HARD EXCLUSIVE SCATTERING

P. Kroll

Fachbereich Physik, Universität Wuppertal

Graz, April 2007

Outline:

- Lecture 1: QCD, factorization, PDFs and all that
- Lecture 2: Generalized Parton Distributions (GPDs)
- Lecture 3: Applications: Deeply virtual and

wide-angle exclusive scattering

Lecture 1: QCD, factorization, PDFs and all that

Outline:

- QCD, asymptotic freedom, factorization
- Evolution
- Deep inelastic scattering (DIS)
- Parton distribution functions (PDFs)
- Results, interpretration and use of PDFs

Quarks

Multiplet structure of hadron spectrum lead to introduction of constituents QUARKS u, d, s spin-1/2 Gell-Mann (64); Zweig (64) today: three more quarks c, b, t (heavy) light quarks form the fundamental triplets of the group SU(3)_F light hadrons are members of the irreducible representations of the SU(3)_F mesons: $q\overline{q}$ $3 \times \overline{3} = 1 + 8$ baryons: qqq $3 \times 3 \times 3 = 1 + 8 + 8 + 10$ Spectrum in agreement with this structure, SU(3)_F broken by quark masses Gell-Mann Nobel prize 1969

but - free quarks have not been observed

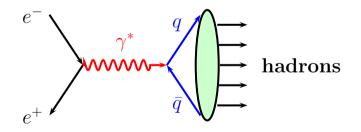
- baryon wf. symmetric unter quark interchange

e.g. $\Delta^{++}(s_3 = 3/2) = f(r_1, r_2, r_3) |\uparrow\uparrow\uparrow\rangle | uuu\rangle$ symmetric space (L = 0) spin flavor wfs by virtue of SU(3)_F product wf of baryons symmetric - symmetric quark model in conflict with Spin-Statistik theorem

Color

Greenberg (64), Han-Nambu(65) to cure this problem a new quantum number color q_c c = 1, 2, 3 SU(3)_C triplet confinement hypothese: only color singlet states appear as free, asymp. states excludes existence of free quarks color structure of baryons: $3 \times 3 \times 3 = 1 + 8 + 8 + 10$ singlet state is total antisymmetric $B = \sum_{i,j,k=1,2,3} \epsilon_{ijk} q_i q_j q_k$ \implies product of space, spin and flavor wfs must be symmetric

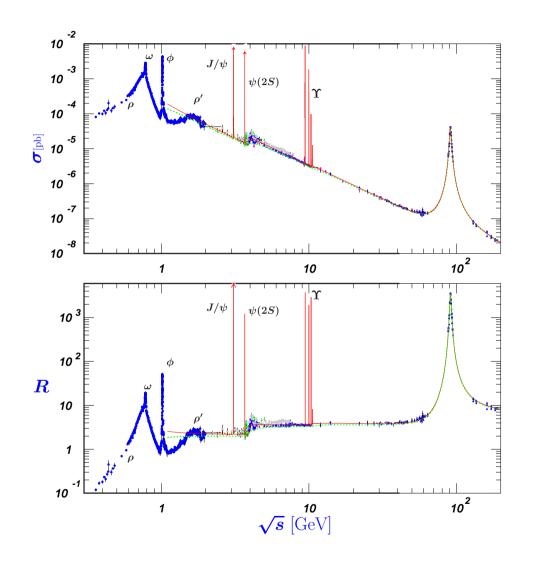
other evidence for color:



 e^+e^- annihilation into hadrons reaction mech.: $e^+e^- \rightarrow \gamma^* \rightarrow q\overline{q}$ and soft $q\overline{q} \rightarrow$ hadrons transition with probability 1 (confinement) hence, up to charges, same cross section as for $e^+e^- \rightarrow \mu^+\mu^-$

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = 3\sum_a e_a^2$$

 $e^+e^- \rightarrow hadrons$



dashed: quark approach

steps: $2 \ 10/3 \ 11/3$

solid: 3-loop pQCD (NNNLO)

plot taken from PDG

QCD

Weyl (29), Yang-Mills (54): dynamical principle require a locally phase invariant field with respect to a certain group QED: U(1)

Fritzsch, Gell-Mann, Leutwyler (73): take $SU(3)_C$ (exact) for interaction among quarks

$$\Psi(x) \rightarrow \Psi'(x) = \exp\left[ig_s \sum_{a=1}^8 T_a \alpha_a(x)\right] \Psi(x)$$

