (at tree level)

a0 = − m2
h

8πv2
. (5.6)

The requirement that |a0| � 0.5 thus sets an upper limit
mh < 2

√
πv = 870 GeV. The most divergent scattering

amplitude arises from 2W +
L W−

L + ZLZL channel leading to
a0 = −5m2

h/64πv2, which yields mh < 780 GeV.

5.2.2. Triviality. The triviality argument provides an upper
limit on the Higgs mass [38, 39]. First, recall that the SM
scalar potential has the following form (be alert that the
normalizations are different from those in equation (3.2)):

V (�) = −|µ2|(�†�) + λ(�†�)2, (5.7)

where

� =
(

ϕ+

ϕ0

)
= 1√

2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
unitary gauge�⇒ 1√

2

(
0

v + h(x)

)
.

Now consider only the scalar sector of the theory. The scalar
quartic coupling evolves as

dλ

dt
= 3λ2

4π2
, where t = ln

(
Q2

Q2
0

)
. (5.8)

Here Q0 is some reference scale, which could as well be the
VEV v. The solution of the above equation is

λ(Q) = λ(Q0)

1 − 3λ(Q0)

4π2
ln

(
Q2

Q2
0

) . (5.9)

This means there is a pole at Qc = Q0e
4π2/3λ(Q0), which is

called the ‘Landau pole’. This pole has to be avoided during the
course of RG running. The general triviality argument states

that in order to remain perturbative at all scales one needs
to have λ = 0 (which means Higgs remains massless), thus
rendering the theory ‘trivial’, i.e. non-interacting. However,
one can have an alternative view: use the RG of quartic
coupling λ to establish the energy domain in which the SM is
valid, i.e. find out the energy cutoff Qc below which λ remains
finite. If we denote the cutoff by 
, then

1

λ(
)
= 1

λ(v)
− 3

4π2
ln


2

v2
> 0. (5.10)

The above inequality follows from the requirement
λ(
) < ∞ ⇒ 1

λ(
)
> 0. This immediately leads to

λ(v) � 4π2

3 ln

(

2

v2

) �⇒ m2
h = 2λv2 <

8π2v2

3 ln

(

2

v2

) . (5.11)

Putting numbers, mh < 160 GeV, for a choice of the cutoff
close to the typical GUT scale 
 = 1016 GeV.

Now let us include the full structure of fermions and gauge
bosons in RG equations:

dλ

dt
� 1

16π2

[
12λ2 + 12λh2

t − 12h4
t − 3

2
λ(3g2

2 + g2
1)

+
3

16

{
2g4

2 + (g2
2 + g2

1)
2

}]
, (5.12)

where ht = √
2mt/v is the top quark Yukawa coupling. For a

rather large λ > ht , g1, g2, i.e. for a ‘heavy’ Higgs boson, the
dominant contribution to running is

dλ

dt
� 1

16π2

[
12λ2 + 12λh2

t − 3

2
λ(3g2

2 + g2
1)

]
. (5.13)

Note that whenever the quartic coupling λ, calculated at the
weak scale v, is equal to λc ≡ 1

8 (3g2
2 + g2

1) − h2
t , which

corresponds to the vanishing rhs of the above RG equation,
the coupling reaches a critical limit. If one starts the evolution
with a λ(v) > λc(v), i.e. for mh > mc

h ≡ √
2λc v, then during

the course of RG running the quartic coupling hits the Landau
pole, i.e. becomes infinite, at some scale and the theory ceases
to be perturbative. From this requirement, one obtains an upper
limit (at two-loop level):

mh < mc
h = 170 GeV for 
 = 1016 GeV. (5.14)

The limits for other choices of 
 can be read off from
figures 3(a) and (b).

5.2.3. Vacuum stability. The argument of vacuum stability
is based on the requirement that the potential is always
bounded from below. This means λ(Q) has to remain positive
throughout the history of RG running. This gives rise to a
lower bound on the Higgs mass [38–40]. If the Higgs mass is
too small, i.e. λ is very small, then the top quark contribution
dominates which can drive λ to a negative value. If it happens
then the vacuum is not stable as it has no minimum. For small
λ, equation (5.12) becomes

dλ

dt
� 1

16π2

[
−12h4

t +
3

16
{2g4

2 + (g2
1 + g2

2)
2}
]

. (5.15)
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Figure 3. (a) Left panel: the triviality and vacuum stability limits (taken from [41]). (b) Right panel: the region up to 
 = 100 TeV is
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To provide intuitive understanding through easy analytic
implementation, we perform a one-step integration and obtain

λ(
) = λ(v) +
1

16π2

[
−12h4

t +
3

16
{2g4

2 + (g2
1 + g2

2)
2}
]

× ln

(

2

v2

)
. (5.16)

To ensure that λ(
) remains positive, the Higgs mass must
satisfy

m2
h >

v2

8π2

[
12h4

t − 3

16
{2g4

2 + (g2
1 + g2

2)
2}
]

ln

(

2

v2

)
.

(5.17)

Clearly the above steps are very simple-minded, yet provide
the rationale behind the lower limit. By actually solving the
RG equation at 2-loop level, one obtains

mh > 134 GeV for 
 = 1016 GeV. (5.18)

If the cutoff 
 = 1 TeV, then [40]

mh > 50.8 + 0.64 (mt − 173.1 GeV),

which indicates that such a low cutoff is clearly disfavored by
LEP (see also Quigg’s paper in [5]). Again, the limits for other
choices of the cutoff can be read off from figures 3(a) and (b).

6. Gauge hierarchy problem

6.1. Quadratic divergence

Let us illustrate the problem of quadratic divergence in the
Higgs sector through an explicit calculation. Recall that in the

unitary gauge the doublet �(x) = (
0

ϕ(x)

) = 1√
2

( 0
v + h(x)

)
. We

write the Yukawa interaction Lagrangian as

L = −hf ϕf̄LfR + h.c.,

where fL,R are the left- and right-chiral projection of the
fermion f . After SSB,

L = − hf√
2
hf̄LfR − hf√

2
vf̄LfR + h.c. (6.1)

The fermion mass is therefore given by mf = hf
v√
2
.

Let us compute the two-point function with zero
momentum Higgs as the two external lines and fermions inside
the loop. The corresponding diagram is in figure 4(a) and can
be written as

i�f

hh(0)

= (−)

∫
d4k

(2π)4
Tr

[(
−i

hf√
2

)
i

/k − mf

(
−i

hf√
2

)
i

/k − mf

]
= −2h2

f

∫
d4k

(2π)4

[
1

k2 − m2
f

+
2m2

f

(k2 − m2
f )2

]
. (6.2)

The correction �m2
h is proportional to �

f

hh(0). The first term
on the rhs is quadratically divergent. The divergent correction
to m2

h looks like

�m2
h(f ) = 
2

16π2
(−2h2

f ). (6.3)

Another divergent piece will appear from quartic Higgs vertex.
The corresponding diagram is similar to what is displayed
in figure (4(c)), except that the internal line is also h. The
divergent contribution to m2

h is

�m2
h(h) = 
2

16π2
(λ). (6.4)
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Figure 4. One-loop quantum corrections to the Higgs mass, due to a Dirac fermion f (a), and scalars f̃L,R ((b) and (c)).

For the sake of simplicity, we neglect the gauge boson
contributions to the quadratic divergence. Combining the
above two divergent pieces, we obtain

�m2
h = 
2

16π2
(−2h2

f + λ). (6.5)

Now, we contemplate the following issues.

(i) The Yukawa coupling hf and the quartic scalar coupling
λ are totally unrelated. Suppose, we set λ = 2h2

f . First
of all, this is a huge fine-tuning. Second, at higher loops,
this relation will not be able to prevent the appearance
of divergence. It is also interesting to note that if we set
λ = h2

f , then we would require two scalars to cancel the
quadratic divergence caused by one fermion.

(ii) Suppose we do not attempt to relate λ and hf for canceling
the quadratic divergence. Now, remember that we have
a tree level bilinear mass term, which is the bare mass.
We can absorb the quadratic divergent in a redefinition
of the bare mass. Still, there is a residual finite part to

the mass correction, given by ∼ h2
f m2

f

8π2 (see equation (6.2)).
What is the value of the loop mass mf ? If SM gives way
to some GUT theory at high scale we can have fermions
where mf ∼ MGUT ∼ 1016 GeV. In that case, even after
removing the quadratic cutoff dependence, the leading
contribution to �m2

h would be order M2
GUT/(8π2). One

would then have to do an unnatural fine-tuning (1–1026)
between the bare term m2

h0
and the correction term �m2

h

to maintain the renormalized mass (m2
h = m2

h0
+ �m2

h) at
around 100 GeV. Furthermore, this fine-tuning has to be
done order-by-order in perturbation theory to prevent the
Higgs mass from shooting up to the highest mass scale of
the theory. This constitutes what is technically called the
gauge hierarchy problem [42].

(iii) The primary problem is that the correction is independent
of mh. Setting mh = 0 does not increase the symmetry
of the theory. In QED, in the limit of vanishing electron
mass we have exact chiral symmetry, and since the photon
mass is zero we have exact gauge symmetry. But there is
no symmetry that protects the Higgs mass.

One of the biggest challenges in the SM is to stabilize
the scalar potential, i.e. to protect it from a run-away quantum
behavior. Although we said that it is the Higgs mass which is
not stable but, more precisely, it is the electroweak VEV (v)
which is unstable. Since v feeds into all masses in the SM
through SSB, none of them which is proportional to v is stable
either. In fact, the argument of protection from gauge and
chiral symmetry applicable to QED is strictly not applicable for
the SM because all the SM particle masses are proportional tov.

6.2. Cancellation of quadratic divergence in a toy
supersymmetric scenario

Supersymmetry, a theory with an intrinsic fermion ↔ boson
symmetry, unambiguously solves the gauge hierarchy problem
and restores naturalness. For an early study of supersymmetric
model building and demonstration of quadratic divergence
cancellation, we refer to [43, 44]. The content of this
subsection is adapted from the textbook by Drees et al [15].

We consider a toy model which contains
ϕ(x) = 1√

2
(v + h(x)) plus two additional complex scalar fields

f̃L,R(x). Suppose the interaction is encoded in the following
effective Lagrangian:

Lf̃ f̃ ϕ = −λ̃f |ϕ|2
(
|f̃L|2 + |f̃R|2

)
+
(
hf Af ϕf̃Lf̃ ∗

R + h.c.
)

= −1

2
λ̃f h2

(
|f̃L|2 + |f̃R|2

)
− λ̃f hv

(
|f̃L|2 + |f̃R|2

)
+

hf√
2
Af

(
hf̃Lf̃ ∗

R + h.c.
)

+ · · · . (6.6)

Above, the dots correspond to Higgs independent terms which
need not be spelt out. Af has the dimension of mass and
it measures the strength of triple scalar vertex. The Yukawa
coupling hf is multiplied to it by convention. The fermion
loop, described before, is shown in figure (4(a)). The new
loops involving scalars are displayed in figures 4(b) and (c).
The contributions of the scalar loops are given by

i�f̃

hh(0) = λ̃f

∫
d4k

(2π)4

[
1

k2 − m2
f̃L

+
1

k2 − m2
f̃R

]
⇐� figure 4(c)

+(λ̃f v)2
∫

d4k

(2π)4

[
1

(k2 − m2
f̃L

)2
+

1

(k2 − m2
f̃R

)2

]
⇐� figure 4(b)

+|hf Af |2
∫

d4k

(2π)4

[
1

k2 − m2
f̃L

1

k2 − m2
f̃R

]
⇐� figure 4(b) (6.7)

Combining equations (6.2) (fermion loop) and (6.7)
(scalar loops) we make the following observations:

• The fermion loop contribution (figure 4(a)) and the scalar
loop contribution (figure 4(c)) give quadratic divergence.
However, if one computes the net contribution to the two-

point function, given by �
f

hh(0) + �
f̃

hh(0), the quadratic
divergence exactly cancels if one sets λ̃f = h2

f . This
cancellation of quadratic divergence occurs regardless
of the magnitude of any mass dimensional parameter,
namely, mf̃L,R

or Af .
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• A log sensitivity to the cutoff (or, the unknown scalar
mass) still remains. If we assume mf̃L

= mf̃R
= mf̃ , then

�
f

hh(0) + �
f̃

hh(0) = h2
f

16π2

[
− 2m2

f

{
1 − ln

(
m2

f

µ2

)}

+ 4m2
f ln

(
m2

f

µ2

)
+ 2m2

f̃

{
1 − ln

(
m2

f̃

µ2

)}

−4m2
f ln

(
m2

f̃

µ2

)
− |Af |2 ln

(
m2

f̃

µ2

)]
. (6.8)

• Now, if we further assume that (i) mf = mf̃ and (ii)

Af = 0, then we have (�
f

hh(0) + �
f̃

hh(0)) = 0 i.e. even
the finite contribution vanishes.

All these points are shared by supersymmetric extension
of the Standard Model. Quadratic divergence cancels due
to the equality of two types of dimensionless couplings. If
supersymmetry is broken in masses, e.g. mf �= mf̃ , i.e. gives
rise to the ‘soft’ terms (mass dimension < 4) of the Lagrangian,
the quadratic divergence still cancels. Also, in the limit of
exact supersymmetry, i.e. (i) mf = mf̃ and (ii) Af = 0,
the correction to the Higgs mass exactly vanishes. This toy
scenario is reminiscent of supersymmetric models.

6.3. The Higgs bosons of the minimal supersymmetric
Standard Model

We need two complex scalar doublets of opposite hypercharge
to ensure EWSB:

H1 =
(

h0
1

h−
1

)
Y=−1

, H2 =
(

h+
2

h0
2

)
Y=1

. (6.9)

There are three reasons behind the need for at least two
doublets.

