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Abstract

After describing the quark and parton models, we introduce QCD, explain

factorization in perturbative QCD, and show how to derive evolution equations.

We discuss violations of Bjorken scaling.

1 Introduction

Quantum chromodynamics (QCD) is firmly established as the theory of strong interactions. This formi-

dable status was gained through a vast array of successes in explaining and predicting phenomena. It is

a quantum field theory described by a deceptively simple Lagrangian. But despite this simplicity, QCD

is a difficult theory to understand. Many techniques have been developed to analyze the predictions of

the theory in a variety of contexts. Perturbative techniques are particularly suitable to study very high

energy collisions [1]. Numerical simulation of QCD formulated on the lattice is particularly apt for

computations of static or low energy quantities involving a few hadrons, like masses or near threshold

form factors. Lattice QCD is also powerful in examining the thermal behaviour of QCD; this was the

starting point of the lectures on quark–gluon plasma by U. Heinz in this school. Effective Lagrangians

were developed [2, 3] to study the short distance modifications of the weak interactions that dictate the

decays of light, charm and beauty hadrons. Other effective theories, like HQET [4, 5], NRQCD [6] and

SCET [7], have been developed to study the effects of QCD and are currently the object of intense study.

These lectures are intended as an introductory presentation of the techniques of perturbative QCD.

In the short time provided it is prudent to limit ourselves to this very practical topic, one that we feel is

of most interest to the student of experimental particle physics. Hence, many other interesting subjects,

including lattice QCD, chiral Lagrangians, instantons, anomalies, and the various recently developed

effective theories are omitted. Even some more advanced subjects in perturbative QCD, like Sudakov

re-summation and the BFKL equations, are left out. The intention is that a student who knows little

or nothing about QCD will come out with a working understanding of how one performs computations

of high energy cross-sections for production of, say, the top quark at the Tevatron or supersymmetric

particles at the LHC.

Therefore, the reader should not look here for a comprehensive review of the current status of

perturbative QCD, let alone the whole of QCD, in these lectures. Excellent reviews of the current status

of QCD can be found in many lectures in recent CERN schools [8–12].

We will begin by reviewing the quark model and how colour was proposed as the solution of the

Fermi–Dirac statistics problem. We will proceed then to a discussion of deep inelastic scattering (DIS)

and introduce the parton model and Bjorken scaling. Only then will we present the QCD Lagrangian and

discuss some of its properties, most saliently asymptotic freedom. Armed with this we will conclude by

studying violations to Bjorken scaling. To this end we will give a simple presentation of factorization,

and then of the evolution equations and their use in understanding the violations to Bjorken scaling.

Along the way we will learn how to use the parton model to describe other processes, such as Drell–Yan

and two-jet production in pp scattering.

2 The quark model

The quark model was introduced in 1963 by Gell-Mann and Zweig to explain the increasingly complex

list of stable hadrons and hadronic resonances that had been discovered in the new particle accelerators

of the 1950s and 1960s. It was known that isospin was a very good symmetry of the strong interactions
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and that a U(1) quantum number, a ‘charge’ called strangeness, was conserved by them. Moreover,

these two symmetries had been combined into a larger, more predictive symmetry group, flavour-SU(3),
which was found to be conserved to a good approximation, but not exactly, by the strong interactions.

The quark model was introduced to give a simple realization of this symmetry, and it is simplest to

explain flavour-SU(3), or SU(3)f for short, by introducing first the quark model itself.

The quark model describes mesons as bound states of a quark and an antiquark. Baryons, on the

other hand, are composed of three quarks, and antibaryons of three antiquarks:

mesons (π,K, ρ, ω, . . .) = qq̄ ,
baryons (p, n,Λ,Ξ, . . .) = qqq .

Since mesons have integer spin while baryons have half-integer spin, it was further posited that

quarks have spin-1/2. One expects that the lowest mass mesons and baryons have vanishing spatial

angular momentum.

– Mesons (JP = 0−, 1−):

– spin-singlet ( 1√
2
(↑↓ − ↓↑)) with L = 0 ,

– spin-triplet (↑↑, 1√
2
(↑↓ + ↓↑), ↓↓) with L = 0 .

For the baryons we could in principle have all combinations of three spin-1/2 quarks:

1/2 × 1/2 × 1/2 = 1/2 × (0 + 1) = 1/2 + 1/2 + 3/2 . (1)

To get the right spectrum of baryons we further assume that their wave-function is totally symmetric in

quark spin. This eliminates one spin-1/2 term in the decomposition above and we have the following:

– Baryons (JP = 1/2+, 3/2+):

– spin-1/2 with L = 0 ,

– spin-3/2 with L = 0 .

Three types, or flavours, of quarks (up, down, and strange, or u, d, and s) were necessary to

explain the spectrum of hadrons then known. Today we know there are a further three quarks, the charm,

bottom, and top (c, b, and t). These ‘heavy’ quarks could not be produced in the accelerators existing

in the 1960s and their behaviour in QCD is significantly different because their mass is significantly

larger than 300 MeV, the scale characterizing the strong interactions. In these lectures we will be mainly

concerned with the light quarks.

In terms of the three light quarks, the quark content of the proton is uud and of the neutron is

udd. In order to explain the charge of these baryons, the u and d quarks are assigned charges 2/3
and −1/3, respectively. The light pseudo-scalar mesons π+ and π− have quark content ud̄ and dū.

The neutral partner of these, the π0, is a linear combination of uū and dd̄. We will present the specific

linear combination when we introduce isospin and require that the three mesons form an isospin triplet.

Pseudo-scalar mesons with strangeness must include the strange quark or its antiquark. Thus, the quark

assignment of the K+ and K0 is us̄ and ds̄, so s must have charge −1/3.

The SU(3)f symmetry can now be easily described. Arrange the three quarks into a column vector

and define it to transform as a triplet, 3, that is, as the fundamental representation of SU(3),




u
d
s


→ U




u
d
s


 U ∈ SU(3) . (2)
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The group of N ×N matrices U that are unitary (U †U = 1) is called U(N). It follows from U †U = 1
that |detU |2 = 1, that is, detU = eiφ, a pure phase. If we restrict the matrices further by the condition

detU = 1 we have the group SU(N). It follows that U(N) is the product of the groups SU(N) and

U(1), the group of pure phases. The case of interest for us here is SU(3). N = 3 because we have three

light quarks, and SU(3) rather than U(3) because the additional U(1) factor is an exact symmetry of

QCD, namely baryon number.

Isotopic spin, or isospin symmetry, and strangeness are embedded in SU(3)f in a simple way.

Isospin is the symmetry (
u
d

)
→ U

(
u
d

)
U ∈ SU(2) (3)

while strangeness is a U(1) symmetry

s→ Us U ∈ U(1) . (4)

We can now understand how elementary particles fall into representations of SU(3)f . Consider

the case of mesons, containing a quark, a member of the 3 representation, and an antiquark, a 3̄. The

product of these decomposes as

3× 3̄ = 8 + 1 . (5)

This accounts for the two meson octets,

– JP = 0−: (π±, π0,K±,K0, K̄0, η)

– JP = 1−: (ρ±, ρ0,K∗±,K∗0, K̄∗0, ω) ,

and two meson singlets, the η′ and ω′, with JP = 0− and JP = 1−, respectively. It is easy to work out

the quark content of each meson. The three states π+, K+ and K0 have content ud̄, us̄ and ds̄, and their

three antiparticles have the corresponding anti-content. The only subtlety is with the neutral states π 0 =
(uū− dd̄)/

√
2 and η = (uū+ dd̄− 2ss̄)/

√
6, which are chosen this way to make the π0 a member of an

isospin triplet with the πpm and the η an isospin singlet. The η′ has content (uū+dd̄+ss̄)/
√

3, a singlet

under SU(3)f . Because the symmetry is not exact, the physical π0, η and η′ are small admixtures of the

three quark decompositions given here.

For the baryons we have the decomposition

3 × 3× 3 = 10 + 8 + 8 + 1 (6)

but have the additional rule, encountered when considering spin, that the wave-function is totally sym-

metric. So the states that remain are as follows.

– Baryon octet, JP = 1/2+: (p, n,Σ±,Σ0,Ξ−,Ξ0,Λ) .

– Baryon decouplet, JP = 3/2+: (∆++,∆+,∆0,∆−,Σ±,Σ0,Ξ−,Ξ0,Ω−) .

The reader can easily work out the quark content given the charges and strangeness of each particle.