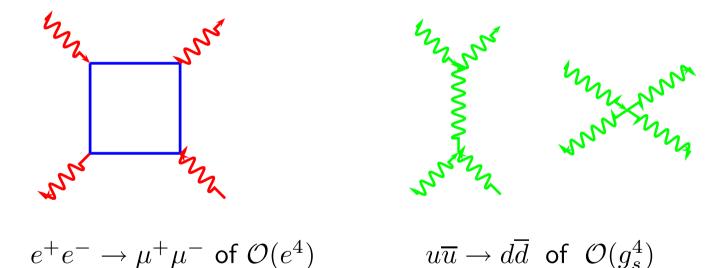
 $T_a = \lambda_a/2$ generators of SU(3)_C, λ_a traceless, hermitic 3 × 3 matrices (8),
 $\alpha_a(x)$ arbitrary functions
free Lagrangian: $\mathcal{L}_0 = i\overline{\Psi} \partial \!\!\!/ \Psi - m\overline{\Psi} \Psi$
replace ∂_μ by covariant derivative: $D_\mu = \partial_\mu + ig_s \sum T_a G_{a\mu}$

$$\mathcal{L}_{\text{QCD}} = \overline{\Psi}(i\partial - m)\Psi - g_s \sum_a \overline{\Psi}\gamma^{\mu}T_a\Psi G^{\mu}_a - 1/4\sum_a G^a_{\mu\nu}G^{\mu\nu}_a$$

field strength tensor of gauge field $G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu - g_s \sum_{b,c} f_{abc} G^b_\mu G^c_\nu$

 G^a_μ potential of gauge field, 8 gauge fields quant of gauge field - gluon $J^P = 1^-$, a = 1..8gauge transform $G_{a\mu} \rightarrow G'_{a\mu} = G_{a\mu} - \partial_\mu \alpha_a - g_s \sum_{bc} f_{abc} \alpha_b G_{c\mu}$ f_{abc} structure constants of SU(3)_C ([λ_a, λ_b] = $f_{abc} \lambda_c$)

similar to QED but gluon is colored: - self interaction, non-linear theory $\gamma\gamma \to \gamma\gamma \quad \sigma \sim \mathcal{O}(e^8) \qquad gg \to gg \quad \sigma \sim \mathcal{O}(g_s^4)$



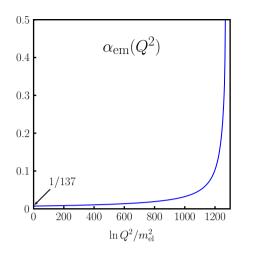
Gliding coupling

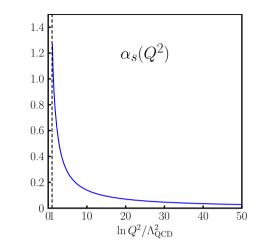
fundamental feature of relativistic QFT

- pair creation and annihilation
- i.e. strong fluctuations in particle number (in contrast to non-rel QM)
- complicated vacuum, can be polarized (screening/antiscreening)
- strength of coupling depends on scale/distance

formally - pert. corrections to gauge boson propagator ($Q^2=-q^2>0$)

$$\begin{split} \alpha(Q^2) &= \frac{\alpha(\mu^2)}{1 - \beta_0 \alpha(\mu^2) \ln(Q^2/\mu^2)} & \text{QED: } \beta_0 = 1/(3\pi) \\ \text{QCD: } \beta_0 &= (2/3n_f - 11)/(4\pi) < 0 \\ \text{breakdown of pert. theory if coupling } \alpha &= g^2/4\pi \not\ll 1 \end{split}$$





with regard to position of singularity

$$\alpha_{\rm s}(Q^2) = \frac{4\pi}{(11 - 2/3n_f)\ln Q^2/\Lambda_{\rm QCD}^2}$$

singular at $Q^2/m_e^2 \simeq 10^{556}$ $\alpha_{\rm em}(Q^2 = M_Z^2) \simeq 1/128$ distance r = 1/Q, $\hbar = c = 1$, natural units (not anthropomorphic Planck)

choose $\mu = m_e$ static limit

 $\alpha_{\rm em}(0) = 1/137.03599976$

 $\Lambda_{\rm QCD} \simeq 240 \, {\rm MeV}$ asymptotic freedom - infrared slavery Gross-Wilczek; Politzer (73); Nobel prize 04 singularity is severe problem - in any event there are soft regions with large $\alpha_{\rm s}$ (where hadrons are formed) is QCD of any use?