• Chiral or ABJ (Adler–Bardeen–Jackiw) anomaly cancel-
lation requires

∑
Yf = 0 = ∑

Qf , where the sum is
on fermions only. If we use only one Higgs doublet, its
spin-1/2 (Higgsino) components will spoil the cancella-
tion. We therefore need two Higgs doublets with oppo-
site hypercharge. (This anomaly arises from triangular
fermionic loops involving axial vector couplings. The the-
ory ceases to be renormalizable if it has an ABJ anomaly.)

• Recall that in the SM we use the scalar doublet � and
�̃ = iτ2�

∗ for giving masses to up- and down-type
fermions. In supersymmetry, � is a chiral superfield, and
we cannot use a chiral superfield and its complex conjugate
in the same superpotential. Therefore, we need two chiral
superfields.

• Unless we introduce both H1 and H2, we cannot provide
the right number of degrees of freedom necessary to make
the charginos massive. In this sense, introducing at least
two complex doublets is an experimental compulsion.

In the MSSM, the scalar potential VH receives contributions
from three sources:

(a) the D term;

VD = 1

2

3∑
a=1

(∑
i

gaS
∗
i T aSi

)2

:
a runs over groups
i runs over particles

(Si is a generic scalar).

Keeping only the Higgs contributions, i.e. neglecting
slepton/squark contributions, we obtain,

for U(1)Y : V
(1)
D = 1

2 [ g1

2 (|H2|2 − |H1|2)]2,

for SU(2)L : V
(2)
D = 1

2 [ g2

2 (H i∗
1 τ a

ijH
j

1 + Hi∗
2 τ a

ijH
j

2 )]2.
Here, g1 ≡ g′ and g2 ≡ g.

Using τ a
ij τ

a
kl = 2δilδjk − δij δkl , one obtains

VD = V
(1)
D + V

(2)
D = g2

2

8
[4|H †

1 H2|2 − 2|H1|2|H2|2

+|H1|4 + |H2|4] +
g2

1

8
(|H2|2 − |H1|2)2.

(b) the F term; VF = ∑
i | ∂W(ϕj )

∂ϕi
|2. The superpotential W =

µĤ1Ĥ2 (‘hat’ denotes superfields) leads to

VF = µ2(|H1|2 + |H2|2).

(c) the soft supersymmetry breaking terms;
Vsoft = m2

H1
|H1|2 + m2

H2
|H2|2 + (BµH2H1 + h.c.).

We now introduce the notation: m̄2
1 ≡ |µ|2 + m2

H1
, m̄2

2 ≡
|µ|2 + m2

H2
, m̄2

3 ≡ Bµ. Using the charged and neutral
components of the doublet scalars, we can write the full scalar
potential as

VH = m̄2
1(|h0

1|2 + |h−
1 |2) + m̄2

2(|h0
2|2 + |h+

2 |2)
+ m̄2

3(h
−
1 h+

2 − h0
1h

0
2 + h.c.)

+

(
g2

2 + g2
1

8

)
(|h0

1|2 + |h−
1 |2 − |h0

2|2 − |h+
2 |2)2

+
g2

2

2
|h−∗

1 h0
1 + h0∗

2 h+
2 |2. (6.10)

We then require that the minimum of VH breaks SU(2)L ×
U(1)Y to U(1)Q. One can always choose 〈h−

1 〉 = 〈h+
2〉 = 0

to avoid breakdown of electromagnetism without any loss of
generality. Note two important features at this stage:

• only Bµ can be complex. However, the phase can be
absorbed into the phases of H1 and H2. Hence, the MSSM
tree level scalar potential has no source of CP violation;

• the quartic scalar couplings are fixed in terms of the SU(2)
and U(1) gauge couplings.

Note that it is sufficient to write the potential keeping only the
(neutral) fields which can acquire VEVs.

V 0
H = 1

8 (g2
1 + g2

2)(|h0
1|2 − |h0

2|2)2 + m̄2
1|h0

1|2

+ m̄2
2|h0

2|2 − m̄2
3(h

0
1h

0
2 + h.c.) (6.11)

Again, note the following points:

• V 0
H will be bounded from below if m̄2

1 + m̄2
2 > 2m̄2

3. This
relation has to be valid at all scales. (Note, there is no
quartic term in the direction |h0

1| = |h0
2|);
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• V 0
H (quadratic part) = (h0∗

1 h0
2)
(

m̄2
1 −m̄2

3−m̄2
3 m̄2

2

)(
h0

1
h0∗

2

)
SSB requires m̄4

3 > m̄2
1m̄

2
2. This has to be necessarily

valid at the weak scale where SSB occurs;
• the above two conditions cannot be satisfied simultane-

ously if m̄2
1 = m̄2

2. Hence, m̄2
1 �= m̄2

2 ⇒ m2
H1

�= m2
H2

,
which indicates a connection between supersymmetry
breaking and EWSB.

Putting 〈h0
1〉 = v1√

2
and 〈h0

2〉 = v2√
2
,

V 0
H (min) = 1

32 (g2
1 + g2

2)(v
2
1 − v2

2)
2 + 1

2 m̄2
1v

2
1

+ 1
2 m̄2

2v
2
2 − m̄2

3v1v2. (6.12)

The minimization conditions ∂V 0
H (min)

∂vi
= 0, for i = 1, 2 yield

m̄2
1 = m̄2

3
v2

v1
− 1

8 (g2
1 + g2

2)(v
2
1 − v2

2) and

m̄2
2 = m̄2

3
v1

v2
+ 1

8 (g2
1 + g2

2)(v
2
1 − v2

2). (6.13)

Now using the above equations and putting back m̄2
1 ≡ m2

H1
+

|µ|2, m̄2
2 ≡ m2

H2
+|µ|2, we obtain the two conditions of EWSB:

1

2
M2

Z =
(

m2
H1

− m2
H2

tan2 β

tan2 β − 1

)
− |µ|2,

where tan β ≡ v2

v1
, (6.14)

−2Bµ = (m2
H1

− m2
H2

) tan 2β + M2
Z sin 2β. (6.15)

Our next task is to extract the different masses from the
quadratic part of the potential: V

quad
H = 1

2m2
ij ϕiϕj .

6.3.1. Charged Higgs and Goldstone. The mass matrix is
given by

Vh± =
(

m̄2
3

v1v2
+

1

4
g2

2

)
(h+

1 h+
2)

(
v2

2 v1v2

v1v2 v2
1

)(
h−

1
h−

2

)
.

(6.16)

Note that the determinant of the mass matrix is zero, which is a
consequence of the masslessness of the Goldstones (m2

G± = 0).
The charged Higgs mass is given by

m2
h± =

(
m̄2

3

v1v2
+

1

4
g2

2

)
(v2

1 + v2
2). (6.17)

The mass eigenstates are given by

H± = sin β h±
1 + cos β h±

2 ,

G± = − cos β h±
1 + sin β h±

2 . (6.18)

6.3.2. Neutral CP-odd Higgs and Goldstone. The Goldstone
is massless, while the mass of the CP odd scalar depends
on m̄2

3 = Bµ:

m2
G0 = 0, m2

A = 2m̄2
3

sin 2β
. (6.19)

The physical states are given by
A√

2
= sin β Im h0

1 + cos β Im h0
2,

G0

√
2

= − cos β Im h0
1 + sin β Im h0

2 . (6.20)

6.3.3. Neutral CP-even Higgses. The 2×2 mass-squared
matrix for the neutral CP-even sector in the (Re h0

1, Re h0
2)

basis is given by

M2
Re h0 = 1

2


2m̄2

1 + 1
4 (g2

2 + g2
1)(3v2

1 − v2
2)

−2m̄2
3 − 1

2 (g2
1 + g2

2)v1v2

−2m̄2
3 − 1

2 (g2
1 + g2

2)v1v2

2m̄2
2 + 1

4 (g2
1 + g2

2)(3v2
2 − v2

1)



=


m2

A sin2 β + M2
Z cos2 β

−(m2
A + M2

Z) sin β cos β

−(m2
A + M2

Z) sin β cos β

m2
A cos2 β + M2

Z sin2 β

 . (6.21)

The mass-squared eigenvalues are then given by (h is lighter,
H heavier)

m2
h,H = 1

2 [m2
A + M2

Z ∓ {(m2
A + M2

Z)2

−4M2
Zm2

A cos2 2β}1/2]. (6.22)

6.3.4. Important equalities and inequalities. The following
are some of the important relations:

mh < min (mA, MZ)| cos 2β| < min (mA, MZ),

m2
h + m2

H = m2
A + M2

Z,

mH > max (mA, MZ), m2
H± = m2

A + M2
W . (6.23)

The tree level inequality mh < MZ is an important prediction
of the MSSM. This is a consequence of the fact that the quartic
couplings in MSSM are related to the gauge couplings.

6.3.5. Radiative correction to the lightest Higgs mass. The
lightest neutral Higgs mass (mh) receives large quantum
corrections. The correction is dominated by the top quark
Yukawa coupling (ht ) and the masses of the stop squarks (t̃1,
t̃2). The corrected Higgs mass-squared is given by (original
references can be found in [15, 17])

m2
h � M2

Z cos2 2β +
3m4

t

2π2v2
ln

(
m2

t̃

m2
t

)
, (6.24)

where mt̃ = √
mt̃1mt̃2 is an average stop mass, This is a

one-loop expression. Including two-loop calculations pushes
the upper limit on the Higgs mass to around 135 GeV. If
a neutral Higgs is not found at LHC approximately within
this limit, the two-Higgs doublet version of supersymmetric
model will be strongly disfavored. In the next-to-minimal
supersymmetric model (NMSSM) [45], which contains an
additional gauge singlet scalar (N ) coupled to H1 and H2

through the superpotential λNH1H2, there is an additional
tree level contribution to m2

h. It turns out that [46]
m2

h(tree, NMSSM) = M2
Z[cos2 2β + 2λ2(g2 +g′2)−1 sin2 2β].

Including radiative corrections, the upper limit on mh is relaxed
to about 150 GeV [47].

6.4. Radiative electroweak symmetry breaking in MSSM

One of the most attractive features of supersymmetry is that
the electroweak symmetry is broken radiatively. Recall that in
the SM we had to put a negative sign by hand in front of µ2

to ensure EWSB, which was ad hoc. In supersymmetry this
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happens dynamically thanks to the large top quark Yukawa
coupling. We will demonstrate how one of the Higgs mass-
squared, more precisely m2

H2
, starting from a positive value

at a high scale is driven to a negative value at low scale by
RG running. To appreciate the salient features, we will take
into consideration only the effect of ht in RG evolution and
ignore the gauge and other Yukawa couplings’ contributions
(for details, see text books). This estimate may be crude, but it
brings out the essential features. First we write down the RG
evolution of m2

H2
, m2

Q̃3
and m2

ũ3
:

dm2
H2

dt
= −3h2

t (m
2 + A2

t ),
dm2

Q̃3

dt
= −h2

t (m
2 + A2

t ),

dm2
ũ3

dt
= −2h2

t (m
2 + A2

t ), (6.25)

where Q̃3 and ũ3 are the third generation squark doublet and
singlet, respectively, t ≡ ln(M2

GUT/Q2)/16π2, ht is the top
quark Yukawa coupling, At is the scalar trilinear coupling
involving the top squark, and m2 ≡ m2

H2
+ m2

Q̃3
+ m2

ũ3
. Now

recall that Bernoulli’s equation

dy

dx
+ yP (x) = Q(x)

has a solution

y exp

(∫
dxP (x)

)
=
∫

dxQ(x) exp

(∫
dxP (x)

)
+constant.

Therefore, the equation (obtained by summing the individual
RGs in equation (6.25))

dm2

dt
+ 6h2

t m
2 = −6h2

t A
2
t (6.26)

has a solution

m2 exp

(
6
∫ t

0
dt ′h2

t

)
=
∫ t

0
dt ′(−6h2

t A
2
t ) exp

(
6
∫ t ′

0
dt ′′h2

t

)
+constant. (6.27)

Now, ignore the running of ht and At to avoid complications,
i.e. treat them as fixed values. This eases calculational hassles
but preserves the important features of radiative EWSB. Then

m2 exp(6h2
t t) = −6h2

t A
2
t

∫ t

0
dt ′ exp(6h2

t t
′) + C

= −A2
t exp(6h2

t t) + C. (6.28)

At t = 0 (i.e. Q = MGUT), assume universal boundary
conditions, i.e. m2

0 ≡ m2
H2

= m2
Q̃3

= m2
ũ3

. Therefore,

m2(t = 0) = 3m2
0, hence C = 3m2

0 + A2
0 (where At = A0,

since we ignored the running of At ). Using these relations, it
is simple to obtain the solution

m2 = −A2
t [1 − exp(−6h2

t t)] + 3m2
0 exp(−6h2

t t). (6.29)

Now we solve the individual equations in (6.25). The
mathematical steps are easy, hence we do not display them

here. The solutions are

m2
H2

= 1
2 (3m2

0 + A2
t ) exp(−6h2

t t) − 1
2m2

0 − 1
2A2

t

t→∞,At=0−−−−−−→ − 1
2m2

0,

m2
Q̃3

= 1
6 (3m2

0 + A2
t ) exp(−6h2

t t) + 1
2m2

0 − 1
6A2

t

t→∞,At=0−−−−−−→ 1
2m2

0,

m2
ũ3

= 1
3 (3m2

0 + A2
t ) exp(−6h2

t t) − 1
3A2

t

t→∞,At=0−−−−−−→ 0.

(6.30)

The limit t → ∞ refers to the electroweak scale
(v � 246 GeV). We observe that at low energy the up-type
Higgs mass-squared is driven to a negative value due to strong
ht -effect. The above assumptions are indeed too simplistic.
Addition of gauge loops yield additional positive contributions
proportional to the gaugino mass-square (M2

i ). Moreover,
running of ht and At should also be considered which make the
solutions more complicated. All in all, RG evolution enforces
a sign-flip in m2

H2
only at the low scale, thus triggering EWSB.

7. Little Higgs

The contents of this section (key ideas and illustration) have
been developed together with Romesh K Kaul. See also the
discussion on little Higgs models in [6].