The quark model successfully accommodates all these particles and resonances. A remarkable

success of the SU(3)f was the prediction, including the mass, of the Ω− = sss baryon. But the model

has its problems. The first, most obvious problem is that no matter how hard physicists have tried, a free

quark has never been observed. Is the quark a real particle or simply a mathematical construct that allows

us to keep track of SU(3)f in an efficient manner? A second problem is the absence of antisymmetric

combinations of spin and of flavour representations in the baryon sector. This is not unrelated to a third

problem, that of Fermi–Dirac statistics. Baryons, having an odd number of spin-1/2 components, should

have totally antisymmetric wave-functions. Since they have L = 0, their spatial wave-functions are

symmetric, and we have imposed that their spin and flavour wave-function factors be symmetric too.
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Therefore, the wave-functions are totally symmetric. This is most easily seen in the ∆++, which is a

JP = 3/2+ baryon with content u↑u↑u↑ that is explicitly totally symmetric.

To solve the Fermi–Dirac statistics problem, Han and Nambu, Greenberg and Gell-Mann, inde-

pendently proposed adding an additional quantum number to the quarks. The Fermi–Dirac problem is

solved if we assume that baryon wave-functions are antisymmetric under this new quantum number,

named colour. Since the wave-functions are symmetric under space, spin and flavour, antisymmetry in

colour gives totally antisymmetric wave-functions. For this to work we need three different colour labels

for the quarks. So instead of having a u quark, there are three u quarks, labelled ui with i = 1, 2, 3, and

similarly for d and s. There is therefore a new internal symmetry that rotates the colour degrees of free-

dom among themselves, and since there are three colours, the symmetry group is SU(3). To distinguish

this from flavour we will denote it SU(3)c.

To summarize, there are two different sets of transformations:

– SU(3)f transforms ui ↔ di ↔ si ,

– SU(3)c transforms u1 ↔ u2 ↔ u3 .

In fact the quark q carries both quantum numbers: qai with a = u, d, s and i = 1, 2, 3. It transforms as a

(3, 3) under SU(3)f × SU(3)c, which act as follows.

– SU(3)f : qai → U b
aqbi, U ∈ SU(3)f .

– SU(3)c: qai → U j
i qaj , U ∈ SU(3)c .

The Fermi–Dirac statistics problem has then an elegant solution. We postulate that hadrons are

invariant under SU(3)c. To see how this works we first show that the antisymmetric combination of

colours is invariant. To this end consider the totally antisymmetric three-index symbol, εijk with the

convention ε123 = 1. Note that

U l
iU

m
j U

n
k εlmn = εijk detU = εijk (7)

which is equivalent to the statement that it is invariant:

εijk → U l
iU

m
j U

n
k εlmn = εijk . (8)

It is now straightforward to construct invariant wave-functions:

q̄aiqbi εijkqaiqbjqck εijk q̄
aiq̄bj q̄ck

(mesons) (baryons) (anti-baryons) .

While this is an elegant solution to the statistics problem, it introduces new problems and leaves

us with some of the old ones.

– Why SU(3)c? Is this an accidental symmetry. Introducing this seems artificial.

– The statement that ‘hadrons are invariant under SU(3)c’ has replaced the ad hoc recipe that baryon

wave-functions must be symmetric under spin and flavour, as well as spatially symmetric. But this

new recipe is seemingly as ad hoc as the old one it replaces.

– We have still not resolved the free quark issue. However, since we are excluding particles that are

not invariant under colour from the spectrum, the issue for free quarks would be solved if the ad

hoc assumption of the previous item could be justified.

– We have no theory of strong interactions.
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All of these problems are solved at once if we promote the global SU(3)c symmetry to a local

symmetry. A theory with local SU(3) symmetry requires a new vector boson with dynamics described

by the Yang–Mills Lagrangian. This vector boson mediates forces and is therefore a candidate for a

theory of strong interactions. Moreover, the theory is now known to exhibit the property of confinement,

that is, that free quarks cannot exist, and only colour invariants are to be found in the spectrum. Finally,

SU(3)c is no longer accidental, rather it gives rise to the dynamics of the strong interactions. As we

will see, there is an added dividend: a theory of strong interactions based on SU(3) Yang–Mills exhibits

the property of asymptotic freedom which, as we will see, is necessary to understand the results of deep

inelastic experiments that were underway at the time the quark theory was being developed.

3 The parton model

When protons collide with protons at the moderate energies that were available in the particle accelerators

of the 1960s, the particles that emerge from the collision, mostly pions, are largely collinear with the

original protons. This is suggestive of a picture of hadrons as complex systems of softly bound particles

like pions.

However, when energetic electrons collide with protons a different picture emerges. In the SLAC–

MIT deep inelastic scattering (DIS) experiment of the 1960s it was seen that there is a significant rate

for e− scattering at large angles as if protons were elementary. This is reminiscent of Rutherford’s

experiment in which the atomic nucleus was discovered. However, rarely was there a single proton in

the final state. It was in an effort to reconcile the soft behaviour of pp scattering with the hard behaviour

in DIS that Feynman, and Bjorken and Paschos independently proposed the parton model [18, 19].

3.1 DIS kinematics

In DIS we are interested in the distribution of outgoing electrons in the process e− + H → e− + X
where H is a hadron, typically a proton, neutron or deuteron, and the X in the final state indicates

that we do not keep track of the hadronic final state. Figure 1 represents the process and indicates

the kinematic variables. In all our diagrams time runs from left to right. As the figure indicates, the

interaction consists of a photon exchange between the electron and a target constituent, or parton. The

incoming and outgoing electrons have energy E and E ′, respectively. The four momentum is chosen so

that the incoming electron is moving in the z direction, k = E(1, 0, 0, 1), while the outgoing electron has

arbitrary direction, k′ = E′(1, sin θ cosφ, sin θ sinφ, cos θ) (we can choose the xy axes so that φ = 0 if

we wish). In the rest-frame of the hadron P = M(1, 0, 0, 0). The photon carries momentum q = k− k ′.
Two convenient dimensionless variables are

x ≡ − q2

2P · q y ≡ 2P · q
2P · k . (9)

Computing

q · P = M(E′ −E), q2 = −2k · k′ = −2EE′(1 − cos θ) (10)

we see that y measures the energy of the photon, while x is a measure of the ‘off-shellness’ of the photon

(relative to energy).

It will be useful to express cross-sections in terms of Mandelstam variables. For any process of

the type 1 + 2 → 1′ + 2′, see Fig. 2, we define Mandelstam variables as the three Lorentz invariants

s = (p1 + p2)
2 , (11)

t = (k1 − p1)
2 , (12)

u = (k2 − p1)
2 . (13)
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q→

k

k′

p+q

p

P

e
-

N

Fig. 1: Diagram showing the kinematic variables for deep inelastic eN scattering. The electron of initial momen-

tum k scatters into momentum k′ off a parton with momentum p, a fraction of the nucleon’s momentum P .

p1
k1

p2 k2

Fig. 2: Mandelstam variables are defined for any process of the type 1 + 2 → 1′ + 2′

The three variables are not independent. If the masses of the particles are mi, i = 1, . . . , 4, then

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4. In the case that all masses are negligible, s+ t+ u = 0.

In DIS we will be concerned only with measuring the outgoing electron, ignoring the details of the

hadronic final state. Therefore, experimentally we measure the final momentum k ′ or, equivalently, q.

Below we will relate the cross-section for the underlying electron–parton scattering to the cross-section

for e−H → e−X. So let us consider the relation between the kinematic variables for this to the one for

the underlying parton collision. It is customary to introduce a positive variable Q2 ≡ −q2 > 0. It is easy

to see that q2 is negative:

q2 = −2k · k′ = −2EE′(1 − cos θ) < 0 . (14)

The t variable for the parton collision is

t̂ = −Q2 . (15)

As is customary, we will differentiate the partonic variables by placing a hat over them. We see that the

parton variable t̂ is simply the corresponding variable t = −Q2 of the e−H scattering process.

Computing ŝ is less straightforward. When the energy of the collision is large the target mass

can be neglected. One can consider the collision in, for example, the centre of mass frame. When the

energy is large the target momentum approximates that of a massless particle. The partons are also to

good approximation massless. This provides a nice picture: since all partons are massless they can travel

together, at the speed of light, even though they carry different energies. Moreover, the direction of travel

is that of the parent hadron, so their four momentum is just proportional to the momentum of the parent

hadron. In Fig. 1 the momentum of the parton participating in the collision is p. Since this is collinear
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with the proton momentum, P , we write

p = ξP (16)

where ξ, 0 ≤ ξ ≤ 1, is the collinear momentum fraction of that parton. Now,

ŝ = (p+ k)2 = 2p · k = 2ξP · k = ξs , (17)

that is,

ŝ = ξs . (18)

There is one more interesting relation. Because the outgoing parton carries negligible mass its

momentum must be light-like, (p+ k)2 = 0. It follows that

2p · q + q2 = 2ξP · q −Q2 = 0 . (19)

Therefore we have the remarkable relation between the momentum fraction of the struck parton, ξ, and

the kinematic variable x for the e−H collision introduced earlier:

ξ =
Q2

2P · q = x . (20)