Factorization

IT IS: processes with a hard scale (Q^2) often factorize into

- hard partonic-level subprocesses
- and soft hadronic matrix elements

to all orders of α_s and in all logs of μ_F^2 , partons treated as on-shell part. (μ_F factorization scale of $\mathcal{O}(Q^2)$, partons=quarks,gluons)

QFT: in higher orders

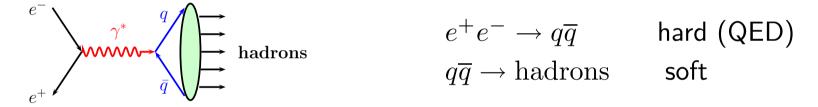
- ultraviolet singularities (renormalization of coupling and mass $\mu_{
 m R}$)
- infrared singularities (redefinition of observables)

(e.g. from emission of (almost) collinear or soft gluons)

 μ_F - defines separation of short-distance from long-distance effects i.e. any propagator that is off-shell by a scale $>\mu_F^2$ is considered as short-range effect, scales $\leq \mu_F^2$ as long range

hard subprocess: calculable in pert. theory, infrared save, independent of the hadrons, depends on $\mu_{\rm F}$ soft hadr. matrix elem.: infrared singular, is specific to the hadrons, is universal, i.e. does not depend on particular hard process depends on $\mu_{\rm F}$ (evolution)

example: $e^+e^- \to \gamma^* \to q\overline{q} \to hadrons$ at large s



for a number of processes factorization has been rigorously shown to hold $e^+e^- \rightarrow \text{hadrons}, ep \rightarrow e'X, AB \rightarrow e^+e^-X, F_{\pi}, F_{\pi\gamma}, \text{DVCS}, \dots$ for others still a hypothesis (often in very good agreement with experiment) e.g. $AB \rightarrow HX, AB \rightarrow \text{jets}, F_p,\dots$

Inelastic *ep* **scattering**

 $e \xrightarrow{q} p$ $p \xrightarrow{q} p'$ $e \xrightarrow{q} p$ $p \xrightarrow{q} x$

$$\frac{d\sigma_L}{d\Omega} = \frac{d\sigma_{\text{Mott}}}{d\Omega} \left\{ \frac{G_E^2 + \tau G_M^2}{1 + \tau} - 2\tau G_M^2 \tan^2 \theta / 2 \right\}$$

Hoftadter et al (56), Nobel prize 1961
$$F_1 = \frac{G_E + \tau G_M}{1 + \tau} \qquad F_2 = \frac{G_M - G_E}{1 + \tau}$$

elastic - form factors $[\tau = -q^2/(4m^2)]$

 $\begin{array}{ll} \text{inelastic} & - & \text{structure functions} \\ q = k' - k; \quad Q^2 = -q^2 > 0 \\ \nu = E_L - E'_L = p \cdot q/m \\ x_{\text{Bj}} = Q^2/(2p \cdot q); \quad 0 \leq x_{\text{Bj}} \leq 1 \end{array}$

$$\frac{d^2\sigma_L}{dQ^2d\nu} = \frac{4\pi\alpha_{\rm em}^2 E'}{mEQ^4} \left[2\sin^2\theta/2W_1 + \cos^2\theta/2W_2\right]$$

Bjorken limit

Bjorken limit: $Q^2, \nu
ightarrow \infty$, $x_{
m Bj} fixed$

$$\lim_{B_{j}} mW_{1}(\nu, Q^{2}) = F_{1}(x_{B_{j}}) \qquad \lim_{B_{j}} \nu W_{2}(\nu, Q^{2}) = F_{2}(x_{B_{j}})$$

scaling with finite F_i

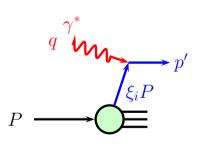
Friedman-Kendall-Taylor et al (72), Nobel prize 1990scaling already at low Q^2 early scalingparton model

more precise measurementsChan et al (75)scaling violations $F_i(x_{\rm Bj}, Q^2)$ QCD

Interpretation of scaling

scaling with finite limits is evidence for elastic electron scattering off point-like constituents (partons)

