HARD EXCLUSIVE SCATTERING

P. Kroll
Fachbereich Physik, Universität Wuppertal
Graz, April 2007

Outline:

- Lecture 1: QCD, factorization, PDFs and all that
- Lecture 2: Generalized Parton Distributions (GPDs)
- Lecture 3: Applications: Deeply virtual and wide-angle exclusive scattering

Lecture 1: QCD, factorization, PDFs and all that

Outline:

- QCD, asymptotic freedom, factorization
- Evolution
- Deep inelastic scattering (DIS)
- Parton distribution functions (PDFs)
- Results, interpretration and use of PDFs

Quarks

Multiplet structure of hadron spectrum lead to introduction of constituents QUARKS $u, d, s \quad$ spin-1/2 Gell-Mann (64); Zweig (64) today: three more quarks c, b, t (heavy)
light quarks form the fundamental triplets of the group $\operatorname{SU}(3)_{F}$ light hadrons are members of the irreducible representations of the $\operatorname{SU}(3)_{F}$

mesons:	$q \bar{q}$	$3 \times \overline{3}=1+8$
baryons:	$q q q$	$3 \times 3 \times 3=1+8+8+10$

Spectrum in agreement with this structure, $\mathrm{SU}(3)_{F}$ broken by quark masses Gell-Mann Nobel prize 1969
but - free quarks have not been observed

- baryon wf. symmetric unter quark interchange e.g. $\Delta^{++}\left(s_{3}=3 / 2\right)=f\left(r_{1}, r_{2}, r_{3}\right)|\uparrow \uparrow \uparrow\rangle|u u u\rangle$ symmetric space $(L=0)$ spin flavor wfs
by virtue of $\operatorname{SU}(3)_{F}$ product wf of baryons symmetric - symmetric quark model in conflict with Spin-Statistik theorem

Color

Greenberg (64), Han-Nambu(65) to cure this problem a new quantum number color $\quad q_{c} \quad c=1,2,3 \quad \mathrm{SU}(3)_{C}$ triplet
confinement hypothese: only color singlet states appear as free, asymp. states excludes existence of free quarks color structure of baryons: $3 \times 3 \times 3=1+8+8+10$ singlet state is total antisymmetric $B=\sum_{i, j, k=1,2,3} \epsilon_{i j k} q_{i} q_{j} q_{k}$ \Longrightarrow product of space, spin and flavor wfs must be symmetric other evidence for color:

$e^{+} e^{-}$annihilation into hadrons reaction mech.: $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow q \bar{q}$ and soft $q \bar{q} \rightarrow$ hadrons transition with probability 1 (confinement) hence, up to charges, same cross section as for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=3 \sum_{a} e_{a}^{2}
$$

$$
e^{+} e^{-} \rightarrow \text { hadrons }
$$

QCD

Weyl (29), Yang-Mills (54): dynamical principle require a locally phase invariant field with respect to a certain group QED: U(1)
Fritzsch, Gell-Mann, Leutwyler (73): take $\operatorname{SU}(3)_{C}$ (exact) for interaction among quarks

$$
\Psi(x) \rightarrow \Psi^{\prime}(x)=\exp \left[i g_{s} \sum_{a=1}^{8} T_{a} \alpha_{a}(x)\right] \Psi(x)
$$

$T_{a}=\lambda_{a} / 2$ generators of $\mathrm{SU}(3)_{C}, \lambda_{a}$ traceless, hermitic 3×3 matrices (8), $\alpha_{a}(x)$ arbitrary functions
free Lagrangian: $\mathcal{L}_{0}=i \bar{\Psi} \not \partial \Psi-m \bar{\Psi} \Psi$
replace ∂_{μ} by covariant derivative: $D_{\mu}=\partial_{\mu}+i g_{s} \sum T_{a} G_{a \mu}$

$$
\mathcal{L}_{\mathrm{QCD}}=\bar{\Psi}(i \not \partial-m) \Psi-g_{s} \sum_{a} \bar{\Psi} \gamma^{\mu} T_{a} \Psi G_{a}^{\mu}-1 / 4 \sum_{a} G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

field strength tensor of gauge field $G_{\mu \nu}^{a}=\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}-g_{s} \sum_{b, c} f_{a b c} G_{\mu}^{b} G_{\nu}^{c}$
G_{μ}^{a} potential of gauge field, 8 gauge fields quant of gauge field - gluon $J^{P}=1^{-}, a=1 . .8$
gauge transform $G_{a \mu} \rightarrow G_{a \mu}^{\prime}=G_{a \mu}-\partial_{\mu} \alpha_{a}-g_{s} \sum_{b c} f_{a b c} \alpha_{b} G_{c \mu}$ $f_{a b c}$ structure constants of $\operatorname{SU}(3)_{C}\left(\left[\lambda_{a}, \lambda_{b}\right]=f_{a b c} \lambda_{c}\right)$
similar to QED but gluon is colored: - self interaction, non-linear theory
$\gamma \gamma \rightarrow \gamma \gamma \quad \sigma \sim \mathcal{O}\left(e^{8}\right)$
$g g \rightarrow g g \quad \sigma \sim \mathcal{O}\left(g_{s}^{4}\right)$