3.2 Parton densities and Bjorken scaling

To compute the DIS cross-section we introduce parton densities, defined so that fH
i (ξ)dξ gives the

probability to find parton i in the hadron H with momentum fraction within dξ of ξ. The probability of

scattering off the hadron is the sum over probabilities of scattering off the parton components:

dσ

dt̂
(e(k)H(P ) → e(k′)X) =

∑

i

∫
dξ fi(ξ)

dσ̂

dt̂
(e(k)qi(p) → e(k′)qi) . (21)

The cross-section dσ̂ for parton–e− scattering is just like for µ−e− scattering, except that the charge of

the ith parton is not unity. If ei denotes this charge, and using ξ = x, we then have

dσ

dQ2dx
=
∑

i

fi(x)e
2
i

2πα2

Q4

[
1 +

(
1 − Q2

xs

)2
]
. (22)

We notice immediately that up to the explicit factor of [1 + (1 − Q2/xs)2]/Q4 the cross-section is

independent of Q2, a phenomenon known as Bjorken scaling. The x-dependence is through the combi-

nation
∑

i e
2
i fi(x) which depends on the target structure and is difficult to compute since it involves non-

perturbative dynamics. Figure 3 shows the DIS cross-section for a proton target divided by

[1 + (1 −Q2/xs)2]/Q4 as a function of x. Data are shown for different Q ranging from 7.0 GeV to

19.5 GeV. That all these fall on the same line is striking confirmation of Bjorken scaling. As we will

see in a later chapter, the contemporary emphasis is on violations of scaling, so the modern counterparts

of the graph in Fig. 3 display separately data for different values of Q. The reader can easily produce a

graph similar to that in Fig. 3 by starting from the data in, for example, Fig. 18.

The success of the parton model hinges on the separation of time scales for the parton collision

process and the parton mutual interactions in the target, say, a proton. The electron can interact with

partons only while it traverses the proton. The size of the proton is about a fermi, or roughly m−1
p . But

the fast off-shell photon sees a Lorentz-contracted proton in the direction it is travelling. The relativistic

dilation factor for a massive particle is γ = E/m; Q plays the role of the mass for the off-shell photon of

energy q0. Thus the time available for the interaction is Tγq ∼ m−1
p (Q/q0) = Q/P · q = 2x/Q ∼ 1/Q.

The typical time for parton–parton interaction in the proton is given by the time it takes for a parton to

traverse the proton, Tqq ∼ m−1
p . The DIS condition Q � mp gives Tqq � Tγq. The correct theory
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Fig. 3: Test of Bjorken scaling: inclusive cross-section for ep scattering, divided by the Q2-dependent factor in

Eq. (22), as a function of the dimensionless variable x ≡ Q2/2P · q, for a variety of electron scattering angles and

values of Q. The figure is taken from the textbook by Peskin and Schroeder [15].

of strong interactions must be such that it exhibits strong binding forces over time or distance scales of

the order of a fermi, but is weak, as if the partons were free, over time or distance scales much shorter.

Happily, this necessary property of the interactions is exhibited by QCD, which is ‘asymptotically free’:

the force it mediates grows weaker with shorter interaction times.

Electron scattering probes the combination
∑

i e
2
i f

H
i (x), but how can one obtain information on

the individual parton densities fi(x)? There are general constraints that follow from flavour conservation

of the strong interactions. Since the proton contains two up quarks, one down quark and no strange

quarks, it follows that

∫ 1

0
dξ[u(ξ) − ū(ξ)] = 2,

∫ 1

0
dξ[d(ξ) − d̄(ξ)] = 1,

∫ 1

0
dξ[s(ξ) − s̄(ξ)] = 0 . (23)

We use f p
i (x) = fi(x) and make the superscript explicit only for other targets. Furthermore, we will

often use the simpler notation fu(x) = u(x), etc. Since the longitudinal momentum of the partons must

add up to the longitudinal momentum of the proton we have a momentum sum rule

∫ 1

0
dξ ξ[u(ξ) + d(ξ) + s(ξ) + ū(ξ) + d̄(ξ) + s̄(ξ) + g(ξ)] = 1 . (24)

Here we have anticipated a gluon component of the proton, fg(x) = g(x), and above we had already

introduced an antiquark component.

Since the neutron is related to the proton by isospin, we replace u↔ d in going from f p to fn:

fn
u (ξ) = fd(ξ), fn

d (ξ) = fu(ξ), fn
ū (ξ) = fd̄(ξ), fn

d̄ (ξ) = fū(ξ), fn
s (ξ) = fs(ξ) . (25)

There are similar relations for the antiproton parton densities, f p̄
ū = fu, f p̄

u = fū, etc.

What should we expect for these densities? A naı̈ve guess is that each of the three so called valence

quarks of the proton (uud) carries a third of the momentum, so d(ξ) = u(ξ)/2 = δ(ξ − 1/3). However
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Fig. 4: Ratio of neutron to proton cross-sections at Q = 10 GeV in muon DIS from the NMC experiment. The

curve is the prediction of CTEQ3M parton densities [20].

interactions between them should smear out the delta function. Moreover, since valence quarks can

radiate quark-antiquark pairs we should expect some small component of these sea quarks, which should

be approximately flavour independent. Also, their density should be concentrated at small values of ξ
since they are produced from radiation from a valence quark which had only a fraction of longitudinal

momentum to begin with and is shared between the resulting pair and the valence quark. Similarly, we

expect the glue component to be concentrated at small ξ.

We can begin to verify these expectations by comparing the neutron and proton DIS cross-sections.

Consider their ratio:

d2σ
dxdy (en→ eX)

d2σ
dxdy (ep → eX)

=

(
2
3

)2
[d+ d̄] +

(
1
3

)2
[u+ ū] +

(
1
3

)2
[s+ s̄]

(
2
3

)2
[u+ ū] +

(
1
3

)2
[d+ d̄] +

(
1
3

)2
[s+ s̄]

. (26)

This satisfies a strict bound,

1

4
≤

d2σ
dxdy (en→ eX)

d2σ
dxdy (ep → eX)

≤ 4 , (27)

where the upper and lower bounds correspond to d and u dominance, respectively. Moreover, if the sea

quarks are dominant, all densities should be similar and the ratio should approach unity. Figure 4 shows

the experimental ratio. It is seen that at large x = ξ the ratio approaches the lower bound, where the u
quark dominates, while at small x we see the ratio close to one, which corresponds to sea dominance.

From the difference of these cross-sections

d2σ

dxdQ2
(ep → eX) − d2σ

dxdQ2
(en → eX) =

2πα2

Q4

[
1 +

(
1 − Q2

xs

)2
]

1

3
[u(x) − d(x)] (28)

we can infer the difference between up and down densities. Since we expect u(x) ≈ 2d(x) this directly

measures the valence contributions. Notice that the quark sea contribution cancels in the difference. The

plot in Fig. 5 shows the difference in cross-sections divided by 2πα2/xQ4[1 + (1 − Q2/xs)2], which

equals 1/3[xu(x) − xd(x)] ≈ 1/3xd(x) in the parton model. We therefore expect it to peak around

x = 1/3 and have height of about 1/3x ≈ (1/3)(1/3) = 1/9.

Additional information on parton densities can be inferred from other processes in which the cross

section is given in terms of a different combination of densities. Consider, for example, neutrino DIS

experiments:

d2σ

dxdy
(νp→ µ−X) =

G2
F

π
s [xd(x) + xū(x)(1 − y)2] . (29)

Since this proceeds through W+ exchange, the struck parton must produce a parton with one more unit

of electric charge. This can happen for the d quark, (d +W + → u), or for ū, (ū +W+ → d̄), but not
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for u or d̄. The additional factor of (1 − y)2 arises from the fact that the ν → µ− and d → u vertices

involve left-handed particles, while the antiquark vertex involves right-handed ones. Similarly,

d2σ

dxdy
(ν̄p→ µ+X) =

G2
F

π
s [xu(x) (1 − y)2 + xd̄(x)] . (30)

These expressions should be modified to account for Cabibbo mixing. This is easily accomplished by

replacing d→ cos2 θCd+ sin2 θCs.

A set of parton densities obtained by a global fit to experiments by the CTEQ collaboration is

shown in Fig. 6. We see valence quark densities peaking at x ≈ 1/3 and sea and gluon densities

becoming important at small x.

4 QCD

When combining the successes of the quark and parton model we are driven to adopt a Yang–Mills theory

in which the global colour symmetry is elevated to a local symmetry. The symmetry group is SU(3)c.

Fermion fields that carry colour quantum numbers, a.k.a. quarks,

ψ(x) =



ψ1(x)
ψ2(x)
ψ3(x)


 ,

transform as ψ(x) → U(x)ψ(x) where U(x) = eiωa(x)T a
. The ‘generators’ T a are 3 × 3 hermitian

matrices. Hermiticity follows by insisting that the group matrices U be unitary, U †U = 1, while keeping

the parameters of the local transformation, ωa(x), real. The generators of SU(3) are traceless; a trace

would generate the U(1) subgroup of U(3) that is absent in SU(3). Hence the label a runs over eight

values, a = 1, . . . , 32 − 1 = 8.