- nucleon at rest partons possess isotrope momentum distribution (rotational symmetry) $\sum \mathbf{p}_i = 0$ $\Delta p = 1/\Delta x \simeq 200 \text{MeV}$
- boost to frame with large momentum P of proton (IMF) $\mathbf{p}_{\perp i}/P \ll 1$ neglect collinear appr. neglect binding energy too, treat partons as quasi free
- $p_i = \xi_i P$, $0 < \xi_i < 1$ momentum fraction (IMF: $\xi_i = p_i^+/P^+$)



mass-shell condition $=\frac{x_{\rm Bj}}{O^2}\delta(\xi_i - x_{\rm Bj})$

light-cone coordinates $a = (a_0, a_1, a_2, a_3) \Rightarrow [(a_0 + a_3)/\sqrt{2}, (a_0 - a_3)/\sqrt{2}, a_{\perp}]$

different types of partons may exist

 $q_i(\xi)(\geq 0)$ number of partons of type *i* (with charge $e_i e_0$) with momentum fractions between ξ and $\xi + d\xi$ Feynman (69)

Consequences

• contribution to structure functions

$$2mW_1 = \sum_i e_i^2 \int_0^1 d\xi q_i(\xi) \delta(\xi - x_{\rm Bj}) = \sum_i e_i^2 q_i(x_{\rm Bj}), \ \nu W_2 = \sum_i e_i^2 x_{\rm Bj} q_i(x_{\rm Bj})$$

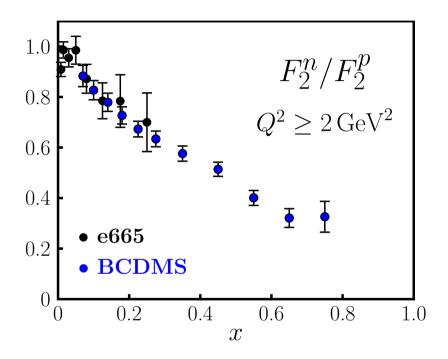
only partons with $\xi = x_{\rm Bj}$ contribute at fixed Q^2, ν

- structure fcts. reveal scaling $F_1(x) = 1/2 \sum e_i^2 q_i(x)$ $F_2(x) = 2xF_1(x)$ Callan-Gross relation characteristic of spin 1/2
- partons as quarks (isospin symmetry $u_p = d_n$, $d_p = u_n$, $s_p = s_n$) $1/xF_2^{ep}(x) = 4/9[u(x) + \overline{u}(x)] + 1/9[d(x) + \overline{d}(x)] + 1/9[s(x) + \overline{s}(x)] + \cdots$ $1/xF_2^{en}(x) = 4/9[d(x) + \overline{d}(x)] + 1/9[u(x) + \overline{u}(x)] + 1/9[s(x) + \overline{s}(x)] + \cdots$

Nachtmann inequality

$$\frac{1}{4} \leq \frac{F_2^{en}(x)}{F_2^{ep}(x)} \leq 4$$
$$u + \overline{u} \qquad d + \overline{d}$$

dominance of



exp: - dominance of u(d) in proton (neutron) at large x

- $x \rightarrow 0$ many types of partons contribute
- SU(3)_F symmetric PDFs $F_2^{ep} = 1$

- how many quarks are in the proton? $\int_{x_0}^1 F_2^{ep} dx/x = \sum e_i^2 \int q_i(x) dx = \sum e_i^2 n_i$ integral seems to diverge HERA: $x_0 = 10^{-4} \implies n = 12$
- does sea contribute equally to proton and neutron?
 - $\begin{array}{ll} \mbox{Gottfried sum rule} & u_v = u \overline{u} & d_v = d \overline{d} \mbox{ (definition)} \\ 1/x(F_2^{ep} F_2^{en}) = 1/3[u d + \overline{u} \overline{d}] = 1/3[u_v d_v] + 2/3[\overline{u} \overline{d}] \\ \int_0^1 dx/x(F_2^{ep} F_2^{en}) = 1/3 + 2/3(n_{\overline{u}} n_{\overline{d}}) \\ \mbox{integral seems to exist} & \mbox{exp: } 0.24 \pm 0.016 \Longrightarrow n_{\overline{u}} n_{\overline{d}} \simeq -0.14 \end{array}$
- momentum sum rule $xq_i(x)$ momentum distr. of type i partons $F = \int_0^1 dxx \left[u + \overline{u} + d + \overline{d} + s + \overline{s} \right]$ total momentum carried by charged partons (i.e. quarks) exp: $F \simeq 0.5$ at $10 \,\text{GeV}^2$