We first discuss the basic ideas. Pions are spin-0 objects.
The Higgs is also a spin-0 particle. Pions are composite
objects. The Higgs is perhaps elementary (as indicated by
electroweak precision measurements), but it can very well
turn out to be composite. The important thing is that the
pions are light, and there are reasons. Can Higgs be light
too for similar reasons? The lightness of the pions owes its
origin to their pseudo-Goldstone nature. These are Goldstone
bosons which arise when the chiral symmetry group SU(2)L ×
SU(2)R spontaneously breaks to the isospin group SU(2)I.
The Goldstone scalar φ has a shift symmetry φ → φ + c,
where c is some constant. Therefore, any interaction which
couples φ not as ∂µφ breaks the Goldstone symmetry and
attributes mass to the previously massless Goldstone. Quark
masses and electromagnetic interaction explicitly break the
chiral symmetry. Electromagnetism attributes a mass to π+

(more precisely, to the mass difference between π+ and π0)
of order m2

π+ ∼ (αem/4π)
2
QCD. Can we think of the Higgs

mass generation in the same way? We know that Yukawa
interaction has a non-derivative Higgs coupling, so it must
break the Goldstone symmetry. Then, if we replace αem by
αt ≡ h2

t /4π and 
QCD by some cutoff 
, we obtain

m2
h ∼

( αt

4π

)

2. (7.1)

Is this picture phenomenologically acceptable? The answer is
a big ‘no’, since a 100 GeV Higgs would imply 
 ∼ 1 TeV.
This is what happens in technicolor models. Such a low cutoff
is strongly disfavored by EWPT. Suppose that we arrange the
prefactor in front of 
2 to be not ( αt

4π
) but ( αt

4π
)2, i.e. the leading

cutoff sensitivity appears not at one-loop but parametrically at
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Figure 5. (a) Left panel: little Higgs cartoon. (b) Right panel: Feynman diagrams among which the same statistics cancellation takes place.
Note that T is a (new) heavy quark and AH , WH , ZH are (new) heavy gauge bosons—see text.

two-loop order, then the problem might be temporarily solved.
Let us see how. The Higgs mass will then be given by

m2
h ∼

( αt

4π

)2

2. (7.2)

For mh ∼ 100 GeV, the cutoff would now be 
 ∼ 10 TeV. In
a sense, this is nothing but a postponement of the problem
as the cutoff of the theory is now pushed by one order of
magnitude. The idea of a little Higgs is all about achieving
this extra prefactor of (αt/4π)—see reviews [48] and [49, 50].
There are indeed other concerns, which we will discuss later.

To appreciate the little Higgs trick we look into figure 5(a).
A global group G spontaneously breaks to H at a scale f .
The origin of this symmetry breaking is irrelevant below the
cutoff scale 
 ∼ 4πf . H must contain SU(2) × U(1) as a
subgroup so that when a part of G, labeled F , is weakly gauged
the unbroken SM group (more precisely, the electroweak part
of the SM) I = SU(2) × U(1) comes out. The Higgs
doublet (under SU(2) of I ), which would ultimately trigger
electroweak breaking, is a part of the Goldstone multiplet that
parametrizes the coset space G/H . Choosing G, H and F

is an open game. There are many choices. We will give
some examples in a while. In fact, the little Higgs idea would
work if the Higgs is a Goldstone boson under two different
shift symmetries, i.e. h → h + c1 and h → h + c2. Both
symmetries have to be broken. This is the idea of ‘collective
symmetry breaking’. It is important to note that the generators
of the gauged part of G do not commute with the generators
corresponding to the Higgs, and thus gauge interaction breaks
the Goldstone symmetry. Yukawa interaction also breaks
the Goldstone symmetry. Thus both gauge and Yukawa
interactions induce Higgs mass at one-loop level (the cutoff
dependence would appear parametrically at two-loop order, as
we will see towards the end of this section).

7.1. A simple example with G = SU(3) × SU(3)

For the purpose of illustration in this review, let us consider
a global group SU(3)V × SU(3)A. Assume that there are
two scalars �1 and �2 which transform as (3, 3) and (3, 3̄)
respectively. Now, imagine that each SU(3) spontaneously
breaks to SU(2). So we start with 8 + 8 = 16 generators
from the two SU(3), and end up with 3 + 3 = 6 unbroken

generators corresponding to the two SU(2) groups. This means
that 16 − 6 = 10 generators are broken, thus yielding 10
massless Goldstone bosons.

Now, we gauge SU(3)V, but keep SU(3)A global. Hence,
5 out of 10 broken generators are eaten up as the gauged
SU(3)V is broken to SU(2), but 5 Goldstone bosons still
remain. This happens at a scale higher than that of EWSB,
i.e. the corresponding order parameter f is larger than the
electroweak VEV v. Note that since both �1 and �2 transform
as 3 under SU(3)V, both couple to the same set of gauge bosons
with identical couplings. We can write �1 and �2 as

�1 = ei θE
f ei θA

f

 0
0

f + ρ1(x)

 ,

�2 = ei θE
f e−i θA

f

 0
0

f + ρ2(x)

 . (7.3)

Above, ρ1 and ρ2 are real scalar fields which acquire masses
∼f . The phase θE (where E stands for ‘eaten’) contains the
d.o.f which are eaten up (i.e. gauged away), while θA contains
five Goldstone bosons: θA = ∑8

a=4 θa
ATa , where T4, .., T8 are

broken generators. One can express

θA = 1√
2

 0 0 h+

0 0 h0

h− h0∗ 0

 +
η

4

1 0 0
0 1 0
0 0 −2

 . (7.4)

The complex scalar H = (
h+

h0

)
doublet under the yet unbroken

SU(2) is our Higgs doublet, i.e. the one with which we will
implement the electroweak SSB. But, until this point, H (in
fact, both the charged and neutral components contained in H )
and η are both massless.

Now recall that in the case of pions, the original SU(2)L ×
SU(2)R symmetry was not there to start with, as it was
explicitly violated by electromagnetic interaction and quark
masses. In the present case, the gauge and Yukawa interactions
explicitly violate SU(3)A. This is the reason as to why we will
be able to finally write down a potential involving H .

7.1.1. How does gauge interaction violate SU(3)A? With
SU(3)V as the gauge group, the gauge interaction can be
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Figure 6. (i) Left panel: heavy gauge boson loops on the SU(3) triplet � lines; (a) yields quadratic cutoff dependence which does not
contribute to the Higgs potential; (b) yields a log-divergent contribution to the Higgs mass. (ii) Right panel: heavy fermion loops on the
SU(3) triplet � lines; (a) yields quadratic cutoff sensitivity but does not contribute to the Higgs potential; (b) contributes to the Higgs
potential with a log sensitivity to the cutoff.

expressed as

(Dµ�1)
†(Dµ�1) + (Dµ�2)

†(Dµ�2),

Dµ = ∂µ + igAa
µTa (a = 1, 2, . . . , 8), (7.5)

where �1 = ei θA
f

 0
0

f + ρ1

 , �2 = e−i θA
f

 0
0

f + ρ2

 .

(7.6)

After integrating out the heavy (∼gf ) gauge bosons—see
figure 6(a) (left panel)—we obtain the following term in the
effective Lagrangian

− g2

16π2

2(�

†
1�1 + �

†
2�2). (7.7)

Now, we observe two important things:

• θA-dependence goes away in the above expression. Since
the Higgs doublet H = 1√

2

(
h+

h0

)
is contained inside θA, it

is rotated away in �
†
i �i and is hence insensitive to the

quadratic cutoff dependence of equation (7.7). This is
not unexpected as the above piece of the Lagrangian is
SU(3)A invariant, and hence is blind to θA or H .

• The scalar excitations ρ1 and ρ2 can sense the quadratic
cutoff, and therefore their masses (naı̈vely of order ∼ f )
are not protected. This implies that the VEV f is also not
protected from quadratic cutoff dependence3.

We reiterate that all the shift symmetries of the Goldstone
boson have to be broken, as any unbroken symmetry would
keep the Goldstone massless. Quadratic divergence appears in
those diagrams which involve only a single coupling operator,
and such an operator cannot sense the breaking of all the
symmetries. For Higgs mass generation, the responsible pieces
of the Lagrangian involve all the symmetry breaking operators.
Thus, the relevant Feynman diagrams involve more internal
propagators, which is why there is no quadratic divergence.

Let us look at the diagram in figure 6(b) (left panel).
After the heavy gauge bosons are integrated out, one obtains
the following piece of the effective Lagrangian, which breaks
the SU(3)A symmetry and hence can contribute to the Higgs
potential. The Lagrangian term has the following form:

− g4

16π2
ln

(

2

f 2

)
|�†

1�2|2. (7.8)

3 This is reminiscent of the quadratic cutoff sensitivity of the electroweak
VEV v in the SM. The lack of ‘protection’ is identical in the two cases.

We now calculate |�†
1�2|2:

�1 = eiθA/f

0
0
f

 =
(

1 + i
θA

f
− θ2

A

2f 2

)
3×3

0
0
f


3×1

,

θA = 1√
2

 0 0 h+

0 0 h0

h− h0∗ 0

 ,

therefore, θ2
A = 1

2

 0 0 h+

0 0 h0

h− h0∗ 0

 0 0 h+

0 0 h0

h− h0∗ 0

 ,

therefore, θ2
A|3rd col = 1

2

 0
0

h−h+ + h0∗h0

 =
 0

0
H †H

 ,

where H = 1√
2

(
h+

h0

)
.

Hence, �1 =
0

0
f

 +
i√
2

h+

h0

0



+


0
0

−H +H

2f 2

 f =
 iH2×1

f

(
1 − H †H

2f 2

)
1×1

 ,

therefore, �
†
1 =

(
−iH

†
1×2 f

(
1 − H †H

2f 2

)
1×1

)
.

Recall, �2 =
 −iH2×1

f

(
1 − H †H

2f 2

)
1×1

 ,

therefore, �
†
1�2 = −(H †H) + f 2

(
1 − H †H

2f 2

)2

= f 2 − 2(H †H) +
(H †H)2

4f 2
,

and hence |�†
1�2|2 = −4f 2(H †H) +

9

2
(H †H)2 + · · · .

Note that a potential of H is generated with a bilinear
and a quartic term. Interestingly, the bilinear term has the
negative sign required for SSB, and the sign of the quartic
term is positive as required by the stability of the potential.
After SSB, the Higgs mass is given by

m2
h � g4

16π2
f 2 ln

(

2

f 2

)
. (7.9)
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It appears somewhat miraculous that unlike in SM, here the
one-loop generated m2

h is not proportional to 
2/16π2, but
f 2/16π2. The cancellation of quadratic divergence takes place
between two sets of diagrams, one that contains the massless
SU(2) gauge bosons and the other that contains the massive
gauge bosons (see figure 5(b)). This is an example of same
statistics cancellation.

7.1.2. How does Yukawa interaction violate SU(3)A?

Consider a left-handed SU(3) triplet Q′
L ≡ ( t

b

T

)
L

and three

right-handed singlets tR, bR and TR, i.e. the ‘new’ states are
TL,R. When the gauged SU(3)V breaks to SU(2) by the scalar
VEVs, the part QL ≡ (

t
b

)
L

inside Q′
L transforms as a doublet

under the SU(2).
Now, start with the following SU(3) invariant Yukawa

interaction Lagrangian:

LY = ht√
2

[t c1�
†
1Q

′
L + t c2�

†
2Q

′
L], where

ht ≡ h
(1)
t = h

(2)
t , t1,2 ≡ 1√

2
(TR ± itR). (7.10)

We now make the following algebraic steps:

�
†
1Q

′
L =

(
−iH †

1×2 f

(
1 − H †H

2f 2

)
1×1

)(
QL(2×1)

TL(1×1)

)
= −iH †QL + f

(
1 − H †H

2f 2

)
TL,

�
†
2Q

′
L = iH †QL + f

(
1 − H †H

2f 2

)
TL,

therefore

LY = ht√
2

[
t c1

{
− iH †QL + f

(
1 − H †H

2f 2

)
TL

}
+ t c2

{
iH †QL + f

(
1 − H †H

2f 2

)
TL

}]
= ht

[ −i√
2
(tc1 − t c2 )QLH †

+
f√

2
(tc1 + t c2 )

(
1 − H †H

2f 2

)
TL

]
= ht t̄RQLH † + htf

(
1 − H †H

2f 2

)
T̄RTL. (7.11)

The first term in the above expression contains the SM top
quark Yukawa coupling, and the second term indicates that the
T quark is heavy (∼f ).

Figure 6(a) (right panel) yields an one-loop effective
Lagrangian as such

− h2
t

16π2

2(�

†
1�1 + �

†
2�2). (7.12)

This is exactly the same as equation (7.7) with g ↔ ht . Again,
this Lagrangian preserves SU(3)A, and hence is not relevant to
the Higgs potential. We then turn to figure 6(b) (right panel),
which yields

− h4
t

16π2
ln

(

2

f 2

)
|�†

1�2 + �
†
2�1|2. (7.13)

This Lagrangian is similar to equation (7.8) with g ↔ ht .
This piece of the Lagrangian is of interest to us as it yields the
bilinear and quartic terms involving H with the right sign of
the coefficients. After SSB the Higgs mass is generated as

m2
h � h4

t

16π2
f 2 ln

(

2

f 2

)
, (7.14)

which is similar to equation (7.9) with g ↔ ht . Again, the
apparently miraculous cancellation of quadratic divergence
can be diagrammatically understood by the cancellation
occurring between the t and T loops (see figure 5(b)), which
is yet another example of same statistics cancellation.