The Lie algebra is defined by the commutation relations

[T a, T b] = ifabcT c (31)

in which the structure constants f abc are real and antisymmetric in the indices a, b and c. The normal-

ization of the structure constants fixes the trace and Casimir invariants for any representation R:

Tr(T aT b) = C(R)δab
∑

T aT a = C2(R) · 1 . (32)

For the ‘defining’ or ‘fundamental’ representation of the quarks, C(fund) = 1/2 and C2(fund) = 4/3,

while for the adjoint representation, to which gluons belong, C(Adj) = C2(Adj) = 3. A very useful

identity to which we will refer as ‘a very useful identity’ is
∑

a(T
a)ij(T

a)kl = 1/2δilδkj − 1/6δijδkl.

The covariant derivative

Dµψ(x) = (∂µ − igT aAa
µ)ψ(x) (33)

is defined so that Dµψ(x) transforms homogeneously, Dµψ(x) → U(x)Dµψ(x), just like the field ψ,

ψ(x) → U(x)ψ(x). To accomplish this we must take care to choose appropriate transformation rules

for the gauge field Aa
µ. These are most succinctly expressed in terms of the matrix of gauge fields

Aµ ≡ Aa(x)T a:

Aµ → U(x)(Aµ − i

g
∂µ)U †(x) . (34)

The gauge-field kinetic energy is most readily expressed in terms of the gauge-field strength F a
µν . In

matrix notation, Fµν = 1/− ig[Dµ,Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ] and explicitly

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (35)
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Fig. 5: Difference of neutron and proton deep inelastic scattering cross-sections. The Q2-dependent factor in

Eq. (28) has been divided out to give simply 1
3 (xu(x) − xd(x)) ≈ 1

3 xd(x). The graph was taken from the text by

Halzen and Martin [16].

Fig. 6: CTEQ3M parton densities obtained through a global fit by the CTEQ Collaboration [20].
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a, µ

= igγµT a

a, µ

b, ν c, λ

↓

↑

↑

k
p

q

= gfabc[gµν(k − p)λ + gνλ(p− q)µ + gλµ(q − k)ν ]

a, µ b, ν

c, λ d, σ

=
−ig2[fabef cde(gµλgνσ − gµσgνλ)+

facef bde(gµνgλσ − gµσgνλ)+

fadef bce(gµνgλσ − gµλgσν)]

Fig. 7: Feynman rules for QCD

The QCD Lagrangian (including only one quark of mass m, for simplicity) is

L = −1

4
F a

µνF
aµν + ψ

j
(i /Dk

j −mδk
j )ψk = −1

2
TrF 2 + ψ(i /D −m)ψ . (36)

We have written colour indices explicitly first, and then implicitly. The latter notation is common and

efficient, but less transparent. The interaction terms follow by expanding all terms:

L = L0 + gAa
µψ̄γ

µT aψ − gfabc(∂µA
a
ν)AbµAcν − g2f eabf ecdAa

µA
b
νA

cµAdν . (37)

Here L0 is quadratic in the fields (includes kinetic energy and mass terms) and the next three terms give

a fermion–fermion–gluon vertex, and triple and quadruple gluon vertices. The corresponding Feynman

rules follow immediately and are listed in Fig. 7. We have omitted a discussion of ghost fields, which are

necessary when computing loop graphs in QCD in order to maintain unitarity. We will not have occasion

to compute loop graphs in these lectures. For more on this see, for example, Refs. [15,17].

When we assume that Nf massless quarks are included, the Lagrangian exhibits a large global

symmetry, U(Nf )V × U(Nf )A, where the first factor consists of ‘vector’ transformations (that is, they

rotate left- and right-handed fermions the same), ψf → (eiε
ata)f

′

f ψf ′ , and the second factor has axial

transformations (counter-rotating left and right), ψf → (eiε
ataγ5)f

′

f ψf ′ . An overall phase rotation that

corresponds to the U(1) subgroup of U(Nf ) is simply baryon number, and the overall axial phase is the

famous U(1)A: it is a symmetry of the classical theory but not of the quantum theory. In nature, only

three quarks are light enough for this approximate massless limit to be useful. The strong interaction

dynamics spontaneously break the SU(3)V ×SU(3)A flavour symmetry group to the SU(3)V subgroup,

the flavour group of Gell-Mann and Ne’eman. The eight goldstone bosons of the spontaneously broken

SU(3)A are identified with the octet of pseudoscalar mesons. This story is continued in Prof. Gavela’s

lectures in this school, but we now turn our attention to the perturbative dynamics of QCD.

A number of simple calculations allow us to verify that indeed there are only three colours in

QCD. Consider the decay of a charged electroweak vector boson. It can decay to a lepton–neutrino

pair, or Nc copies, one for each colour, of an up–down quark pair or of a strange–charm quark pair.

Since the mass of all these objects is small compared to the mass of the W − boson, differences in

phase space are negligible. So we obtain Br(W → eν) = 1/(3 + 2Nc) = 11%, where the nu-

merical value corresponds to Nc = 3 and is in excellent agreement with experiment. Similarly one

obtains Br(τ → eν̄eντ ) = 1/(2 +Nc) = 20%, which is in fairly good agreement with experiment,

and the agreement improves when the effects of limited phase space are included. The ratio of cross-
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sections R = σ(e+e− → hads)/σ(e+e− → µ+µ−) = Nc
∑

i q
2
i is computed similarly. For centre-of-

mass energies above charm–anticharm pair production threshold but below bottom–antibottom, we have

R = Nc (2 1/9 + 2 4/9), while above bottom R = Nc (3 1/9 + 2 4/9). The cross-section does jump

from R ≈ 2 to R ≈ 7/3 as the centre-of-mass energy increases from below to above the bottom pair

production threshold.

These ‘counting’ calculations do not include the effects of QCD interactions, and one is led to ask

how then are the results modified. Let us consider, for example, the ratio of hadronic to muonic cross-

sections R. This is an example of an ‘infrared safe’ quantity, which means, roughly speaking, that when

the external kinematic variables (here the centre of mass energy) are kept large and fixed as the quark

masses are set to vanish no divergences are encountered. It is always the case that infrared safe quantities

are ‘inclusive’ (in our case we add over all possible hadronic final states), although not every inclusive

quantity is necessarily infrared safe. Infrared safe quantities have a perturbative expansion unencumbered

by large, diverging logarithms of small masses (which of course render perturbation theory for non-safe

quantities useless). We can safely set to zero the quark masses in any expression for an infrared safe

quantity, the corrections being a small effect. So infrared safe quantities F are functions of the large

external kinematic variables, which I collectively denote by E, the coupling constant αs = g2
s/4π and,

since QCD is a renormalizable field theory, the renormalization scale µ: F = F (E,µ, αs).

Physical quantities are independent of the arbitrary choice of µ. If the infrared safe quantity F
is a physical observable, then we must have µdF/dµ = 0. This does not mean that F does not have

explicit µ dependence, but rather it is cancelled by the implicit dependence (through the definition of the

coupling constant, gs). Hence we have the renormalization group equation (RGE):

µ
d

dµ
F =

(
µ
∂

∂µ
+ β(gs)

∂

∂gs

)
F (E,µ, gs) = 0 . (38)

Here β(gs) is the beta function of QCD and describes the implicit µ dependence in gs. It can be computed

in perturbation theory, and to leading order β(gs) = −(b0/16π
2)g3

s + O(g5
s ), with b0 = 11 − 2/3nf

where nf is the number of active flavours. To solve the RGE it will be useful to introduce the running

coupling ḡs(t) as a solution to the equation

dḡs

dt
= β(ḡs(t)) (39)

with boundary condition ḡs(0) = gs. For example, keeping only the leading term in β and using the

common notation αs(Q) to denote ᾱs(t) for t = ln(Q/µ) we have

αs(Q) =
αs

1 + b0αs ln(Q/µ)
2π

. (40)

The solution to the RGE is easy to display in terms of the running coupling. Assuming d is the engineer-

ing dimension of F we can write F = Edf(E/µ, gs). Since f is dimensionless it can only depend on E
and µ through their ratio and we have made this explicit. The solution to the RGE is

f(E/µ, gs) = f(1, gs(E)) . (41)

This is a remarkable result. In the case of R it means that once first order perturbation theory gives

R = R0

(
1 +

1

π
αs + · · ·

)
(42)

there must be additional terms in higher order in perturbation theory which ensure that

R = R0

(
1 +

1

π
αs(E) + · · ·

)
. (43)
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Fig. 8: Experimental confirmation of the running of the coupling constant of QCD [21]

Note that

αs(Q) =
αs

1 + b0αs ln(Q/µ)
2π

= αs

∞∑

n=0

(
− b0

2π
αs ln(Q/µ)

)n

. (44)

So replacing αs → αs(E) introduces higher orders in αs, leaving the first order unchanged. The higher

order terms always come in the combination αs(E) ln(E/µ). For large E, αs(E) ∼ 1/ ln(E/µ), so

these higher order terms cannot be neglected. We have used the RGE to ‘re-sum the leading logs.’ Had

we retained one more order of αs in our starting expression forR = R(E/µ,αs) and in the beta function,

we would have re-summed the next-to-leading logarithms which would be suppressed relative to those

retained by one power of αs(E).