 \implies there are uncharged partons in the proton as well: gluons

Evolution

QFT: due to splitting processes - a particle is always surrounded by a cloud of other particles (with strong fluctuations)

What one sees in an experiment depends on resolution DIS: resolution set by wave length of virtual photon 1/Qwith increasing Q one sees more (effective) constituents - with different PDFs $F_2(x, Q^2) = x \sum_i e_i^2 q_i(x, Q^2)$ scaling violations

Q < Q'

evolution is calculable within pert. theory (in contrast to PDFs at Q_0)

DGLAP equation

- change of PDFs $\propto \alpha_{\rm s}$

- change of q(x) only depends on q(y) with $x \leq y$ (mom. distr. over larger number)

- change of q can only depend on ratios of momenta (quark masses neglected)

$$\frac{\partial q_i(x,Q^2)}{\partial \ln Q^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dy}{y} \Big[q_i(y,Q^2) P_{qq}(x/y) + g(y,Q^2) P_{qg}(x/y) \Big]$$
$$\frac{\partial g(x,Q^2)}{\partial \ln Q^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dy}{y} \Big[\sum_j q_j(y,Q^2) P_{gq}(x/y) + g(y,Q^2) P_{gg}(x/y) \Big]$$

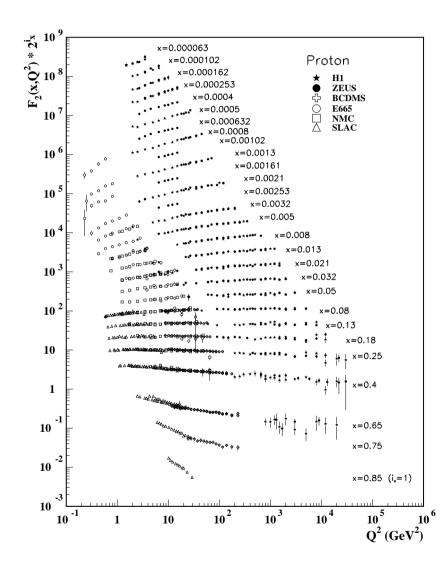
DGLAP equation continued

splitting function P_{ij} represent leading $\ln Q^2$ of parton cross sections ($\mu_F = Q$) (DIS: $\gamma^* q \to qg$, $\gamma^* g \to q\overline{q}$, $\gamma^* g \to q\overline{q}g$)

$$\begin{split} P_{qq}(x) &= \frac{4}{3} \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2} \delta(1-x) \right] \right] \qquad P_{gq}(x) = \frac{4}{3} \frac{1+(1-x)^2}{x} \\ P_{gg}(x) &= 6 \left[\frac{x}{(1-x)_+} + \frac{1-x}{x} + x(1-x) + (\frac{11}{12} - \frac{n_f}{18}) \delta(1-x) \right] \\ P_{qg}(x) &= \frac{1}{2} \left[x^2 + (1-x)^2 \right] \qquad \int dx f(x) \frac{1}{(1-x)_+} = \int_0^1 dx \frac{f(x) - f(1)}{1-x} \\ \mathrm{SU}(3)_F: \ q_i^{NS} = q_i - \overline{q}_i \text{ no mixture with gluons} \qquad q^S = \sum_i (q_i + \overline{q}_i) \text{ mixes} \\ with shares$$

with gluons

Scaling violation in F_2



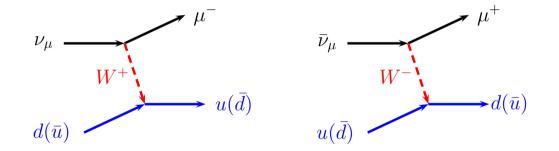
taken from PDG

DIS with neutrinos

weak interaction

 $u_{\mu}N \to \mu^{-}X \text{ and } \bar{\nu}_{\mu}N \to \mu^{+}X \qquad \qquad W_{1}^{\nu,\bar{\nu}}, W_{2}^{\nu,\bar{\nu}} \text{ and } \pm W_{3}^{\nu,\bar{\nu}}$