7.2. Salient features of little Higgs models

7.2.1. Quadratic cutoff sensitivity. Although same statistics
cancellations enable us to express m2

h as proportional to
f 2/16π2 (i.e. not as 
2/16π2) with only a logarithmic
cutoff sensitivity at one-loop, as reflected in equations (7.9)
and (7.14), the quadratic cutoff sensitivity comes back
parametrically at two-loop order. To appreciate this, first recall
that in the SM the one-loop correction to the Higgs mass goes as

�m2
h (SM) ∼ 
2

16π2
. (7.15)

This means that the electroweak VEV (v) receives a quadratic
(
2) correction

v2 → v2 +

2

16π2
. (7.16)

We now consider the gauging of SU(3)V as discussed in the
previous subsection. The corresponding order parameter is f ,
but note that f is as unprotected as the electroweak VEV v is
in the SM [6]. Hence

f 2 → F 2 = f 2 +
a

16π2

2 = (1 + a)f 2

(since 
 = 4πf ), (7.17)

where a ∼ O(1). Then, what did we gain vis-à-vis the SM?
For little Higgs models

m2
h (LH) ∼

(
1

16π2

)
F 2 ln

(

2

F 2

)
�⇒ �m2

h (LH)

∼
(

1

16π2

)2


2. (7.18)

Note that the quadratic cutoff sensitivity of the Higgs
mass-square exists not only in the SM but also in the little
Higgs models. Then, what purpose did little Higgs serve? In
the little Higgs case there is an extra loop suppression factor—
compare equation (7.15) with equation (7.18). The appearance
of the cutoff in the little Higgs models is thus postponed by
one decade in energy scale compared to the SM. One important
thing should be kept in mind. A Goldstone boson becoming
massive in little Higgs models is not a surprise. The global
symmetry is explicitly broken to start with by the gauge and
Yukawa interactions, and precisely for this reason the loosely
mentioned Goldstone boson is actually a pseudo-Goldstone
boson (pGB). Up to this point there is no difference with the
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theory of pions where electromagnetic interaction and quark
masses explicitly break the Goldstone symmetry. What is new
here, i.e. the reason for which we consider the little Higgs
construction as an important achievement over the SM, is the
appearance of the quadratic cutoff dependence of the Higgs
mass at the next order in perturbation theory, i.e. at the two-
loop level.

If we want mh ∼ (f/4π) ∼ 100 GeV, it immediately
follows that f ∼ F ∼ 1 TeV, and the cutoff of the theory is

 ∼ 4πf ∼ 10 TeV, as against the SM cutoff of 4πv ∼ 1 TeV.
The ultraviolet completion beyond 10 TeV in little Higgs
models is a detailed model-dependent issue [51].

7.2.2. Large quartic coupling. A clever construction of
a little Higgs theory should yield the following electroweak
Higgs potential:

V = − (g or ht )
4

16π2
f 2 ln

(

2

f 2

)
(H †H) + λ(H †H)2, (7.19)

i.e. the bilinear term should have a one-loop suppression but,
crucially, the quartic interaction should be unsuppressed, i.e.
λ ∼ g2 (or h2

t ). If both quadratic and quartic terms are
suppressed, it is not possible to simultaneously obtain the
correct W boson mass and a phenomenologically acceptable
Higgs mass. In the simple scenario used for our illustration,
both the quadratic and quartic terms are generated by loops,
so the phenomenological problem survives. In more realistic
scenarios, as we will see shortly, this problem can be avoided.
We will discuss only some of these scenarios below.

7.3. Realistic little Higgs scenarios—a brief description

7.3.1. Different choices of groups. The ‘littlest Higgs’ [49]
construction is based on a choice of a global group G = SU(5)

which breaks to H = SO(5) by the VEV (�0) of a scalar field,
expanded as � = e2i�/f �0, where � = �aXa contains the
Goldstone bosons, Xa being the broken generators. The 5 × 5
VEV matrix is given by �0 = anti-diagonal (12×2, 1, 12×2).
The subgroup of SU(5) that is gauged is [SU(2) × U(1)]1 ×
[SU(2) × U(1)]2 which breaks to SU(2)D × U(1)Y . Out of
the 14 (=24 − 10) pGBs generated during G → H , four
are absorbed as the longitudinal components of the massive
gauge bosons AH , ZH and W±

H corresponding to the broken
SU(2) × U(1) generators. The other 10 scalar degrees of
freedom arrange themselves as a complex SU(2) scalar doublet
H with the right quantum numbers required to make a SU(2)
Higgs doublet with hypercharge (=1/2) and a complex scalar
SU(2) triplet � with hypercharge (=1). In the limit when
any pair of gauge couplings (g1, g

′
1) or (g2, g

′
2) goes to zero,

the Higgs field becomes exactly massless. Therefore, any loop
diagram contributing to the Higgs mass must involve a product
g1g2 (or, g′

1g
′
2). Due to this collective symmetry breaking, all

such diagrams are logarithmically sensitive to the cutoff at
one-loop.

The type of little Higgs models discussed earlier for
the purpose of illustration, i.e. where the global group is
G = SU(3) × SU(3) and the gauged subgroup is the simple
group SU(3), is called the ‘simplest’ [50]. The difficulty

of achieving a large quartic coupling was overcome by
considering G = [SU(4)]4 which breaks to H = [SU(3)]4,
while the gauged subgroup is SU(4) × U(1) which breaks
down to SU(2) × U(1). Out of the 28 pGBs, 12 are eaten up
by the massive gauge bosons. The 16 degrees of freedom are
distributed as two complex doublets, three complex singlets
and two real singlet scalars. The scalar quartic coupling is
generated at tree level.

The authors of [52] have considered G = SU(6) and
H = Sp(6). The gauged subgroup is [SU(2) × U(1)]2 which
breaks to SU(2)D × U(1)Y . So, out of the 35 − 21 = 14
pGBs four are absorbed by the massive gauge bosons, and the
remaining 10 degrees of freedom are decomposed into two
complex doublet scalars and one complex singlet scalar. A
distinct advantage here is that there is no triplet scalar which
could have caused some trouble in EWPT (see discussions
later).

The moose models are, on the other hand, based
on the concept of deconstruction (a term borrowed from
economics). The electroweak sector is described by a product
global symmetry GN which is broken by the condensates
transforming as bi-fundamentals under Gi × Gj , where
i, j are the sites. In [53], the global group considered
is GN = [SU(3)]8, and a subgroup of it is gauged which
eventually breaks to SU(2) × U(1). The scalar spectrum
contains two complex SU(2) doublets, a complex SU(2)
triplet and a complex singlet. To ensure custodial SU(2)
symmetry, i.e. to maintain consistency with the oblique �ρ

(or, T ) parameter, the global group was enlarged in [54]
to [SO(5)]8 with the gauge group SO(5) × SU(2) × U(1).
To further minimize the scalar contribution to �ρ, a coset
space SO(9)/[SO(5)×SO(4)] was constructed with the gauge
symmetry SU(2)L × SU(2)R × SU(2) × U(1) [55]. A review
of these and many other models can be found in [48].

7.3.2. Bounds from EWPT. In an effective field theory
description [56], two dimension-6 operators OT ∝ |H †DµH |2
and OS ∝ H †σaHWa

µνBµν serve as the primary filters before
certifying whether a model passes EWPT or not. Recall that an
SU(2) global custodial symmetry in the SM guarantees the tree
level relation MW = MZ cos θW . The operator OT violates that
symmetry, which is not difficult to conceive: when H goes to
the vacuum, OT ∝ ZµZµ but there is no similar contribution
for WµWµ, i.e. there is a contribution to MZ but not to MW ,
and this mismatch violates custodial symmetry. Similarly,
the operator OS induces kinetic mixing between W 3

µ and Bµ.
The coefficients of OT and OS will, therefore, indicate the
contributions to the T and S parameters, respectively.

Unless special care is taken, a general class of little Higgs
models gives a large contribution to T , and hence receives a
strong constraint: f > (2−5) TeV [57]. A large f means that
to obtain the Higgs mass in the 100 GeV range one has to fine
tune the parameters. The constraints arise primarily from the
tree level mixing of the SM particles with the new particles.
In the littlest Higgs model, the T parameter receives a large
contribution from the custodial symmetry breaking trilinear
operator HT �H , which mixes the doublet H with the triplet
�. Also, the WLWHHH term (WL is the SM gauge boson and
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WH is the heavy one) yields a sizable contribution to T . To
circumvent these constraints, the authors of [58] introduced,
more in the spirit of R-parity in supersymmetry, what is called
T -parity under which all (but one) new particles are odd and
the SM particles are even. It is a discrete Z2 symmetry, which
is an automorphism of the gauge groups that exchanges the
gauge bosons of [SU(2) × U(1)]1 and [SU(2) × U(1)]2. It
also means g1 = g2 and g′

1 = g′
2. Under this symmetry

H → H , but � → −�, so the problematic HT �H coupling
is absent. Contributions to T and S from heavy particles arise
only at the loop level. As a result, f as low as 500 GeV can be
accommodated without facing any inconsistency with EWPT
[59]. It should be noted that there is one new, yet T -even,
state in this scenario, the so-called ‘top partner’ which cancels
the standard top induced quadratic divergence to the Higgs
mass. This state has a positive contribution to the T parameter,
and to compensate that one may need a Higgs mass as large
as 800 GeV [59]. Chen’s review in [48] covers the EWPT
and naturalness constraints on quite a few such scenarios. In
a recent development, the authors of [60] have considered
a SO(6) × SO(6)/SO(6) model, called it the ‘bestest’ little
Higgs, and claimed that quartic coupling can be generated
without violating custodial symmetry (S and T vanish at tree
level) and at the same time keeping the fine-tuning within 10%
in the top sector.

7.3.3. Collider signals of little Higgs models. Since each
little Higgs model involves a G/H coset space and an extended
electroweak gauge sector, there are invariably new weak gauge
bosons, new fermions and new scalars. To confirm little
Higgs models, those new particles have to be looked for in
the colliders (see the study made by the ATLAS collaboration
at the LHC [61]).

New gauge bosons. In the littlest Higgs model, the couplings
of the heavy gauge bosons ZH and WH with the fermions are
universal which, beside a mixing angle factor, depend only on
the weak isospin t3 of the fermions (i.e. purely left-handed)
and not on the electric charge Q. It has been shown that about
30000 ZH can be produced annually at the LHC with 100fb−1

luminosity. These heavy gauge bosons would decay into the
SM fermions (VH → f f̄ ′), or into the SM gauge bosons
(ZH → W +

L W−
L , WH → WLZL, where VL ≡ VSM), or into

the Higgs and SM gauge boson (VH → VLh). The branching
ratios would follow a definite pattern, which would serve as
‘smoking gun signals’ [62, 63].

New fermions. A colored vector-like T quark features in
almost all little Higgs models. It may be produced singly by
bW → T at the LHC. Typically, �(T → th) ≈ �(T →
tZ) ≈ 1

2�(T → bW). This branching ratio relation would
constitute a characteristic signature for T quark discovery
[62, 64]. When T -parity is conserved, one has a T -odd state
t− and a T -even state t+ (which has been referred to above
as the T quark, and which also cancels the SM top induced
quadratic divergence to the Higgs mass), and mt+ > mt− .
The QCD production cross section σ(gg → t−t−) ≈ 0.3 pb
for mt− = 800 GeV, and almost all time t− would decay as

t− → AH t , whereAH is the lightestT -odd gauge boson which,
being stable, would escape the detector carrying missing
energy [59].

New scalars. The presence of a doubly charged scalar φ++,
as a component of a complex triplet scalar, is a hallmark
signature of a large class of little Higgs models. Its decay
into like-sign dileptons (φ++ → �+�+) which would lead to
an unmistakable signal with a separable SM background [62].
The other spectacular signal of the doubly charged scalar would
be a resonant enhancement of WLWL → WLWL proceeding
via φ++ exchange. An analysis of M(W +W +) invariant mass
distribution was carried out in [62] with the claim that with
300 fb−1 luminosity at the LHC about 100 events would pop up
over the SM background for mφ++ = 1.5 TeV, assuming a triplet
to doublet VEV ratio v′/v = 0.05. One can go a little further
by employing the triplet scalar in generating neutrino mass via
type-II see-saw. The maximal mixing in the µ−τ sector would
predict equal branching ratios of φ++ in the µ+µ+, µ+τ + and
τ +τ + channels, which can be tested at the LHC. Employing
this correlation, a discovery limit of mφ++ = 700 GeV has
been claimed with only 30 fb−1 luminosity at the LHC, where
the authors take into consideration particle reconstruction
efficiencies as well as Gaussian distortion functions for the
momenta and missing energy of final state particles [65].

We conclude this section with the statement that little
Higgs models with T -parity and supersymmetry with R-parity
would be hard to distinguish at the LHC. Universal extra
dimension (UED) with KK-parity would also give similar
signals. The best way to study them is to consider their
production via strong interaction and their decay via weak
interaction. The authors of [66] have concentrated on final
states containing an unspecified number of jets, three or
four leptons and missing transverse momentum. They have
asserted that the jet multiplicity distributions are the crucial
discriminating factors among the scenarios and they have
constructed several discriminating variables. This is still an
open issue and constitutes a challenging inverse problem.

8. Gauge–Higgs unification

The basic idea of gauge–Higgs unification (GHU) is that
the Higgs boson would arise from the internal components
of a higher dimensional gauge field. As a result, higher
dimensional gauge invariance would protect the Higgs mass
from quadratic divergence. When the extra space coordinate
is not simply connected (e.g. S1), there are Wilson line phases
associated with the extra-dimensional component of the gauge
field (this is conceptually similar to Aharonov-Bohm phase
in quantum mechanics). Their 4d quantum fluctuation is
identified with the Higgs field. Higher dimensional gauge
invariance does not allow any scalar potential at the tree level.
The scalar potential is generated through radiative corrections.
The Higgs boson acquires a mass through this radiatively
generated potential. One of the earliest realizations of GHU
was provided by Antoniadis in a work on extra dimension
in the supersymmetric context where the Higgs was coming
from an N = 4 supermultiplet, i.e. from a higher dimensional
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gauge field [67]. But for the purpose of illustration we do
not bring in any supersymmetric aspect. We rather focus
on the underlying dynamics of the GHU mechanism in the
non-supersymmetric extra-dimensional context, for which we
proceed step by step [68].