We see then that for any infrared safe physical process the perturbative expansion is in terms of

αs(E), where E is the typical energy scale of the process.1 Note that αs(E) decreases with increasing

E. This property is called asymptotic freedom. We have already seen that the parton model description

of DIS experiments indicates that strong interactions become weak if probed over short times, that is, at

high energy. QCD has this necessary property built in. Experimental confirmation of this effect is now

conclusive; see Fig. 8. On the other hand, as E decreases the coupling constant increases and eventually

diverges at a finite value of E, called ΛQCD. This allows us to write

αs(E) =
2π

b0 ln(E/ΛQCD)
. (45)

The dimensionless coupling constant is then determined by a dimensionful number. We call this ‘dimen-

sional transmutation’. It is particularly useful to characterize the strength of the interactions by ΛQCD

since this quantity is renormalization group invariant.

5 Using QCD: some proton–proton scattering examples

The parton model and QCD can be used to predict the outcome of other processes. In particular we will

consider here pp or pp̄ scattering. We will gain more experience with the use of the parton model, and we

will test our understanding of elementary QCD processes, like quark–gluon and gluon–gluon scattering.

1Things get more complicated if there are several disparate but large energy scales in the problem. The technique of effective

field theories can be used to sum the different leading logs in that case. Detailed discussion is beyond the scope of these lectures.
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q
→

→ξ2P2

ξ1P1

P1

P2

µ+

µ-

Fig. 9: Parton model picture for the Drell–Yan process. Protons with momenta P1 and P2 have partons with

collinear momenta ξ1P1 and ξ2P2 which annihilate into a µ+µ− pair.

Not every pp collision can be studied perturbatively. In fact, most pp collisions are soft: they

produce a multitude of hadrons largely in the same direction as the original protons. These presumably

arise from the exchange of a low energy gluon even if the centre of mass energy can be large. The time

scale characteristic of this soft gluon exchange is not different from the typical hadronic time scale m−1
p .

But if we limit our attention to processes in which the particles scatter into a very large angle so that

multiple products carry a large component of momentum transverse to the collision axis, p⊥, then the

parton–parton collision is much faster and we expect perturbative QCD to be applicable in describing the

partonic process. So, if Y stands for a final state with large p⊥ and X is the rest of the inclusive hadronic

final state, we write

σ(p(P1)p(P2) → Y +X) =

∫
dξ1

∫
dξ2
∑

i,j

fi(ξ1)fj(ξ2)σ̂(qi(ξ1P1)qj(ξ2P2) → Y ) . (46)

We have simply used the parton model twice, once for each incident proton. To make this expression

useful we need to relate the collinear momentum fractions ξi to observable kinematic variables and we

must compute the short-distance cross-section for parton–parton scattering.

5.1 Drell–Yan

We begin with the simplest case: Drell–Yan. Here the outgoing particles with large p⊥ are leptons; see

Fig. 9:

σ(p(P1)p(P2) → µ+µ− +X) =

∫
dξ1

∫
dξ2
∑

i,j

fi(ξ1)f̄i(ξ2)σ̂(qi(ξ1P1)q̄i(ξ2P2) → µ+µ−) . (47)

The parton cross-section is easy to compute. It is similar to the well known result for e+e− →
µ+µ− but with the QCD novelty that one has to average over initial colours, 3 × (1/3)2, giving

σ̂(qi(p1)q̄i(p2) → `+`−) =
4πα2e2i

9ŝ
. (48)

Sorting out the kinematics requires a little work. Experimentally only the µ+µ− momenta are

measured. We need to relate these to the parton fractions ξi. In the centre-of-mass frame,

CM: P1 = E(1, 0, 0, 1) P2 = E(1, 0, 0,−1) s = 4E2 . (49)
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Fig. 10: Drell–Yan cross-section from the E866/NuSea collaboration and predictions from the parton model using

CTEQ and MRST densities [22]. The data from the E772 and E605 displays only statistical error bars. For details

on the systematic errors for E866 see Ref. [22].

The off-shell photon momentum is determined from the final state, so it is known. But it can also be

expressed in terms of unknowns:

q = ξ1P1 + ξ2P2 = E(ξ1 + ξ2, 0, 0, ξ1 − ξ2) ŝ = q2 = ξ1ξ2s . (50)

Since q is known, the two components q0 and q3 determine the fractions ξ1 and ξ2. The equations are

customarily solved in terms of the rapidity, y, defined by

q0 =
√
q2 cosh y q3 =

√
q2 sinh y . (51)

Rapidity is additive under boosts in the direction of the pp axis, and therefore rapidity distributions are

invariant. Solving the two simultaneous equations,

ξ1 =

√
q2

s
ey ξ2 =

√
q2

s
e−y . (52)

We can now write the differential cross-section in terms of the variables q2 and y. We need the Jacobian

J in dξ1dξ2 = Jdq2dy. With J = ∂(ξ1, ξ2)/∂(q2, y) = ξ1ξ2/q
2 we have, putting it all together,

dσ

dq2dy
σ(p(P1)p(P2) → `+`− +X) =

∑

i

ξ1fi(ξ1)ξ2fī(ξ2)
4πα2e2i

9q4
. (53)

Note that the cross-section depends on the quark densities but not on the gluon densities.

Results from the E866/NuSea collaboration are shown in Fig. 10. They are expressed in terms of

the two variables M ≡
√
q2 and xF ≡ ξ1 − ξ2 = q3/E = 2p‖/

√
s:

M3 dσ

dMdxF
=
∑

i

ξ1fi(ξ1)ξ2fī(ξ2)
8πα2q2i

9(ξ1 + ξ2)
. (54)

B. GRINSTEIN

42



5.2 Dijets

We can apply the same techniques to the problem of jet pair production in pp or pp̄ scattering. Here,

however, the parton porcesses 1+2 → 3+4 involve both quarks and gluons in the initial and final states

and are mediated by QCD interactions. The final-state quark (or gluon), being coloured, is not directly

observed. Instead it ‘fragments’ into colourless hadrons. These hadrons are mostly collinear with the

fragmenting quark: they form a ‘jet’. When the quark energy is degraded by multiple fragmentations,

soft interactions between the two jets can neutralize the remaining colour. We need not worry about this

fragmentation and colour neutralization processes if our observables are inclusive enough. We will not

discuss how to define jets quantitatively in an infrared safe manner, but will assume such definition is

used in convolution with our cross-section. It must be clear that, in any case, we require that the jets have

large transverse momentum. We should also point out that it is extremely difficult to determine whether

a jet originates from a quark or gluon, or from which particular quark flavour. It therefore makes sense

to add over all possibilities in defining the dijet cross-section.

Let us begin our discussion by studying the kinematics of the parton 1 + 2 → 3 + 4 process. In

the pp centre-of-mass frame, the incident partons have

p1 = ξ1E(1, 0, 0, 1) p2 = ξ2E(1, 0, 0,−1) . (55)

Characterize the momenta of outgoing partons by their rapidities and transverse momentum:

pi = (p⊥ cosh yi,±~p⊥, p⊥ sinh yi) i = 3, 4 . (56)

Again conservation of momentum gives two equations which are readily solved:

ξ1 =
p⊥√
s
(ey3 + ey4) ξ2 =

p⊥√
s
(e−y3 + e−y4) . (57)

Mandelstam variables can be computed in terms of these, e.g., t̂ = −2p1 · p3 = −2p2
⊥ cosh(∆y)e−∆y ,

where ∆y ≡ y3 − y4. Then, retaining the angular distribution of the outgoing partons, we have

dσ

dt̂
(pp→ 3 + 4 +X) = (dξ1f1(ξ1))(dξ2f2(ξ2))

dσ̂

dt̂
(1 + 2 → 3 + 4) . (58)

Changing variables to the observables (computing the Jacobian
∂(x1, x2, t̂)

∂(y3, y4, p⊥)
=

8p3
⊥
s

cosh2(∆y), the

triple differential cross-section is given by

d3σ

dy3dy4dp2
⊥

(pp→ 3 + 4 +X) = x1f1(x1)x2f2(x2)
dσ̂

dt̂
(1 + 2 → 3 + 4) . (59)

Tree-level Feynman diagrams for the elementary processes needed for the computation of the dijet

cross-section are shown in Fig. 11. We will not display the computations of these cross-sections, but point

out some novelties that arise in QCD (i.e., which are absent in the corresponding QED calculation).