 $lim_{\rm Bj}\nu W_3(\nu,Q^2) = -F_3(x_{\rm Bj})$



 $\begin{array}{l} +(s,c) \text{ and flavor mixing} \\ \text{below charm threshold} \\ 1/xF_2^{\nu}(x) \sim 2d(x) + 2\overline{u}(x) & 1/xF_2^{\overline{\nu}}(x) \sim 2u(x) + 2\overline{d}(x) \\ 1/xF_3^{\nu}(x) \sim 2d(x) - 2\overline{u}(x) & 1/xF_2^{\overline{\nu}}(x) \sim 2u(x) - 2\overline{d}(x) \end{array}$

Parton Distributions

extraction of quark PDFs from DIS eN and νN scattering (and some other inclusive reactions in order to improve the flavor separation)

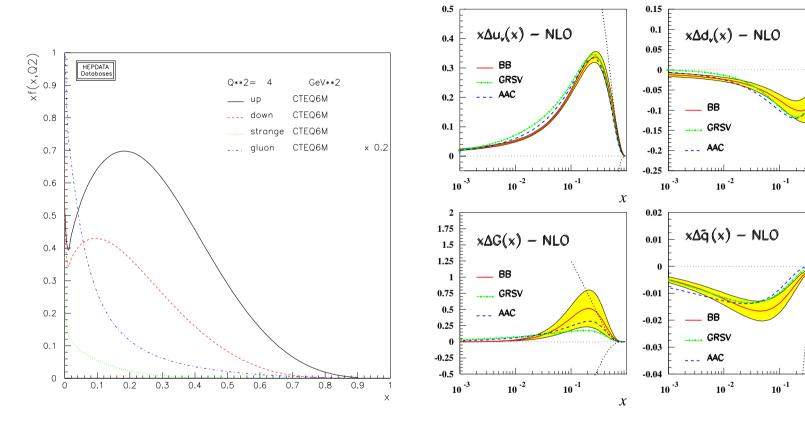
determination of g(x) with the help of DGLAP (evolution with Q^2)

Polarized DIS: Δq , Δg $(q(\Delta q) = q(\rightarrow) \pm q(\leftarrow), |\Delta q| \le q)$

PDFs describe longitudinal momentum distr. of partons within proton (IMF)

30 years of experimental (SLAC, CERN, HERA, FNAL, JLab) and theoretical (Barger-Phillips (74), GRV, CTEQ, MRST, ...) effort has lead to a fair knowledge of the PDFs (although not perfect, e.g. $x \rightarrow 0, 1, g, \Delta g$)

quark PDFs



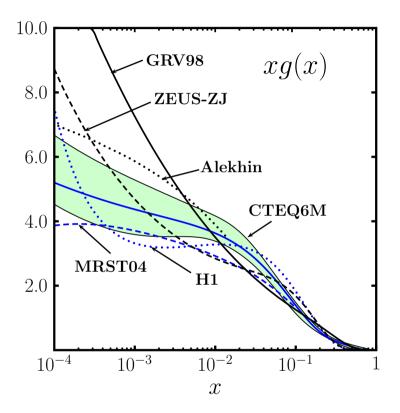
$$Q^2 = 4 \,\mathrm{GeV}^2$$

from Bluemlein-Boettcher (02) dotted line: bound $|\Delta q| \le 2q$ SU(3)_F symmetric sea assumed х

1.1.1.1

х

What do we know about the gluon PDF?