8.1. 5d QED as an illustrative example

The 5d Lagrangian, a function of the usual 4d coordinates (xµ)
and the 5th space coordinate (y), is given by

L (x, y) = − 1
4FMN(x, y)FMN(x, y) + LGF(x, y), (8.1)

where

FMN(x, y) = ∂MAN(x, y) − ∂NAM(x, y).

The indices M, N = (µ, 5); with µ = 0, 1, 2, 3. The symbol
‘GF’ means gauge-fixing.

The 5d gauge field AM transforms as a vector under
the Lorentz group SO(1,4). In the absence of gauge fixing,
the 5d QED Lagrangian is invariant under a U(1) gauge
transformation

AM(x, y) → AM(x, y) + ∂M�(x, y).

The compactification is on an orbifold S1/Z2, i.e. with
y → (−y) identification. In order not to spoil gauge symmetry
the following conditions need to be satisfied, which allow a
massless photon in 4d:

AM(x, y) = AM(x, y + 2πR),

Aµ(x, y) = Aµ(x, −y), A5(x, y) = −A5(x, −y),

�(x, y) = �(x, y + 2πR), �(x, y) = �(x, −y).

(8.2)

The above conditions guarantee that the theory remains gauge
invariant even after compactification. The Fourier mode
expansions of different 5d fields are given by (R is the radius
of compactification)

Aµ(x, y) = 1√
2πR

A(0)
µ (x) +

1√
πR

∞∑
n=1

A(n)
µ (x) cos

(ny

R

)
,

A5(x, y) = 1√
πR

∞∑
n=1

A
(n)

5 (x) sin
(ny

R

)
,

�(x, y) = 1√
2πR

�(0)(x) +
1√
πR

∞∑
n=1

�(n)(x) cos
(ny

R

)
.

(8.3)

Above, A(0)
µ (x) and �(0)(x) are zero modes, which are the

relevant fields for ordinary 4d QED. As expected, there is no
zero mode for A5.

The 4d effective Lagrangian is obtained by integrating out
the fifth coordinate, and is given by

L (x) =
∫ 2πR

0
dyL (x, y).

The higher dimensional physics is reflected by the infinite
tower of Kaluza–Klein (KK) modes. A simple calculation
yields the following 4d Lagrangian

L (x) = −1

4
F (0)

µν Fµν(0)

+
∞∑

n=1

[
−1

4
F (n)

µν Fµν(n) +
1

2

( n

R
A(n)

µ + ∂µA
(n)

5

)2
]

+ LGF(x). (8.4)

The following steps lead to the above equation:

FMNFMN = FµνF
µν + Fµ5F

µ5 + F5µF 5µ

= FµνF
µν + 2Fµ5F

µ5,

Fµ5F
µ5 = (∂5Aµ − ∂µA5)

2 = (∂5Aµ)2 + (∂µA5)
2

−2(∂5Aµ)(∂µA5),∫ 2πR

0
dy(∂5Aµ)2 = n2

R2

1

πR
(A(n)

µ (x))2
∫ 2πR

0
dy sin2 ny

R

= n2

R2
(A(n)

µ (x))2,∫ 2πR

0
dy(−)∂5Aµ∂µA5 =

∫ 2πR

0
dy

( n

R

) 1√
πR

A(n)
µ (x)

× sin
ny

R

1√
πR

∂µA
(n)

5 (x) sin
ny

R

=
( n

R

)
A(n)

µ (x)∂µA
(n)

5 (x).

Now we shall show that the modes A
(n)

5 , which are scalars
with respect to 4d Lorentz group, play the rôle of ‘would-be’
Goldstone modes to be ‘eaten up’ by the massive A(n)

µ . In fact,
in a sense, the mass generation of heavy KK gauge modes by
compactification can be viewed as a kind of geometric Higgs
mechanism.

We should keep in mind that the Lagrangian L (x) is
still manifestly gauge invariant by the joint actions of two
transformations at each KK level:

A(n)
µ (x) → A(n)

µ (x) + ∂µ�(n)(x),

A
(n)

5 (x) → A
(n)

5 (x) − n

R
�(n)(x). (8.5)

Now we use ’t Hooft’s gauge fixing condition by which the
terms that mix A(n)

µ and A
(n)

5 are removed from the 4d effective
Lagrangian. We write

LGF(x, y) = − 1

2ξ
(∂µAµ(x, y) − ξ∂5A5(x, y))2. (8.6)

Note that in the last equation the requirement of covariance of
the gauge fixing Lagrangian with respect to the y-direction has
been sacrificed, which is nothing serious as compactification
(S1/Z2) breaks SO(1,4) invariance under ordinary 4d Lorentz
transformation any way.

Now we calculate L (x) = ∫ 2πR

0 dyL (x, y) where
L (x, y) contains the above LGF(x, y). All mixing terms
involving A(n)

µ and A
(n)

5 are now reduced to total derivatives
which are irrelevant. Then the gauge-fixed 4d Lagrangian
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looks like

L (x) = −1

4
F (0)

µν Fµν(0) − 1

2ξ
(∂µA(0)

µ )2

+
∞∑

n=1

[
− 1

4
F (n)

µν Fµν(n) − 1

2ξ

(
∂µA(n)

µ

)2

+
1

2

( n

R

)2
A(n)

µ A(n)
µ

]
+

∞∑
n=1

[
1

2

(
∂µA

(n)

5

)2
− 1

2
ξ
( n

R

)2 (
A

(n)

5

)2
]

. (8.7)

The scalars A
(n)

5 with ‘gauge dependent masses’ resemble the
would-be Goldstone bosons of an ordinary 4d Abelian theory
in Rξ gauge, so we have

A(n)
µ propagator ⇒ 1

k2 − n2

R2

−gµν +
(1 − ξ)kµkν

k2 − ξ
( n

R

)2

 ,

A
(n)

5 propagator ⇒ 1

k2 − ξ
( n

R

)2 . (8.8)

Clearly, the A
(n)

5 modes are unphysical, and they provide the
longitudinal components of the massive A(n)

µ states.

8.2. 5d SU(2) model as an illustration

The gauge group is SU(2), the compactification is on S1/Z2,
and we impose a non-trivial Z2 parity:

P =
(

1 0
0 −1

)
,

Aµ
Z2−→ PAµP †,

A5
Z2−→ −PA5P

†,
(8.9)

where Aµ = Aa
µτa is the Lie-algebra valued 5d gauge field. In

component form

Aµ = Aa
µτa =

(
A3

µ A1
µ − iA2

µ

A1
µ + iA2

µ −A3
µ

)
. (8.10)

Therefore

PAµP † =
(

1 0
0 −1

)(
A3

µ A1
µ − iA2

µ

A1
µ + iA2

µ −A3
µ

)(
1 0
0 −1

)
=
(

A3
µ (−)(A1

µ − iA2
µ)

(−)(A1
µ + iA2

µ) −A3
µ

)
. (8.11)

Clearly

A3
µ

Z2−→ A3
µ, (A1

µ, A2
µ)

Z2−→(−)(A1
µ, A2

µ). (8.12)

Hence, A3
µ(x, y) has zero mode A3(0)

µ (x), but A1
µ(x, y) and

A2
µ(x, y) do not have zero modes. Since A5

Z2−→ −PA5P
†, it

is easy to show that A1
5(x, y) and A2

5(x, y) (and not A3
5(x, y))

have zero modes which can acquire VEVs. Thus we witness
an explicit breaking

G

SU(2)

P−→ H

U(1)
.

We can therefore write

〈Aa
5〉 = (〈A1(0)

5 〉, 〈A2(0)

5 〉, 0).

Using the unbroken U(1) symmetry, we can assign the entire
VEV in one component and hence without any loss of
generality we can write 〈Aa

5〉 = (B, 0, 0), where B is the VEV.

The gauge boson masses originate from Fa
µ5F

µ5
a =

(∂µAa
5 − ∂5A

a
µ + gεabcA

b
µAc

5)
2. The relevant term of the

Lagrangian leading to the mass matrix is Aa
µ(D5D5)abA

b
µ,

where

(D5D5)ab =
∂5∂5 0 0

0 ∂5∂5 − g2B2 −2gB∂5

0 2gB∂5 ∂5∂5 − g2B2

 ,

with a, b = 1, 2, 3 as adjoint representation indices. There
is no KK-number mixing and this mass matrix holds for each
n. The derivatives in the above matrix would act on the KK
states. For n �= 0, A3(n)

µ ∼ 1√
πR

cos ny

R
, A1,2(n)

µ ∼ 1√
πR

sin ny

R
,

which is a consequence of our choice of P = diag(1, −1).
Each derivative then picks up a factor n/R. The KK gauge
boson mass-squared matrix turns out to be (for n �= 0)

n2

R2
0 0

0
n2

R2
+

α2

R2

2αn

R2

0
2αn

R2

n2

R2
+

α2

R2

 , (8.13)

where α ≡ gBR. The eigenvalues are n2

R2 , (n+α)2

R2 , (n−α)2

R2 .
We have thus seen a two-stage symmetry breaking: (i) SU(2)
breaks to U(1) explicitly by the action of P , as a result only
A3

µ has zero mode, and then (ii) U(1) breaks to nothing by the
VEV B, when A3(0)

µ picks up a mass α
R

.
Why is the example of SU(2) better than U(1)? In the U(1)

example, the scalar turned out to be unphysical. From SU(2)
we got a physical scalar, which can acquire a non-zero VEV.
However, we want a scalar which is a doublet under SU(2),
and the scalar we got in the above example is not a doublet of
SU(2). To achieve this, we move to SU(3).

8.3. 5d SU(3) as a toy model

Now consider that the 5d gauge group is SU(3), which is
compactified on S1/Z2. The Lie-algebra valued gauge fields
are AM = Aa

M
λa

2 . Here, λa are Gell-Mann matrices, given by

λ1 =
0 1 0

1 0 0
0 0 0

 , λ2 =
0 −i 0

i 0 0
0 0 0

 ,

λ3 =
1 0 0

0 −1 0
0 0 0

 , λ4 =
0 0 1

0 0 0
1 0 0

 ,

λ5 =
0 0 −i

0 0 0
i 0 0

 , λ6 =
0 0 0

0 0 1
0 1 0

 ,

λ7 =
0 0 0

0 0 −i

0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 .
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We impose Z2-projection by requiring

PAµP † = Aµ and PA5P
† = −A5,

where P =
−1 0 0

0 −1 0
0 0 1

 = eiπλ3 . (8.14)

The explicit transformations of the gauge boson fields areA3
µ + 1√

3
A8

µ A1
µ − iA2

µ A4
µ − iA5

µ

A1
µ + iA2

µ −A3
µ + 1√

3
A8

µ A6
µ − iA7

µ

A4
µ + iA5

µ A6
µ + iA7

µ − 2√
3
A8

µ


P−→

⊕ ⊕ �
⊕ ⊕ �
� � ⊕

 , (8.15)

where ⊕ and � represent the relative signs upon transformation
under the given projection. For the A5 scalars, ⊕ and � should
be replaced by � and ⊕, respectively. The fields which are
projected with ⊕ sign contain zero modes, but those with the
� sign do not have zero modes.

As a consequence of the above projection,

G

SU(3)

P−→ H

SU(2) × U(1)
.

Now, the 8 generators of SU(3) are decomposed as 3 + 2 +
2 +1 under the unbroken SU(2). From equation (8.15), it is
clear that only the triplet 3 (A1

µ, A2
µ, A3

µ) and the singlet 1 (A8
µ)

gauge bosons have zero modes. Also, the components of the
doublet 2 scalar (A4

5 − iA5
5, A6

5 − iA7
5)

T have zero modes. We
identify the zero mode doublet scalar with our Higgs doublet,
which is expressed as

H
(0)

5 =
(

A
4(0)

5 − iA5(0)

5

A
6(0)

5 − iA7(0)

5

)
. (8.16)

In other words, when G
P−→ H , the generators of the massless

gauge bosons belong to H , while those of the massless scalars
belong to the coset G/H .

We now turn our attention to the gauge transformations
in bulk:

Aµ → Aµ + ∂µ�(x, y) + i[�(x, y), Aµ],

A5 → A5 + ∂5�(x, y) + i[�(x, y), A5].

For the scalars A5, which correspond to the broken generators,
�(x, 0) = �(x, πR) = 0, but still A5 → A5 + ∂5�. Because
of this shift symmetry, there cannot be any tree level potential
for A5. Just like gauge invariance forbids AµAµ term in the
ordinary 4d QED Lagrangian, the higher dimensional gauge
invariance forbids A5A5 term in the 5d Lagrangian as well. But
this is true only at tree level, as quantum corrections generate
the potential.

The quadratic (A5)
2 and the quartic (A5)

4 terms are
generated at one-loop level via two- and four-point diagrams
with A5 in external lines and with KK fermions and bosons
in internal lines. Such loops generate the effective potential
whose minimization yields the VEV of A5. The gauge loops

tend to push 〈A0
5〉 to zero while minimizing the potential,

while the fermionic loops tends to shift 〈A0
5〉 away from zero

in the minimum of the potential. In fact, the KK fermions
are instrumental for generating the correct VEV. This way
of breaking SU(2) × U(1) symmetry to U(1)em is called the
Hosotani mechanism [69]. The one-loop generated Higgs
mass is given by

m2
h � g4

128π6

1

R2

∑
KK

V ′′(α), (8.17)

where α is a dimensionless parameter arising from bulk
interactions, which corresponds to the minimum of the
potential where the double-derivative is calculated. The
summation is over all KK particles. Clearly, 5d gauge
symmetry is recovered in the limit 1/R → 0.