Only diagram (a) contributes to the process ud → ud. It has a factor of T a
ijT

a
lm for the vertices,

where i, l are the initial-state colours and j,m the final-state colours. When we average the modulus of

the amplitude |M|2 over initial colours and sum over final colours we encounter

(
1

3

)2∑

i,j

∑

lm

T a
ijT

a
lm(T b

ijT
b
lm)∗ =

1

9
Tr(T aT b)Tr(T aT b) =

1

9

(
1

2

)2

δabδab =
2

9
. (60)

The cross-section is just like in eµ → eµ but replacing α → αs and including a factor of 2/9. The

uū → dd̄ annihilation cross-section in diagram (c) is obtained from this by crossing, t̂ ↔ ŝ, in the

amplitude.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11: Tree-level Feynman diagrams for the elementary processes needed for the computation of the dijet cross-

section: (a) qq → qq t-channel, (b) qq → qq u-channel, (c) qq̄ → qq̄ s-channel, (d) qq̄ → qq̄ t-channel, (e) qq̄ → gg

t-channel, (f) qq̄ → gg u-channel, (g) qq̄ → gg s-channel, (h) gg → qq̄ t-channel (u-channel not shown), and (i)

gg → gg (point interaction from four-gluon vertex not shown).

The process uū → uū has in addition to diagram (c) also diagram (d). The square of diagram (d)

is just as that of (a). There is an additional interference term. It involves the product

T a
ijT

b
jmT

a
mlT

b
li = Tr (T aT bT aT b) = −2

3
(61)

and one obtains
dσ

dt̂
(uū→ uū) =

4πα2
s

9ŝ2

[
ŝ2 + û2

t̂2
+
t̂2 + û2

ŝ2
− 2

3

û2

ŝt̂

]
. (62)

Here the first and second terms are from the square of diagrams (a)=(d) and (c), respectively, and the last

is from interference. The computation of uu → uu, from diagrams (a) and (b), is obtained from this by

crossing, u↔ s.

The amplitudes for uu→ gg are shown in diagrams (e), (f), and (g). The first two are similar to the

QED process ee → γγ, but the last one includes the three-gluon coupling characteristic of Yang–Mills
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theory. The QED-like diagrams have T a
ijT

b
jk averaged (summed) over initial (final) colours:

(
1

3

)2

(T aT b)ik(T
aT b)∗ik =

1

9
Tr(T aT bT bT a) =

1

9

(
4

3

)2

Tr(1) =
16

27
. (63)

Diagram (g) has a colour factor T c
ijf

abc. Squaring and averaging (summing) over initial (final) colours:

(
1

3

)2∑

ijab

T c
ijf

abc(T d
ijf

abd)∗ =
1

9
Tr(T cT d)fabcfabd =

1

9

(
1

2
δcd

)
(3δcd) =

1

9

1

2
3 · 8 =

4

3
. (64)

Altogether one obtains

dσ̂

dt̂
(uū→ gg) =

32πα2
s

27ŝ2

[
û

t̂
+
t̂

û
− 9

4

(
t̂2 + û2

ŝ2

)]
. (65)

The inverse process gg → uu proceeds through the same diagrams but read from right to left (for

example, diagram (h) is (e) read backwards). The only difference in the cross-section is that the average

over initial colour is now (1/8)2, so there is a correction factor of (3/8)2. The related processes ug → ug
and ūg → ūg are obtained from this by crossing, ŝ↔ t̂, and an overall colour correction factor (3/8).

Finally, for gg → gg there are gluon mediated processes in all three channels [the s-channel

exchange is shown in diagram (i)] and a local four-gluon interaction. The laborious but straightforward

calculation gives

dσ̂

dt̂
(gg → gg) =

9πα2
s

2ŝ2

[
3 −− ût̂

ŝ2
− ŝt̂

û2
− ŝû

t̂2

]
. (66)

The result of this calculation can be compared with experiment. Figure 12 show the PDG compi-

lation of experimental results and next-to-leading-order (NLO) theoretical curves for comparison, using

CTEQ parton density functions. The normalization is somewhat uncertain. (Recall that the argument E
in αs(E) is not precisely fixed: the next-to-NLO calculation is required for this.) Yet we see impressive

agreement with experiment: the shape is tracked over seven orders of magnitude in cross-section.

6 Scaling violations

We now turn our attention to corrections to the leading order results obtained above for DIS. While

the discussion applies similarly to our other examples (Drell–Yan, dijets), we use DIS as the means

to introduce and discuss the subject. While computing NLO corrections will increase the accuracy of

the theoretical predictions, the motivation for discussing this here is the introduction of new effects

(violations to Bjorken scaling) and new ideas (factorization, evolution equations, etc.).

Before launching into the details of the discussion, let us get a qualitative idea of what parton

evolution is and how it is related to Bjorken scaling. Consider the DIS diagram in Fig. 13. A gluon has

been radiated from the collinear quark before its collision with the off-shell photon. If the gluon is nearly

collinear with the proton the process will simply degrade the collinear momentum fraction of the quark,

from x to y in the diagram, and will add a gluon component to the proton. Near collinear emissions

introduce logarithmic divergences, ∼ dp⊥/p⊥. So if we restrict p⊥ < Q, the quark density function will

be modified by aQ-dependent term, f(x) → f(x,Q) = f(x)+αs ln (Q/µ) P̃ (x), where µ is an infrared

cut-off and P̃ (x) is related to the probability of emitting the gluon off a quark with momentum fraction

x. As we increase the energy of our collisions, we can raise the limit Q: the cross-section will depend

on Q through the parton density functions and Bjorken scaling will be slighly violated by logarithmic

Q-dependence.
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Fig. 12: Experimental results for the dijet cross-section in pp̄ collisions and comparison with theory [21]. Com-

parison between different experimental results is not straightforward since different jet reconstruction algorithms

were used. Theory results are NLO-QCD with CTEQ4HJ pdfs using µ = ET /2.
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Fig. 13: Gluon radiation from struck parton in deep inelastic scattering

6.1 Factorization

In order to understand better and compute the effects of collinear emission of partons in DIS, and to

generalize to the case of multiple emissions, it is useful to understand the concept of factorization. We

will discuss it in the context of QED, where the computations are simpler but the conceptual issues are

substantially the same. Moreover, the QED case is interesting in its own right. For example, multiple

photon emission is used to measure eē→ Z → νν̄. So we consider Figs. 1 and 13 but with the incoming

nucleon replaced by an electron, and quarks and gluons replaced by electrons and photons. The second

figure has three additional elements: an electron propagator and vertex, an emitted photon particle and the
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M0 = p

q→

M1 =
p

zp

q→

Fig. 14: Subdiagrams in ee → eX scattering that are compared in establishing factorization

associated phase space integral. As we will see, factorization is the statement that these three elements

come in as an overall factor.

To be more precise (but not very), consider the subdiagrams of Figs. 1 and 13 shown in Fig. 14.

The statement of factorization is that the leading divergence at small p⊥, the transverse momentum of

the emitted photon, of the square of the amplitude, summed over final-state polarizations, is the product

of the square of the amplitude with no photon emission and a computable factor:

∑

pols

|M1|2 =
e2

p2
⊥
P̃ (z)|M0|2, (67)

where P̃ (z) is a function of the collinear momentum fraction z only. The phase space integral for the

emitted photon then gives

σ(`e→ `(eγ)) =

∫ 1

0
dz

∫
dp2

⊥
p2
⊥

α

2π
P̃ (z)σ(`e → `e) . (68)

Notice the similarity with the parton model. In fact, following the parton model we write

σ(`(k)e(p) → `X) =

∫ 1

0
dzfe(z)σ(`(k)e(zp) → `e) (69)

where fe(z)dz is the probability of finding an electron with longitudinal momentum fraction between z
and z + dz when probing an electron. It follows that

f (1)
e (x) =

α

2π
ln

s

m2
P̃ (x) . (70)

We have included a superscript to indicate this is the result of the emission of one photon, and we

have performed the integral over p⊥, which is logarithmic and cut-off in the infrared by the small but

non-vanishing electron mass and in the ultraviolet by the largest available momentum which we simply

estimate as s.