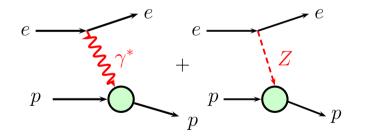


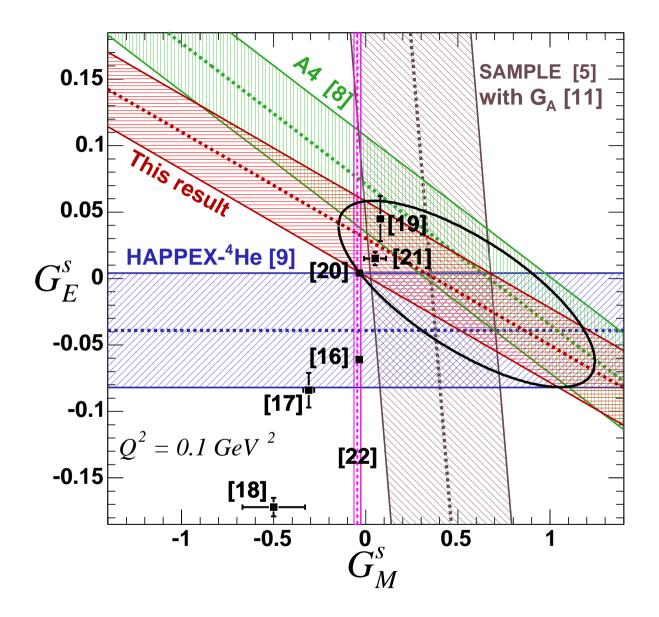
not too well constrained in region $\simeq 10^{-2}$ $Q^2 = 4 \,\mathrm{GeV}^2$

$s(x) \neq \overline{s}(x)$?

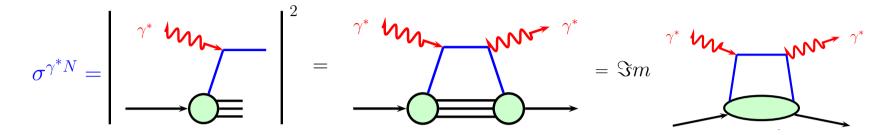
there is no net strangeness in the proton $\implies \int_0^1 dx [s(x) - \overline{s}(x)] = n_s - n_{\overline{s}} = 0$ CTEQ PDFs: weak indication for $s(x) \neq \overline{s}(x)$

strangeness form factor (g0, HAPPEX, A4, SAMPLE) $G^a_{E,M} \propto q^a - \overline{q}^a$ (see lecture 2) ep scattering with long. pol. electrons $A^{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$ parity violation measures interference between elm. FF and strange ones data not yet conclusive but probably $s - \overline{s}$ small





Total cross section for absorption of virtual photons by unpolarized protons



optical theorem

$$\sum_{n} |\langle 1 \dots n | T | \gamma^* \rangle|^2 = 2\Im m \langle \gamma^* p | T(\theta = 0) | \gamma^* p \rangle = \sigma^{\gamma^* N}$$

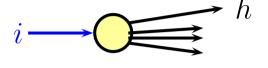
cross section for fixed helicity of photon $\sigma_T = 1/2(\sigma_+ + \sigma_-) = 2mW_1\sigma_0 \qquad \sigma_L = 2m[-W_1 + W_2(1 + Q^2/(4m^2x_{\rm Bj}^2))]\sigma_0$

$$\begin{split} r &= \sigma_L / \sigma_T = W_2 / W_1 (1 + Q^2 / (4m^2 x_{\rm Bj}^2)) - 1 \\ \text{parton approach } r &= 4m^2 x_{\rm Bj}^2 / Q^2 \to 0 \text{ for } Q^2 \to \infty \\ \text{in agreement with experiment} \end{split}$$

Fragmentation functions

in hard inclusice processes: sharply collimated jets of particles in final state single particle spectra described by

fragmentation fct $z = p_h^+/k^+$



 $D_i^h(z)$ probability that a hadron hwith mom. fraction between zand z + dz is emitted by parton i

satisfy same evolution eq. as the PDFs $\implies D_i^h(z,Q^2)$

momentum conservation:

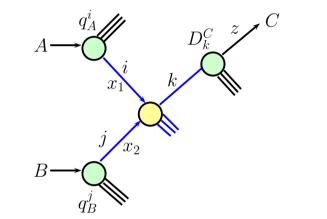
$$\sum_{h} \int_0^1 dz z D_i^h(z) = 1$$

e.g. in $e^+e^- \to q\overline{q}$: $\sum_h \int_0^1 dz [D_i^h(z) + D_{\overline{i}}^h(z)] = 1$

Applications

PDFs (and frag. fcts) are input to calculations of other hard inclusive processes QCD gets predictive power

master formula (to leading-twist order or collinear appr.)



$$\sigma(AB \to CX) \text{ and } \hat{\sigma}(q_i q_j \to q_k X)$$

$$E_C \frac{d\sigma}{d^3 p_c} = \sum_{i,j,k} \int dx_1 dx_2 \frac{dz}{z^2} q_A^i(x_1) q_B^j(x_2) E_k \frac{d\hat{\sigma}}{d^3 k} D_k^C(z)$$
holds also if A B or C is elementary

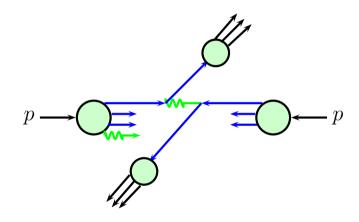
noices also IT A, B or C is element e.g. $q_A^i = \delta_{iA} \, \delta(1 - x_1)$

if proton PDFs known ($\overline{p}: q \leftrightarrow \overline{q}$)

- $pp(\overline{p}) \to \pi X$
- $pp(\overline{p}) \rightarrow \gamma X$ prompt photon prod.