In fact, this A5 is a symbolic representation of H
(0)

5 .
A VEV in H

(0)

5 induces SSB of H = SU(2)× U(1) to E
= U(1)Q. The composition of photon in this scenario is
γµ ∝ (A3

µ + 1√
3
A8

µ). Recalling that the composition of photon
in the SM, as given in equation (3.19), is

γµ = sin θWW 3
µ + cos θWBµ,

we obtain the following relations for the GHU scenario under
consideration:

cot θW = 1√
3

= cot
π

3
⇒ θW = π/3 ⇒ sin2 θW = 3

4
and

M2
W

M2
Z

= cos2 θW = 1

4
, therefore MZ = 2MW.

This is clearly experimentally ruled out! But this scenario
provides the basic intuitive picture of how a GHU scenario
works through a simple illustration. In this scenario

M
(n)
W = n + α

R
, M

(n)
Z = n + 2α

R
, m(n)

γ = n

R
.

The periodicity property demands that the spectrum will
remain invariant under α → α + 1. This restricts α in the
range [0, 1]. Orbifolding further reduces it to α = [0, 1

2 ]. In
principle, α can be fixed from the W mass.

8.4. Realistic gauge–Higgs unification scenarios—a brief
description

There are quite a few obstacles that one faces in constructing
a realistic scenario. Since the Yukawa coupling arises from
higher dimensional gauge coupling, it turns out to be too small
to produce the correct top quark mass. In particular, one has to
also worry about generating hierarchical Yukawa interaction
starting from higher dimensional gauge interaction which is,
after all, universal. The scalar potential is generated at one-
loop, which tends to yield rather low Higgs boson mass. The
compactification scale (R−1) required for this purpose turns
out to be smaller than its experimental lower limit. We briefly
describe below some of the attempts made in removing these
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obstacles.

(i) It has been argued in [70] in the context of a 5d S1/Z2

scenario that a large brane localized kinetic term can
help jack up the Higgs mass to an acceptable range.
Another option is to break the 5d Lorentz symmetry in
the bulk [71, 72]. The key observation is that the stability
of the loop generated scalar potential relies essentially
on 5d gauge symmetry and not so much on the SO(1,4)
Lorentz symmetry. If one breaks either explicitly or
by some dynamics this Lorentz symmetry keeping the
SO(1,3) Lorentz symmetry in the ordinary space–time
dimension intact, then one can enhance the Higgs coupling
to fermions. Such breaking can be parametrized by the
following pieces of the Lagrangian:

Lgauge = −1

4
FµνF

µν − a
4
Fµ5F

µ5;
LYuk = �̄(iγµDµ − kD5γ

5)�, (8.18)

where the prefactors a and k need to be phenomenologi-
cally tuned to match the data.

(ii) If one goes to an even higher dimensional model, e.g. a 6d
GHU scenario, the gauge kinetic term contains a quartic
interaction for the internal components of the gauge fields,
i.e. it yields a quartic term in the Higgs potential at
the tree level. Its strength of course depends on the
gauge coupling. The appearance of this tree level quartic
coupling can solve the ‘low Higgs mass’ problem. But,
in these scenarios, gauge symmetry allows some orbifold
localized operator which gives Higgs mass terms at the tree
level, and this brings back the quadratic cutoff sensitivity
as encountered in the SM. The question is, therefore, how
to tame this quadratic cutoff sensitivity. This was pursued
in [73] with the SU(3) gauge group on T 2/ZN orbifold
(with N = 2, 3, 4, 6). It was shown that only for N = 2,
under the assumption of successful EWSB, a condition
mh = 2MW has to be satisfied to keep the scalar potential
free from quadratic divergence.

(iii) If one goes to the warped scenario [74], additional features
emerge [75]. AdS/CFT correspondence [11] tells us that
a weakly coupled theory in 5d AdS is equivalent to a
strongly coupled 4d theory. In this case, the Higgs is
a composite particle, a pseudo-Goldstone boson of the
strongly coupled CFT sector. There is a global symmetry
in the CFT sector that protects the Higgs mass. Gauge and
Yukawa interactions are introduced in the dual 5d AdS
theory, which explicitly break the global symmetry but do
not induce quadratic divergence to the Higgs mass at any
loop. The Higgs mass can be large enough thanks to the
quartic interaction which can be generated dynamically
at tree level. The quadratic term is, as expected, loop
generated. The all order finiteness of the Higgs mass
can be intuitively understood as follows. The Higgs is
at the TeV brane and a scalar which breaks the gauge
symmetry is at the Planck brane and the information of
this breaking reaches from Planck to TeV brane by bulk
propagators. This is a non-local effect which is the reason
behind the finiteness of the Higgs mass. This type of
model was further consolidated in [76] by considering a

SO(5)×U(1)B−L symmetry in the bulk, which eventually
gives SO(3) custodial symmetry that prohibits any large
correction to the oblique T parameter. The electroweak
symmetry is dynamically broken by the top quark.

One distinct advantage of working in the warped space
over the flat space is noteworthy. Recall that in the GHU
context the Yukawa coupling of the Higgs arises from higher
dimensional gauge coupling. In the context of the Hosotani
mechanism [69] in flat space without any large brane kinetic
term, the 5d gauge coupling g5

√
R−1 = g4 ≡ g ∼ 0.65 is

rather small to yield the Higgs quartic coupling. On the other
hand, in the warped case the AdS dynamics gives a rather large
5d gauge coupling g5

√
k � 4 [76], which is why the Higgs

quartic coupling can be sufficiently large to yield the correct
Higgs mass.

There are other GHU constructions in flat and warped
space with different features, which we are not going to cover
here. We refer the readers to the papers in [77] and to two
excellent reviews on composite Higgs scenarios [24, 78].

8.5. Comparison between gauge–Higgs/composite scenario
and little Higgs models

Conceptually, gauge–Higgs models and little Higgs models
are related [75, 76]. More precisely, through the AdS/CFT
correspondence GHU in a 5d warped scenario (Randall–
Sundrum model) replicates a little Higgs model in 4d. In the
conventional (i.e. the way we developed the idea in this review)
little Higgs models the sensitivity of the Higgs mass to the UV
cutoff is logarithmic at one-loop and quadratic at two-loop.
In the composite picture, which is dual to 5d gauge theory
where the 5th component of the gauge boson makes the Higgs
boson, the Higgs mass is finite at all orders. The little Higgs
models are calculable below the cutoff scale (∼10 TeV), while
the QCD-like composite models are calculable in the large
N limit allowing 1/N -expansion. There is another difference
between the composite models and the little Higgs models. The
global symmetry that protects the Higgs mass in a composite
model is a symmetry of the strong CFT sector and not of the
SM. Hence the new TeV scale resonances form a complete
multiplet of the global group of the strong sector, unlike in the
little Higgs models where the new states are the partners of the
SM particles. Another distinguishing feature is the presence
of a KK gluon in the extra-dimensional models that is absent
in the conventional little Higgs constructions.

8.6. Collider signals of gauge–Higgs unification models

Are there smoking gun signals of the GHU models? These
models generally contain fermions with exotic electric charge,
e.g. (5/3). But the exact value of the charge is a model-
dependent question. In most cases, the lightest nonstandard
particle turns out to be a colored fermion and not any exotic
(KK) gauge boson. This has got something to do with the fact
that large contributions from the exotic fermions are crucial
in triggering correct amount of EWSB. Also, the gauge boson
coupling to the right-handed top quark in such scenarios is
about 10–15% different from its SM value. In a study [79], the
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indirect effects of the KK particles on the Higgs production via
gluon fusion and Higgs decay to two photons were analyzed
in the context of a toy 5d scenario with SU(3) gauge group
on an S1/Z2 orbifold. If the KK states weigh around 1 TeV,
the loop effects provide about 10% deviation from the SM
results. Moreover, the overall sign of the gluon–gluon-Higgs
coupling was claimed to be opposite to the one in the SM or
the UED model, but consistent with the corresponding sign in
the little Higgs or the supersymmetric models. In a warped
scenario with SO(5) × U(1)X gauge symmetry in the bulk
(chosen for preserving custodial symmetry), the authors of [80]
have studied the LHC detection of a KK top quark which
is strongly coupled to a KK gluon. In the composite Higgs
context, one of the crucial tests is to measure the scattering of
the longitudinal gauge bosons (VLVL → VLVL) and find an
excess event (see [24] for a pedagogical illustration).

9. Higgsless scenarios

The idea is to trigger EWSB without actually having a physical
Higgs. The mechanism relies on imposing different boundary
conditions (BCs) on gauge fields in an extra-dimensional set-
up. The BCs can be carefully chosen such that the rank of a
gauge group can be lowered. For the purpose of illustration
outlined in this review, we heavily rely on the discussions given
in [81, 82]. To start with, we consider a 5d gauge theory. The
extra dimension is compactified on a circle of radius R with a
y ↔ (−y) identification, i.e. on a S1/Z2 orbifold. The fixed
points are y = 0, πR. We can use different BCs at the two
fixed points.

9.1. Types of boundary conditions

Let us consider a 5d scalar field φ(x, y) in the interval [0, πR].
The minimization of action requires either or both of the
following:

• φ|y=0,πR = constant. When the constant = 0, it is called
the Dirichlet BC.

• (∂5φ + V φ)|y=0,πR = 0, where V is some boundary mass
parameter. When V = 0, ∂5φ = 0, which is called the
Neumann BC. When V �= 0, it corresponds to a mixed BC.

Although we took a scalar field for demonstration, the BCs
can be applied to any other field as well. We now perform
some warm-up exercises to appreciate the essential features of
Higgsless scenarios.

9.2. Breaking SU(2) → U(1) by BCs

This is a simple example to demonstrate that by appropriate
choices of BCs we can indeed get a massless gauge boson
state (to be identified with the photon) and massive states (to
be identified with the W and Z boson). Consider a SU(2)
gauge symmetry in 5d. The gauge bosons are Aa

M(x, y), where
a = 1, 2, 3 and M = µ, 5. Now we apply the BCs at the two

fixed points:

• ∂5A
a
µ|y=0 = 0 for a = 1, 2, 3, i.e. at the y = 0 fixed point,

we apply the Neumann BC for all the three gauge bosons.
• A1,2

µ |y=πR = 0, ∂5A
3
µ|y=πR = 0, i.e. at the y = πR

fixed point, we apply the Dirichlet BC for the first two
components of the gauge bosons and the Neumann BC
for the third component.

The y-dependent parts of the various KK mode gauge fields
are then

A3
µ(y) �⇒ cos

(ny

R

)
(n = 0, 1, 2, . . .),

A1,2
µ (y) �⇒ cos

(
(2m + 1)y

2R

)
(m = 0, 1, 2, . . .).

(9.1)

Their mass spectra are therefore given by

A3
µ �⇒ Mn = 0,

1

R
,

2

R
, . . . ,

A1,2
µ �⇒ Mm = 1

2R
,

3

2R
,

5

2R
, . . . . (9.2)

Thus we identify

Mγ = 0, MW = 1

2R
, MZ = 1

R
. (9.3)

Clearly, this is not a phenomenologically acceptable situation
as MZ = 2MW . The main problem here is that the gauge boson
masses are independent of the gauge couplings. Somehow, we
have to bring that dependence in.

9.3. Breaking SU(2) → ‘nothing’ by BCs

Let us impose the following BCs:

• ∂5A
a
µ|y=0 = 0 for a = 1, 2, 3. This is just like the previous

example.
• ∂5A

a
µ|y=πR = V Aa

µ|y=πR . This is a mixed BC. The
V → 0 limit corresponds to the Neumann BC and the
V → ∞ limit corresponds to the Dirichlet BC. Note that
in the previous example, we took the V → ∞ limit for
a = 1, 2 and V → 0 limit for a = 3.

A general solution that satisfies the above BCs is

Aa
µ(x, y) =

∞∑
n=1

Aa(n)
µ (x)fn(y),

with

fn(y) = αn

cos(Mny)

sin(MnπR)
. (9.4)

Since fn(y) is a cosine expansion, the BC at y = 0 is trivially
satisfied. The BC at y = πR leads to
∞∑

n=1

A(n)
µ (x)

(−)αnMn sin(Mny)

sin(MnπR)

∣∣∣∣
y=πR

= V

∞∑
n=1

A(n)
µ (x)

αn cos(Mny)

sin(MnπR)

∣∣∣∣
y=πR

, (9.5)
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which leads to the following transcendental equation from
where the mass spectrum is obtained:

Mn tan (MnπR) = −V. (9.6)

Now observe the following:

(i) when V = 0, which corresponds to the Neumann BC for
all a = 1, 2, 3, gauge symmetry is unbroken;

(ii) when V �= 0, the SU(2) gauge symmetry is fully
broken. The amount of breaking is controlled by V .
The mass spectrum is given by the solution of the above
transcendental equation.

The normalization factor αn is determined by requiring that the
KK modes are canonically normalized, i.e.∫ πR

0
dyf 2

n (y) = 1. (9.7)

Therefore, using equation (9.3),

αn =
√

2√
πR cosec2(MnπR) +

cot(MnπR)

Mn

. (9.8)

Now using the transcendental equation (9.6), one can express

αn =
√

2√
πR

(
1 +

M2
n

V 2

)
− 1

V

. (9.9)

Now we are all set to calculate the mass spectrum. Let us
consider the following two cases:

(i) V = 0: no breaking of gauge symmetry. All Aa
µ

(a = 1, 2, 3) have a cosine expansion.

(ii) V �= 0: we assume V � 1
R

, then the transcendental
equation (9.6) implies that to the zeroth approximation
cot(MnπR) = 0. This means MnπR = (2n + 1) π

2 , i.e.

Mn = 2n + 1

2R
(n = 0, 1, 2, . . .). (9.10)

Then to the next level of approximation, we take MnπR =
(2n + 1) π

2 + ε, where ε is a small number. Then
cot(MnπR) = cot{(2n + 1) π

2 + ε} = cot(2n + 1) π
2 +

ε{−cosec2(2n + 1) π
2 } = −ε. Putting back the above

relation into the transcendental equation, we obtain
ε = Mn

V
. Therefore, MnπR = (2n + 1) π

2 + Mn

V
, i.e.