This first approximation to the electron density is wrong on several counts. First, in the limit

α → 0 the electron density should be concentrated at z = 1 and be associated with no photon emission,

f (0)(x) = δ(1 − x). Second, the probability should be normalized,
∫
dxfe(x) = 1, but clearly neither

f (1)(x) nor f (0)(x)+f (1)(x) are. As we will see, the third problem is that P̃ (x) diverges as x → 1 . All

three problems are corrected by replacing the P̃ (x) by a distribution with vanishing integral, P̃ (x) →
P (x), and

fe(x) = δ(1 − x) +
α

2π
ln

s

m2
P (x) . (71)

The difference between P̃ (x) and P (x) is concentrated at z = 1 and can be understood as arising from

another contribution of order α that we have neglected, namely the one-loop radiative correction to the

γ∗ vertex. As mentioned earlier, the vertex correction is not infrared safe by itself, but the sum with

photon bremsstrahlung is. So the singularity at z = 1 in P̃ (x) is associated with this infrared singularity,

and is cancelled by the divergent vertex correction (which, of course, is concentrated at z = 1).
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M0 = X

q→

M1 =
X

zp →

q→

Fig. 15: Factorization and the photon content of the electron

Similarly one may consider the photon density in the electron, fγ(x). To this end consider the

amplitudes in Fig. 15. Factorization states that the leading term at small p⊥ of the final-state electron is

∑

spins

|M1|2 =
e2

p2
⊥
P ′(z)|M0|2 (72)

for some function P ′(z). By an argument like the one above, it follows that

fγ(x) =
α

2π
ln

s

m2
P ′(x) . (73)

One can similarly consider photon and positron density functions. And, if the log is large as will

be the case in QCD, one may wonder about resumming leading logs in these expressions. We will come

back to these issues when we consider density evolution equations. For now let us see how factorization

works in detail and compute the functions P (z) and P ′(z).

To this end we will calculate (compare with the second diagram in Fig. 14)

∑

spins

∣∣∣∣∣∣∣∣
p

p′

q
µ

→

k←

+ p p′
q

µ

→

k←

∣∣∣∣∣∣∣∣

2

(74)

and show that in collinear limit it is proportional to

∑

spins

∣∣∣∣∣∣∣∣∣
p

q
µ

→

∣∣∣∣∣∣∣∣∣

2

= e2
∑

s,s′

ū(p′)γµu(p)
[
ū(p′)γνu(p)

]∗
= e2Tr

(
/p′γµ

/pγ
ν
)

(75)

with p replaced by p − k. In these diagrams the off-shell photon couples to the µ component of the

current and carries momentum q. We have summed over initial electron spin also. This is unnecesary but

makes the computation simpler. Alternatively one can introduce a helicity projection operator and then

sum over the spin without loss of generality.

For the computation we need the following kinematics. The massless electron and emitted photon

momenta are

pµ = (p, 0, 0, p) kµ = ((1 − z)p, (1 − z)p sin θ, 0, (1 − z)p cos θ) . (76)

The transverse momentum is then k⊥ = (1− z)p sin θ, which for small θ gives θ = k⊥/(1 − z)p. Then,

the virtual electron momentum is, in the first photon emission amplitude (u-channel),

(p− k)µ = (zp,−k⊥, 0, zp+
k2
⊥

2(1 − z)p
) with virtuality û = (p− k)2 = −2p · k =

k2
⊥

(1 − z)
(77)
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while in the second (s-channel) the virtuality ŝ = (p+q)2 = q2 +2q ·p is large. A divergence as p2
⊥ → 0

arises from vanishing propagator denominators, so only the u-channel graph diverges. For the square of

the sum of amplitudes, divergences appear in the square of the u-channel graph and in the interference

term.

The u-channel amplitude has a diverging denominator 1/(2p · k)2. The numerator has

∑

s,s′,ε

∣∣ū(p′)γµ(/p− /k)/ε∗u(p)
∣∣2 =

∑

ε

Tr
(
/p′γµ(/p− /k)/ε∗/p/ε(/p− /k)γν

)
= 2Tr

(
/p′γµ(/p− /k)/p(/p− /k)γν

)

(78)

In the last step we made the replacement
∑

ε εαε
∗
β → −gαβ , which is allowed by current conservation.

Now we use the fact that /p/p = 0 = /k/k and /k/p/k = {/k, /p}/k − /p/k/k = 2k · p/k:

= 2Tr
(
/p′γµ/k/p/kγ

ν
)

= 2(2k · p)Tr
(
/p′γµ/kγν

)
= 2(1 − z)(2k · p)Tr

(
/p′γµ

/pγ
ν
)
. (79)

In the step before last we obtained a factor of 2p · k, which softens the divergence as k2
⊥ → 0. For that

reason we neglect k⊥ in the remaining factor, which allows us to write k ≈ (1−z)p in the last step. Note

that the remaining trace is precisely the amplitude of the process with no photon emission (times 2p · k).

The interference calculation is similar, but since there is only one diverging power of 1/2p ·k from

the start we can replace k by (1 − z)p in the numerator. So we have

∑

s,s′,ε

ū(p′)γµ(/p− /k)/ε∗u(p)
[
ū(p′)/ε∗(/p′ + /k)γνu(p)

]∗
= 2Tr

(
/p′γµ(/p− /k)(/p′ + /k)γν

/p
)

= 2zTr
(
/p′γµ

/p/p
′γν
/p
)

(80)

and it is easy to show that the last trace is Tr
(
/p′γµ/p/p′γν/p

)
= −2p · p′Tr

(
/p′γµ/pγν

)
.

Combining results from the u-channel and the interference terms we obtain

∑
|M1|2 = − 2e2

2k · p

(
1 + z2

1 − z

)
Tr
(
/p′γµ

/pγ
ν
)

=
2e2

k2
⊥

(
1 + z2

z

)
Tr
(
/p′γµ(/p− /k)γν

)
. (81)

The trace factor is the same as in Eq. (75), which shows factorization. To complete the calculation of the

cross-section we integrate over phase space. But the phase space for everything but the collinear photon

is already included in the lower order cross- section. So we integrate over the photon phase space only.

The integration over the direction in the transverse plane is trivial. Recalling that k3 ≈ (1 − z)p,

∫
d3k

(2π)32k0
=

∫
πdk2

⊥ pdz

(2π)32(1 − z)p
. (82)

So integrating our factorization relation over phase space dΦ(X) of the final state plus the photons, we

have ∫
dΦ(X + γ)

∑
|M1|2 =

∫
dk2

⊥
k2
⊥
dz

α

2π

(
1 + z2

1 − z

)
1

z

∫
dΦ(X)

∑
|M0|2 . (83)

Finally the cross-section requires factors of the flux of speed of light particles and of the inverse of the

energies of the incident particles. These are common except for the energy of the electron, which is p on

the left-hand side and zp on the right-hand side. The explicit factor of 1/z accounts for this difference,

and we finally arrive at Eq. (68) with the explicit result,

P̃ (z) =

(
1 + z2

1 − z

)
. (84)
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One can perform an analogous computation for a collinear electron emitted from an electron, and a

photon that goes on to a hard collision. It can be shown, however, that P ′(z) = P̃ (1 − z):

P ′(z) = P̃ (1 − z) =

(
1 + (1 − z)2

z

)
. (85)

The electron and photon density functions of the electron are then

fe(x) = δ(1 − x) +
α

2π
ln

s

m2

(
1 + x2

(1 − x)+
+

3

2
δ(1 − x)

)
,

fγ(x) =
α

2π
ln

s

m2

(
1 + (1 − x)2

x

)
.

(86)

We have performed the integral over transverse momentum, cut-off at small k⊥ by the electron mass and

at large k⊥ by some typical large scale in the problem
√
s that dictates the maximum of k⊥. Also, we have

included in the large bracket a term concentrated at x = 1, Cδ(1− x), with coefficient C = 3/2. This is

determined by regulating the divergence at x = 1. Replace the factor 1/(1 − x) by a ‘plus’-distribution,

1/(1 − x)+ defined by ∫ 1

0
dx

f(x)

(1 − x)+
=

∫ 1

0
dx

f(x) − f(1)

(1 − x)
. (87)

Applying this to fe we have

∫ 1

0
dx

1 + x2

(1 − x)+
=

∫ 1

0
dx

x2 − 1

(1 − x)
= −3

2
. (88)

In order for fe to remain normalized we must choose C = 3/2.

6.2 Evolution

Factorization is the basis for re-summing the leading logs in DIS. We have isolated the large log arising

from the singularities in the emission of a collinear parton, and expressed the result in terms of the

lowest order process. The idea in performing the re-summation is to repeat the procedure with additional

collinear partons. Since factorization holds, when we add over all collinear emissions we will obtain the

product of the lowest order term and a factor which is the sum of increasing powers of α ln(s/m2).

To see how this works, consider the two collinear photon emission diagram in Fig. 16. The two

electron propagators have denominators −2p · k2 ∼ k2
2⊥ and −2p · (k1 + k2) ∼ k2

1⊥ + k2
2⊥. These will

give rise to a product of two logs if in the second we can neglect k2
2⊥ relative to k2

1⊥. For that region of

phase space the transverse momentum integrals will give

( α
2π

)2
∫ s

m2

dk2
1⊥

k2
1⊥

∫ k2
1⊥

m2

dk2
2⊥

k2
2⊥

(89)

=
1

2

( α
2π

)2
ln2 s

m2
. (90)

Similarly, with n emissions, the region of transverse momentum integration k2
1⊥ � k2

2⊥ � · · · � k2
n⊥,

where k1 is closest to the hard scattering and kn is farthest from it gives 1/n!(α ln(s/m2)n.