- $pp(\overline{p}) \rightarrow e^+e^-X$ Drell-Yan process
- $pp(\overline{p}) \rightarrow \text{jets}$ "QCD background" understanding important for discovery of new physics at LHC

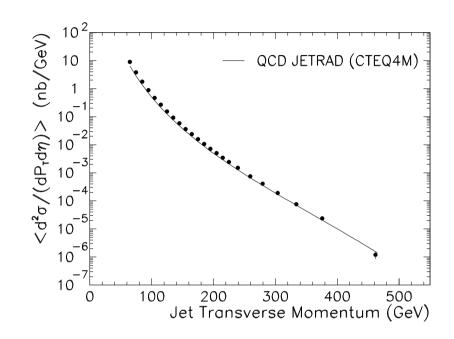
Jet cross section at the TEVATRON



reconstruction of jet, i.e. the parton subprocesses to lowest order $qq \rightarrow qq, qg \rightarrow qg, gg \rightarrow gg,$ $q\overline{q} \rightarrow gg, ...$ 4-jet structure

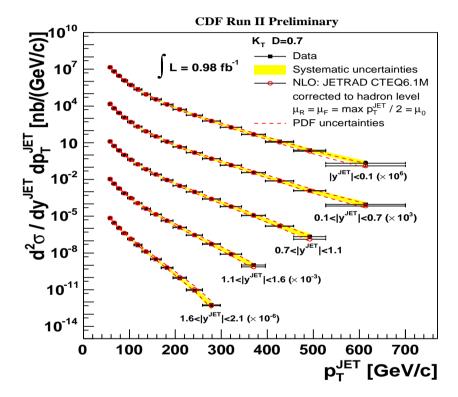
today: NLO (5 jets)

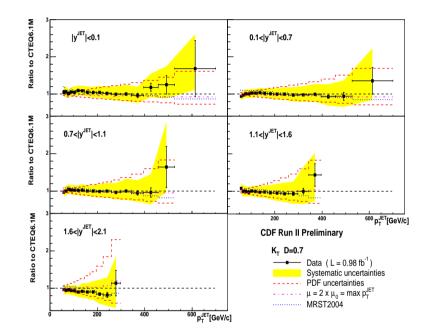
D0 results



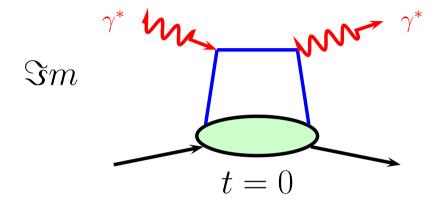
Tevatron $\sqrt{s} = 1.8 \,\text{TeV}$ pseudorapidity $|\eta| = |\ln [\tan \theta/2]| < 0.5$ NLO QCD prediction using CTEQ4M

CDF results





Generalization



Only forward imaginary part of graph realized in nature?

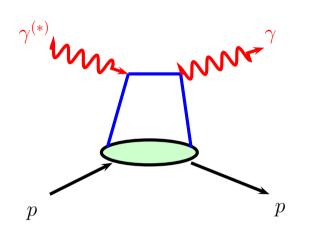
would be a bad feature of the theory

what about

- real part at t = 0?
- non-forward directions $(t \neq 0)$?
- unequal virtualities of the photons?

 \implies hard exclusive reactions and generalized parton distributions (GPDs)

Handbag factorization in excl. reactions



only one active parton (others are spectators)

hard process: $\gamma^{(*)}q \rightarrow \gamma q$

soft physics: GPDs

two classes of hard exclusive reactions:

DEEP VIRTUAL Q^2 large $-t/Q^2 \ll 1$ WIDE-ANGLE -t(-u) large $Q^2/(-t) \leq 1$