Mn � 2n + 1

2R

(
1 +

1

πRV
+ · · ·

)
(n = 0, 1, 2, . . .).

(9.11)

Clearly, there is no zero mode. SU(2) gauge symmetry is
thus completely broken.

9.4. A model of EWSB by BCs: Higgsless scenario in flat
space

Right at the beginning, we set two goals:

(i) the gauge boson masses have to be related to the gauge
couplings;

(ii) there should be a custodial symmetry in the bulk so as to
be consistent with EWPT.

We therefore start with the gauge symmetry SU(2)L ×
SU(2)R × U(1)B−L in the bulk. The notation of gauge bosons
and gauge couplings are as follows (the dimension of a 5d
gauge coupling is M−1/2):

• group: SU(2)L, gauge coupling: g, gauge bosons: ALa
M

where a = 1, 2, 3;
• group: SU(2)R, gauge coupling: g, gauge bosons: ARa

M

where a = 1, 2, 3;
• group: U(1)B−L, gauge coupling: g′, gauge bosons: BM .

We denote the gauge bosons of the SU(2)D group, which is
the diagonal subgroup of SU(2)L × SU(2)R, as A+a

M , where
A±a

M = 1√
2
(ALa

M ± ARa
M ). We should remember that in order

to have a zero mode of a generic gauge boson Aµ, i.e. to
preserve the gauge symmetry, one should use the Neumann
BC: ∂5Aµ = 0. Although we display below the BCs of
the gauge fields Aµ and Bµ only, the conditions for A5 and
B5 are not hard to obtain. We just have to remember that
the conditions have to be swapped between the µ and y

components. In other words, the Dirichlet BCs for gauge
bosons mean Neumann BCs for the corresponding scalars and
vice versa. We now apply the following BCs at the two fixed
points:

• y = 0 fixed point:

(i) ∂5A
+a
µ = 0 and ∂5Bµ = 0 (i.e. SU(2)L × SU(2)R

broken down to SU(2)D , also U(1)B−L unbroken).
(ii) A−a

µ = 0 (i.e. the SU(2) orthogonal to SU(2)D is
broken).

• y = πR fixed point:

(i) ∂5A
La
µ = 0 (i.e. SU(2)L unbroken).

(ii) ∂5A
R 1,2
µ = V AR 1,2

µ , where V = − 1
4g2v2

R. At
the y = πR brane we localize a scalar doublet
under SU(2)R, which acquires a VEV vR leading
to SU(2)R × U(1)B−L breaking down to U(1)Y .
Eventually, we take the vR → ∞ limit and the scalar
will decouple without spoiling unitarity.

(iii) ∂5A
R3
µ = V

g
(gAR3

µ − g′Bµ).

(iv) ∂5Bµ = −Vg′
g2 (gAR3

µ − g′Bµ).

The last three BCs ensure that both SU(2)R and U(1)B−L

are broken when V �= 0. Note additionally that ∂5(g
′AR3

µ +
gBµ) = 0. Finally, the only symmetry left unbroken
is U(1)Q.

The BCs originate from the following consideration: the
orbifold projection around y = 0 fixed point has a SU(2)L �
SU(2)R outer automorphism, while around y = πR fixed
point the orbifold projections are SU(2)L ↔ SU(2)L and

30



Rep. Prog. Phys. 74 (2011) 026201 G Bhattacharyya

SU(2)R ↔ SU(2)R. Define ŷ = y + πR. The BCs can
be derived from

ALa
µ (x, −y) = ARa

µ (x, y), Bµ(x, −y) = Bµ(x, y),

ALa
µ (x, −ŷ) = ALa

µ (x, ŷ), ARa
µ (x, −ŷ) = ARa

µ (x, ŷ),

Bµ(x, −ŷ) = Bµ(x, ŷ). (9.12)

Once the BCs are enforced, a given 4d gauge field is shared
among many 5d fields. We now take the V → ∞ limit. Then
the 5d gauge fields in the (AL

µ, AR
µ, Bµ) basis can be expressed

in terms of the 4d fields, namely γµ (photon), Z(n)
µ and W±(n)

µ ,

in the following way (AL,R±
µ = (AL,R1

µ ∓ iAL,R2
µ )/

√
2):

Bµ(x, y) = 1√
πR(g2 + 2g′2)

×
[
gγµ(x) +

√
2g′

∞∑
n=1

Z(n)
µ (x) cos(M(n)

Z y)

]
,

AL3
µ (x, y) = 1√

πR(g2 + 2g′2)

×
[
g′γµ(x) −

√
2g

∞∑
n=1

Z(n)
µ (x)

cos(M(n)
Z (y − πR))

2 cos(M(n)
Z πR)

]
,

AR3
µ (x, y) = 1√

πR(g2 + 2g′2)

×
[
g′γµ(x) −

√
2g

∞∑
n=1

Z(n)
µ (x)

cos(M(n)
Z (y + πR))

2 cos(M(n)
Z πR)

]
,

AL±
µ (x, y) = 1√

πR

∞∑
n=1

Wn±
µ (x) cos(M(n)

W (y − πR)),

AR±
µ (x, y) = 1√

πR

∞∑
n=1

Wn±
µ (x) cos(M(n)

W (y + πR)).

(9.13)

Thus, we obtain the massless photon γ , corresponding to the
unbroken U(1)Q, and some KK towers of massive W(n)± and
Z(n) gauge bosons. The Z(1) and W(1)± are to be identified
with the observed Z and W± bosons, respectively.

9.4.1. The charged W(n)± tower. The solutions would be
similar to the one as obtained from the transcendental equation
for the SU(2) → ‘nothing’ case.

M
(n)
W tan(2M

(n)
W πR) = −V = 1

4g2v2
R, (9.14)

which leads to the solution

M
(n)
W =

(
2n − 1

4R

)(
1 − 2

πRg2v2
R

+ · · ·
)

(n = 1, 2, . . .). (9.15)

9.4.2. The neutral Z(n) tower. We enforce the BC at y = πR:

∂5A
R3
µ = V

g
(gAR3

µ − g′Bµ). (9.16)

The lhs of equation (9.16) is

∂5A
R3
µ

∣∣∣∣
y=πR

=
√

2g√
πR(g2 + 2g′2)

×
∞∑

n=1

M
(n)
Z sin(M

(n)
Z πR)Z(n)

µ (x).

The rhs of equation (9.16) can be written as
√

2g√
πR(g2 + 2g′2)

v2
R

4

∞∑
n=1

×
[
g′2 cos(M(n)

Z πR) + g2 cos(2M
(n)
Z πR)

2 cos(M(n)
Z πR)

]
Z(n)

µ (x).

Therefore

M
(n)
Z sin(M

(n)
Z πR)

= v2
R

4

[
g′2 cos(M(n)

Z πR) + g2 cos(2M
(n)
Z πR)

2 cos(M(n)
Z πR)

]
,

which leads to the simplified form of the eigenvalue equation as

M
(n)
Z tan(M

(n)
Z πR) = v2

R

8
(g2 + 2g′2) − v2

Rg2

8
tan2(M

(n)
Z πR).

(9.17)

9.4.3. Solution of equation (9.17). We rewrite the equation as

M
(n)
Z πR tan(M

(n)
Z πR)

= πRg2v2
R

8
[tan2(M0πR) − tan2(M

(n)
Z πR)],

where tan2(M0πR) =
(

1 +
2g′2

g2

)
.

Now we take the limit vR → ∞. Then, [tan2(M0πR) −
tan2(M

(n)
Z πR)] = 0 is our zeroth approximation, so that the

lhs of equation (9.17) is finite. The solution is

tan(M
(n)
Z πR) = ± tan(M0πR).

Let us first take the (+) sign solution and proceed. Then

tan(M
(n)
Z πR) = + tan(M0πR) = tan(M0πR + (n − 1)π),

(n = 1, 2, · · ·),
which means

M
(n)
Z = M0 +

n − 1

R
.

Now, instead of taking vR → ∞, if we take vR to be large and
expand in its inverse powers, we obtain

M
(n)
Z =

(
M0 +

n − 1

R

)[
1 − 2

(g2 + g′2)v2
RπR

+ · · ·
]

(n = 1, 2, . . .). (9.18)

If we take the (−) sign solution in the zeroth order
approximation, then through similar steps, we obtain

M
(n)
Z′ =

(
−M0 +

n

R

) [
1 − 2

(g2 + g′2)v2
RπR

+ · · ·
]

(n = 1, 2, . . .). (9.19)
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Thus we see there are two towers of neutral bosons: the Z

tower has a spectrum given by equation (9.18) and the Z′ tower
spectrum is given by equation (9.19). It is not unexpected
to have two towers, as the solutions come from a quadratic
equation.

9.4.4. Range of M0. Let us recall that

M0 = 1

πR
tan−1

√
1 +

2g′2

g2
.

The maximum value of any tan−1 is π
2 . The minimum value

of tan−1
√

1 + 2g′2
g2 is tan−1(1) = π

4 . These limits set the range
of M0:

1

4R
< M0 <

1

2R
. (9.20)

For vR → ∞, we get the following range of the masses of the
lightest (n = 1) KK state of the Z and Z′ towers:

MZ ≡ M
(1)
Z = M0 =

[
1

4R
,

1

2R

]
,

M
(1)
Z′ = −M0 +

1

R
=
[

1

2R
,

3

4R

]
. (9.21)

In fact, the Z′ boson is heavier than the Z boson level by level,
i.e. M

(n)
Z′ > M

(n)
Z . The mass of the W(1) boson (which is in

fact the W boson of the SM) putting n = 1 in equation (9.15)
and letting vR → ∞, is given by

MW ≡ M
(1)
W = 1

4R
, i.e. MZ > MW (9.22)

as expected.

9.4.5. The 4d gauge couplings (g4, g′
4) and the ρ parameter.

From equation (9.13) we take the expression for Bµ and look
at its expansion for y = 0:

Bµ(x, 0) = 1√
πR(g2 + 2g′2)

×
[
gγµ(x) +

√
2g′Z(1)

µ (x) + higher Z(n)
µ terms

]
. (9.23)

Note that the mass dimension of the 5d Bµ is 3
2 while that of

the 4d Bµ is 1. Now we compare equation (9.23) with the SM
expression of Bµ in terms of the photon and Z boson fields,
namely,

Bµ = 1√
g2

4 + g′2
4

[
g4γµ + g′

4Zµ

]
. (9.24)

It immediately follows that (g′
4/g4) = (

√
2g′/g). We are now

all set to calculate the ρ-parameter in this scenario:

M2
W

M2
Z

≡ (M
(1)
W )2

(M
(1)
Z )2

= 1

16R2M2
0

= π2

16

tan−1

√
1 +

2g′2

g2

−2

= π2

16

(
tan−1

√
1 +

g′2
4

g2
4

)−2

∼ 0.85. (9.25)

Hence,

ρ ≡ M2
W

M2
Z cos2 θW

∼ 1.10 . (9.26)

We summarize now what we have learned from this scenario.

(i) A big achievement is that the W and Z boson masses
depend on the gauge couplings. Without actually having
a Higgs boson, just by applying BCs on the boundaries,
one can obtain the correct W and Z masses.

(ii) In this scenario �ρ ∼ 10% is far too large. This scenario
is thus disfavored by EWPT. A slightly more acceptable
value of ρ can be obtained by keeping a finite vR at the
y = πR fixed point. Then unitarizing the theory would be
a problem. The reason for such a large �ρ is the following.
Although the bulk and the y = 0 brane respect custodial
SU(2), the y = πR brane does not. Since the KK wave
functions have significant presence around the y = πR

brane, a large �ρ results. The remedy lies in expelling the
higher (n > 1) KK modes from the custodial symmetry
breaking brane.

9.5. Features of realistic Higgsless scenarios

9.5.1. Warped models and oblique parameters. One of the
advantages of going to the warped extra dimension is that the
contributions to the S and T parameters can be kept under
control. Following [83], we consider a conformally flat metric

ds2 = h(y)2(ηµνdxµdxν − dy2), (9.27)

where the extra spatial dimension is in the interval [R, R′].
A flat extra dimension scenario can be recovered if
h(y) = constant, while the AdS limit is obtained when h(y) =
R/y. Typically, R−1 ≈ MPl and (R′)−1 ≈ TeV scale. The
gauge symmetry in the bulk corresponds to SU(2)L×SU(2)R×
U(1)B−L, and the choice of the left-right gauge symmetry
is motivated from the requirement of a custodial symmetry
for EWPT consistency. The W and Z boson masses in this
scenario are given by (with the approximation R′ � R)

M2
W ≈ 1

R′2 ln

(
R′

R

) , M2
Z ≈ g2 + 2g′2

g2 + g′2
1

R′2 ln

(
R′

R

) ,

(9.28)

where g(= gL = gR) and g′ are 5d SU(2) and U(1) gauge
couplings, respectively. To leading order, T (or equivalently
�ρ) and S are both vanishing—this is the limit when the warp
factor is infinitely large, i.e. when the Planck brane is moved to
the AdS boundary. For a finite warped factor, T and S will be
suppressed by ln(R′/R). Since a 5d warped model is dual, in
the AdS/CFT sense, to a 4d theory involving a strongly coupled
sector which is conformally invariant between the Planck scale
and the TeV scale, a lot of insight can be gained about the origin
of T and S suppression from this correspondence. Weakly
charged left-right gauged symmetry in the 5d bulk ensures a
global custodial symmetry in the strongly coupled CFT side
which keeps T and S under control [84].