The computation along these lines becomes difficult once we attempt to include mixed processes

with collinear emission of both photons and electrons. There is a simpler way to proceed by setting up

an equation whose solution is the sum. To this effect we think of the collinear emissions as a continuous

evolution process, as a function of the transverse momentum of the electron constituent. Replace the

density function f(x) by f(x,Q), the probability of finding a parton in the electron with longitudinal

B. GRINSTEIN

50



p

k1

k2

q→

Fig. 16: Two collinear photons emitted from the parton before the hard scattering. This diagram gives a second

order contribution ∼ (α ln(s/m2))2.

momentum fraction x and transverse momentum up toQ, k⊥ ≤ Q. By ‘finding’ here we mean that when

we probe the electron the hard scattering will occur with the parton with those characteristics, because

of mutiple collinear radiation.

We then ask, how does f(x,Q) change as we increase Q to Q + ∆Q? An electron in fe(x,Q)
may radiate a photon with Q < k⊥ < Q+ ∆Q. This will contribute to fγ(x,Q+ ∆Q). Recall that the

differential probability for an electron to turn into a photon (radiating a collinear electron) is

α

2π

dk2
⊥

k2
⊥
P ′(z) . (91)

So the probability fγ(x,Q + ∆Q)dx to find a photon in the electron with transverse momentum up to

Q + ∆Q is the sum of the probability fγ(x,Q)dx of finding it with transverse momentum up to Q and

the probability that a photon with transverse momentum between Q and Q + ∆Q is emitted from an

electron. If this electron has momentum fraction y and the photon has a fraction z of this, then

fγ(x,Q+ ∆Q)dx = fγ(x,Q)dx+

[
α

2π

∆Q2

Q2
P ′(z)dz

]
fe(y,Q)dy . (92)

Note that the photon momentum fraction must be x, so zy = x, or y = x/z and dy = dx/z. Integrating

over all z such that y ≤ 1, we have, finally,

d

d lnQ
fγ(x,Q) =

∫ 1

x

dz

z

α

π
P ′(z)fe(

x

z
,Q) . (93)

This is the first of the evolution equations.

One can similarly find an equation for fe(x,Q). However, one must consider the possibility of

starting from a photon [from fγ(x,Q)] and radiating an electron or a positron. Factorization works just

as before, and the splitting probability can be determined straightforwardly. We leave this as an exercise

for the reader.

The complete set of evolution equations is named after Gribov and Lipatov, who first derived them.

Writing Pxy(z) [sometimes also written Px→y(z)] for the probability that parton y splits off parton xwith

longitudinal momentum fraction z, we have the Gribov–Lipatov equations:

Q
d

dQ
fe(x,Q) =

α

π

∫ 1

x

dz

z

(
Pee(z)fe(

x

z
,Q) + Peγ(z)fγ(

x

z
,Q)

)
,

Q
d

dQ
fē(x,Q) =

α

π

∫ 1

x

dz

z

(
Pee(z)fē(

x

z
,Q) + Peγ(z)fγ(

x

z
,Q)

)
,

Q
d

dQ
fγ(x,Q) =

α

π

∫ 1

x

dz

z

(
Pee(z)[fe(

x

z
,Q) + fē(

x

z
,Q)] + Pγγ(z)fγ(

x

z
,Q)

)
.

(94)
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We have included a density function for the positron, fē(x), since the photon can split into either an

electron or a positron when a collinear positron or electron is radiated. By charge conjugation invariance

the splitting functions for the positron are equal to those of the electron. The splitting functions are

Pee(z) =
1 + z2

(1 − z)+
+

3

2
δ(1 − z) ,

Pγe(z) =
1 + (1 − z)2

z
,

Peγ(z) = z2 + (1 − z)2 ,

Pγγ(z) = −2

3
δ(1 − z) .

(95)

The splitting function for a photon into a photon is trivial since the photon is not charged (it does not

interact with itself). The delta function contribution arises from inisisting that fγ be properly normalized.

To find the density functions of partons in the electron we need to solve the Gribov–Lipatov

equations with the following initial conditions at Q = m:

fe(x,Q) = δ(1 − x) fγ(x,Q) = 0 fē(x,Q) = 0 . (96)

If one is interested instead in collisions of a photon (or a positron), the corresponding density functions of

partons in the photon (or positron) are obtained by solving the same equations but with initial conditions

fγ(x,m) = δ(1 − x), fe(x,m) = 0 and fē(x,m) = 0 [or fē(x,m) = δ(1 − x), fe(x,m) = 0 and

fγ(x,m) = 0].

6.3 GLAP evolution equations

We can now return to the question of re-summation of leading logs in QCD. We can repeat the same

arguments and calculations as in QED, with some modifications. First, we cannot trust the calculation

of f(x,Q) at low Q. But for large Q, we can trust our calculation of the change in f(x,Q) from Q
to Q + ∆Q. Therefore we may trust evolution equations, but we will have to resort to experiment to

determine the initial conditions.

There are obvious changes in the calculation that arise from colour factors. More interesting is a

novel contribution arising from the fact that gluons can interact with themselves. Therefore one can split

a gluon into gluons, g → gg, giving rise to a non-trivial contribution to the splitting function Pgg.

The full set of Gribov–Lipatov–Altarelli–Parisi (GLAP) evolution equations is [24–26]

Q
d

dQ
fi(x,Q) =

αs(Q)

π

∫ 1

x

dz

z

(
Pqq(z)fi(

x

z
,Q) + Pqg(z)fg(

x

z
,Q)

)
,

Q
d

dQ
fī(x,Q) =

αs(Q)

π

∫ 1

x

dz

z

(
Pqq(z)fī(

x

z
,Q) + Pqg(z)fg(

x

z
,Q)

)
,

Q
d

dQ
fg(x,Q) =

αs(Q)

π

∫ 1

x

dz

z

(
Pgq(z)

∑

i

[fi(
x

z
,Q) + fī(

x

z
,Q)] + Pgg(z)fg(

x

z
,Q)

)
,

(97)

where the sum in the last line is over quark flavours, i = u, d, s and we have guessed that the appropriate

scale for αs is of order Q.
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Fig. 17: GLAP evolution of a u-quark CTEQ density in the proton from the starting point at Q = 2 GeV to

Q = 20 GeV and Q = 200 GeV. Taken from the text by Peskin and Schroeder [15].

The splitting functions in QCD include the appropriate colour factors and the interesting process

of a gluon splitting into gluons:

Pqq(z) =
4

3

[
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]

Pgq(z) =
4

3

[
1 + (1 − z)2

z

]

Pqg(z) =
1

2

[
z2 + (1 − z)2

]

Pgg(z) = 6

[
1 − z

z
+

z

(1 − z)+
+ z(1 − z) +

(
11

12
− nf

18

)
δ(1 − z)

]
.

(98)

In practice the GLAP equations are solved numerically, starting from a complete set of evolution

equations obtained at some low Q (but large enough that perturbative evolution is valid) from fitting to

experiment. We expect that as Q increases there will be more splitting and the functions will populate

the lower x region. This is illustrated in Fig. 17, taken from the text by Peskin and Schroeder [15],

showing the evolution of a u-quark CTEQ density in the proton from the starting point at Q = 2 GeV to

Q = 20 GeV and Q = 200 GeV.

An important, built-in feature of the evolution equations is that they preserve the sum rules for the

density functions. Indeed, it is easy to check that

Q
d

dQ

∫ 1

0
dx [fi(x,Q) − fī(x,Q)] = 0 (99)

and

Q
d

dQ

∫ 1

0
dxx[

∑

i

(fi(x,Q) + fī(x,Q)) + fg(x,Q)] = 0 (100)

and therefore that if the initial conditions satisfy the flavour and momentum sum rules, then so do the

density functions at any Q.
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MRST(2001) NLO fit , x = 0.00005 - 0.00032
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Fig. 18: DIS results of four experiments compared with the NLO fit of the MRST2001 parton densities [23].

Plotted is F2(x, Q2) =
∑

i q2
i xfi(x, Q2) as a function of Q2 for different bins in x. The x bins are displaced

vertically by 0.25 for display purposes. The dashed line displays the MRST99 parton densities fit.

We have managed to re-sum the leading logs that arise in the process of collinear emission asso-

ciated with a hard scattering. The parton model is essentially still valid, with the caveat that the parton

densities have Q dependence that can be calculated through solution of the GLAP equations. Bjorken

scaling is therefore not exact, but is only violated by a mild logarithmic dependence. If Q varies over

many decades this effect should be substantial. This is seen in DIS experiments at very high energy.

For example, Fig. 18 compares the results of four experiments with the NLO fit of the MRST parton

densities. This is displayed as a function of Q2 for each bin in x. It is seen that the Q2 evolution is more

rapid the smaller the value of momentum fraction x, which is expected since the small x bins are being

populated as one evolves in Q.
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