An important question that naturally arises in the
Higgsless context is how to generate the fermion masses. In
the absence of a Higgs, one cannot write a Yukawa coupling.
However, just like in the case of gauge bosons, appropriate
BCs for fermions would generate their masses. But where to
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localize the fermions? They cannot be localized at the UV
(Planck) brane where the gauge symmetry is that of the SM.
The reason is that the theory at the UV brane is chiral and there
is no way a zero mode chiral fermion mass can be generated.
On the other hand in the IR (TeV) brane the unbroken gauge
symmetry corresponds to SU(2)D which preserves isospin
and would yield equal up- and down-type masses. So the
SM fermions have to be placed inside vector-like multiplets
residing in the 5d bulk which should feel different gauge
symmetry breaking at the two boundaries [85]. Needless
to mention that orbifold projection, or equivalently a set of
appropriate BCs, removes half of the vector-like spectrum
yielding a chiral fermion structure at the lowest KK level.
Also, when the fermions are delocalized from the boundaries
and judiciously placed at different locations in the bulk, their
couplings with the KK gauge bosons can be made to vanish,
which minimizes the S parameter [84].

The third family continues to give some headache.
The requirement of a large top quark mass necessitates the
localization of the tL (and hence bL) field(s) near the TeV
brane. At this brane, because the unbroken gauge symmetry
is SU(2)D × U(1)B−L, the ZbLbL coupling is different from
its SM value, which leads to a contradiction with the precision
measurement of the Zbb vertex through Rb. This problem
can be solved, but at the price of making the model more
complicated, e.g. by invoking a separate mechanism of the top
quark mass generation (analogous to the concept of topcolor
in technicolor models). To sum up, the localization of the third
family is a major thorn in the construction of realistic Higgsless
models.

Moose models. Several features of Higgsless models have
been investisgated in the context of deconstructed gauge
theories by discretizing the extra dimension. By doing it
we get a finite set of 4d gauge theories, each corresponding
to a particular lattice site [86]. The fifth component of the
gauge field, A5, which is the connection field, goes into the
definition of the ‘link variable’ �i ≡ exp(−iaA

(i−1)

5 ) realizing
the parallel transport between two lattice sites, where a is the
lattice spacing. The link variables can be identified with ‘chiral
fields’ which satisfy the condition ��† = 1 [87]. In this way,
the 5d gauge theory is replaced by a collection of 4d gauge
theories with chiral fields �i having gauge interactions—this
is described by ‘moose diagram’. A moose diagram is like a
Feynman diagram where lines correspond to links and vertices
to gauge groups. If there is no loop, then one can show that
G = E − 1, where G is the number of remaining Goldstone
multiplets and E is the number of external links. Clearly,
we need at least two external links to construct a minimal
model (which has only one Goldstone multiplet). It has been
shown that in this scenario the S parameter can be made
vanishingly small either by ideal fermion delocalization [88],
or by introducing a dynamical non-local field connecting the
two ends of a moose [89].

9.5.2. Tension between unitarity and EWPT. This is a major
issue that decides the fate of a Higgsless model. We follow
the discussions in [90]. First, we ask the obvious question:

what unitarizes the theory in the absence of the Higgs? If we
consider the elastic scattering process W±

L ZL → W±
L ZL, then

in the absence of the Higgs boson the amplitude will go like

(gWWZZ − g2
WWZ)[aE4 + bE2 + · · ·], (9.29)

where the notation for the three- and four-point gauge
couplings are self-explanatory. In the Higgsless models, there
are additional KK gauge bosons. The charged vector boson KK
states V ±

i , which the same ViWZ Lorentz structure as the SM
WWZ, would contribute to the above amplitude. However,
once we take into account the contributions from all the states
i = 1, 2, · · · , ∞ and two sum rules involving the trilinear
gauge couplings are satisfied, the new contributions completely
cancel the E4 and E2 growths. This is a consequence of higher
dimensional gauge symmetry. However, the residual growth
would make the Higgsless theories break down at a few TeV
scale. In fact, at higher energies an increasing number of
inelastic channels leads to unitarity violation by inducing a
linear growth. This is not unexpected from a 5d point of
view, as the dimensionless 5d loop factor grows with energy as
g2E/24π3, where g is the 5d gauge coupling. In the warped
Higgsless scenarios, the naı̈ve dimensional analysis (NDA)
cutoff would boil down to


NDA ∼ 12π4M2
W

g2MW(1)

, (9.30)

which is around 12 TeV, putting MW(1) ∼ 1.2 TeV. Explicit
calculation shows that this simple estimate is valid up to a
factor of 1/4 [91]. What we thus learned is that in the Higgsless
scenario, because of the appearance of the new weakly coupled
states in the TeV scale, the unitarity saturation is postponed
by roughly a factor of 10 beyond the SM NDA cutoff scale

SM

NDA ∼ 4πMW/g ∼ 1.8 TeV. Clearly, the heavier the KK
W boson the lower is the scale at which perturbative unitarity
is lost. Now, M2

W(1) /M
2
W = O(ln(R′/R)). If we increase

R, i.e. lower the UV cutoff from the Planck scale, then the
first KK W boson mass decreases from 1.2 TeV to sub-TeV
and the NDA cutoff scale goes up. But one cannot arbitrarily
increase R, as this would increase the T parameter which varies
as 1/ ln(R′/R)—see figure 4 of [90]—even though S can be
kept under control via fermion delocalization. The tension
between extending the domain of perturbative unitarity and at
the same time fitting precision electroweak data have also been
discussed in scenarios [92].

Three- and four-site Higgsless models. In the language of
deconstruction, delocalization of fermions corresponds to
allowing them to derive their electroweak properties from more
than one lattice site or gauge group. It has been shown in [93]
that a linear moose model, with several SU(2) gauge fields
along the string and SU(2)L and U(1)Y as the two end-points,
can reconcile EWPT constraints and increased unitarity bound
at the expense of some fine tuning. It has been demonstrated in
[94] that several properties of the Higgsless models, like ideal
fermion delocalization, EWPT consistency, fermion masses,
etc, can be illustrated in a highly deconstructed model with
only three sites. The electroweak part of the gauge group
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corresponds to SU(2) × SU(2) × U(1), i.e. it contains only
one ‘interior’ SU(2) group. It therefore contains only one set
of (W ′, Z′) states, which can be arranged to be fermiophobic
to minimize precision electroweak corrections. If one extends
this three-site model by one more site, i.e. with one more
interior SU(2) gauge group making it a four-site Higgsless
model, the gauge boson resonances need not be fermiophobic
to satisfy EWPT constraints [95].

9.5.3. Collider signatures of Higgsless models. The strongly
coupled physics in the Higgsless scenario at a scale which
is roughly 10 times 
SM

NDA as a result of delayed unitarity
violation, is too large to be observed at the LHC. But it will
be possible to pin down those weakly coupled states which
are responsible for unitarity postponement. In this context
we follow the analysis in [96]. Different Higgsless models
vary in different aspects, like fermion placements and how the
SM particles interact with the KK states, but the mechanism
by which 
 is raised is common to all. Weakly coupled
TeV-size new massive vector bosons Vi (where i is the KK
label), whose couplings to the SM gauge bosons are dictated
by the unitarity sum rules, enforce the cancellation of the E2

and E4 terms in the amplitudes of longitudinal gauge boson
scattering thereby postponing unitarity violation. What are
the experimental signatures of Vi bosons? It is advantageous
to consider the production of these vector bosons by the SM
gauge boson fusions as the couplings between the Vi and the
SM W/Z bosons are almost model independent, dictated by
the unitarity sum rules. The sum rule implies the following
inequality:

g
(1)
WZV � gWWZM2

Z√
3M±

1 MW

. (9.31)

Putting M±
1 = 700 GeV gives g

(1)
WZV � 0.04, which means

that the heavier the mass of V1 the less the chance to produce it
at the LHC. If we study the scattering channel W±Z → W±Z,
a process which can be mediated by V ±

1 in the s-channel,
there will be a sharp resonance as soon as the V1 threshold
is crossed. Recall that a t-channel Higgs exchange unitarizes
this amplitude in the SM which therefore does not give any
resonance. Conventional theories of strong EWSB dynamics
may give a somewhat heavier (∼2 TeV) resonance but that
would be broad due to strong coupling. But in the Higgsless
theories, V1 can be as light as 700 GeV, and the resonance will
be narrow because the V1 decay width is very small. The reason
is the following: the decay of V ±

1 takes place only in a single
channel, and the width is given by

�(V ±
1 → W±Z) ≈ α(M1)

3

144 sin2 θWM2
W

, (9.32)

under the assumption that the unitarity sum rule is saturated by
the first set of KK vector boson states (i.e. with just i = 1 of Vi).
Putting M1 = 700 GeV, the width turns out to be only about
13 GeV. We must remember that V ±

1 do not have any significant
fermionic couplings as otherwise EWPT consistency will be
jeopardized. Further details of V ±

1 search strategies are beyond
the scope of this review.

10. Conclusions and outlook

1. We take a snapshot of all the limits on the SM Higgs mass:

• direct search: mh > 114.4 GeV (at LEP-2, from non-
observation in the e+e− → Zh channel);

• EWPT: mh < 186 GeV (at 95% CL, with direct search
non-observation as a constraint in the fit);

• perturbative unitarity: mh < 780 GeV (in the 2W +
L W−

L +
ZLZL channel);

• triviality: mh < 170 GeV for 
 = 1016 GeV (scalar
quartic coupling should not hit the Landau pole);

• vacuum stability: mh > 134 GeV for 
 = 1016 GeV
(quartic coupling should always stay positive).

In the MSSM, there is a firm prediction on the upper limit of
the lightest Higgs mass. If the top squarks weigh around a
TeV, then mh � 135 GeV.

2. All the BSM models we have considered are based
on calculability and symmetry arguments. In all cases, the
electroweak scale MZ can be expressed in terms of some high
scale parameters ai , i.e. MZ = 
NPf (ai), where 
NP is
the new physics scale and f (ai) are calculable functions of
physical parameters. In all these models

• the new physics scales originate from different dynamics:

SUSY ∼ MS (the supersymmetry breaking scale), 
LH ∼
f ∼ F (the VEV associated with G → H breaking),

GHU ∼ R−1 (the inverse radius of compactification);

• the dynamical sign-flip of a scalar mass-square happens
not only in supersymmetry, but also in little Higgs models
and in GHU scenarios. In all cases, the large top quark
Yukawa coupling plays a crucial rôle. A positive scalar
quartic coupling can be arranged in all these scenarios.

3. In supersymmetry, the cutoff can be as high as the GUT or
the Planck scale. In little Higgs as well as in many variants of
extra dimensional scenarios the cutoff is significantly lower.
The ultraviolet completion in little Higgs models is an open
question, though some attempts have already been made in
this direction.

4. In supersymmetry the cancellation of quadratic divergence
takes place between a particle loop and a sparticle loop.
Since a particle cannot mix with a sparticle, the oblique
electroweak corrections and the Zbb̄ vertex correction can
be kept under control. In the non-supersymmetric scenarios
(recall what happens in little Higgs models), the cancellation
occurs between loops with the same spin states. Such states
can mix among themselves, leading to dangerous tree level
contributions to electroweak observables. This is the reason
why a decoupling theory like supersymmetry is comfortable
with EWPT, while a technicolor-like non-decoupling theory
faces a stiff challenge from EWPT.

5. How do we distinguish between the different models in
colliders? We have already discussed some of the smoking gun
signals of different scenarios. Here we highlight a few features
that are the trademark signals of some specific models. We
first compare supersymmetry with little Higgs models. The
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chances are very high that one may mistake supersymmetry
with R-parity for little Higgs with T -parity or vice versa in the
LHC environment, since the pattern of cascade decays in the
two models are very similar and particle spin measurements
are, in general, difficult. A dictionary between superparticles
and little Higgs heavy states is the following: (i) electroweak
gauginos ↔ T -odd gauge bosons, (ii) sfermions ↔ T -odd
fermion doublets, (iii) second Higgs doublet ↔ scalar triplet,
(iv) higgsinos and gluino ↔ none, (v) none ↔ T -even top
partner. What is interesting to observe is that there is no analog
of the gluino in little Higgs models, and no analog of t+ in
supersymmetry.

In a general class of composite Higgs models (e.g. GHU
or little Higgs), the strengths of V V h and V V hh couplings are
different from their SM predictions. A recent work suggests
that double Higgs production via WLWL → hh can be an
interesting probe for verifying the compositeness of the Higgs
since the rate of this process is much larger (than in the SM) if
h is a pseudo-Goldstone boson [97].

The presence of a KK gluon in a GHU model differentiates
it from a little Higgs model. Moreover, the gauge–Higgs
models have a special feature that their lightest non-standard
particle is a colored fermion and not a KK gauge boson.
Such models also contain fermions with exotic electric charge,
whose value is different in different models. The Higgsless
models are characterized by the presence of the Vi vector boson
states that delay the unitarity saturation. The lightest of such
states may pop up in the scattering of W±Z → W±Z as an
s-channel narrow resonance.

6. The model-builders have three-fold goals: (i) unitarize the
theory, (ii) successfully confront the EWPT and (iii) maintain
naturalness to the extent possible. The tension arises as
naturalness criteria requires the spectrum to be compressed,
while EWPT compatibility pushes the new states away from
the SM states.

7. A dark matter candidate is badly needed to justify
observational evidence. Besides the neutrino mass, dark matter
provides the only other concrete experimental motivation to
go beyond the SM. The SM fails to provide it. A favorite
supersymmetric candidate is the lightest neutralino if R-parity
is conserved. The little Higgs models provide a heavy stable
gauge boson if T -parity (which can be defined in the ‘littlest’
Higgs model) is conserved. In extra-dimensional models,
the lightest KK particle is a stable dark matter candidate if
KK-parity is conserved.

8. After all is said and done, the LHC is a win–win machine
in terms of discovery. If we discover the Higgs, we would
expect to also discover the new states that tame the unruly
quantum correction to its mass. If the Higgs is not there,
the new resonances which would restore unitarity in gauge
boson scattering would be crying out for verification. In
order to identify the latter, we need the super-LHC (the high
luminosity option) to cover the entire spectrum. However,
once we observe some new states at the LHC, we definitely
need a linear collider to know what these states actually are.
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