$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$of $\mathcal{O}\left(e^{4}\right)$

$u \bar{u} \rightarrow d \bar{d}$ of $\mathcal{O}\left(g_{s}^{4}\right)$

Gliding coupling

fundamental feature of relativistic QFT

- pair creation and annihilation
- i.e. strong fluctuations in particle number (in contrast to non-rel QM)
- complicated vacuum, can be polarized (screening/antiscreening)
- strength of coupling depends on scale/distance
formally - pert. corrections to gauge boson propagator $\left(Q^{2}=-q^{2}>0\right)$

$\alpha\left(Q^{2}\right)=\frac{\alpha\left(\mu^{2}\right)}{1-\beta_{0} \alpha\left(\mu^{2}\right) \ln \left(Q^{2} / \mu^{2}\right)}$

$$
\begin{aligned}
& \text { QED: } \beta_{0}=1 /(3 \pi) \\
& \text { QCD: } \beta_{0}=\left(2 / 3 n_{f}-11\right) /(4 \pi)<0
\end{aligned}
$$

breakdown of pert. theory if coupling $\alpha=g^{2} / 4 \pi \nless<1$

choose $\mu=m_{e}$ static limit $\alpha_{\mathrm{em}}(0)=1 / 137.03599976$
singular at $Q^{2} / m_{e}^{2} \simeq 10^{556}$
$\alpha_{\mathrm{em}}\left(Q^{2}=M_{Z}^{2}\right) \simeq 1 / 128$
distance $r=1 / Q, \hbar=c=1$, natural units (not anthropomorphic Planck)

with regard to position of singularity

$$
\alpha_{\mathrm{S}}\left(Q^{2}\right)=\frac{4 \pi}{\left(11-2 / 3 n_{f}\right) \ln Q^{2} / \Lambda_{\mathrm{QCD}}^{2}}
$$

$\Lambda_{\mathrm{QCD}} \simeq 240 \mathrm{MeV}$
asymptotic freedom - infrared slavery
Gross-Wilczek; Politzer (73); Nobel prize 04 singularity is severe problem - in any event there are soft regions with large α_{s}
(where hadrons are formed)
is QCD of any use?

Factorization

IT IS: processes with a hard scale $\left(Q^{2}\right)$ often factorize into

- hard partonic-level subprocesses
- and soft hadronic matrix elements
to all orders of α_{s} and in all logs of μ_{F}^{2}, partons treated as on-shell part.
(μ_{F} factorization scale of $\mathcal{O}\left(Q^{2}\right)$, partons=quarks,gluons)

QFT: in higher orders

- ultraviolet singularities (renormalization of coupling and mass μ_{R})
- infrared singularities (redefinition of observables)
(e.g. from emission of (almost) collinear or soft gluons)
μ_{F} - defines separation of short-distance from long-distance effects
i.e. any propagator that is off-shell by a scale $>\mu_{\mathrm{F}}^{2}$ is considered as short-range effect, scales $\leq \mu_{\mathrm{F}}^{2}$ as long range
hard subprocess: calculable in pert. theory, infrared save, independent of the hadrons, depends on μ_{F}
soft hadr. matrix elem.: infrared singular, is specific to the hadrons, is universal, i.e. does not depend on particular hard process depends on μ_{F} (evolution)
example: $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow q \bar{q} \rightarrow$ hadrons at large s

$$
\begin{array}{ll}
e^{+} e^{-} \rightarrow q \bar{q} & \text { hard (QED) } \\
q \bar{q} \rightarrow \text { hadrons } & \text { soft }
\end{array}
$$

for a number of processes factorization has been rigorously shown to hold $e^{+} e^{-} \rightarrow$ hadrons, $e p \rightarrow e^{\prime} X, A B \rightarrow e^{+} e^{-} X, F_{\pi}, F_{\pi \gamma}$, DVCS, \ldots for others still a hypothesis (often in very good agreement with experiment) e.g. $A B \rightarrow H X, A B \rightarrow$ jets, F_{p}, \ldots

Inelastic $e p$ scattering

elastic - form factors $\left[\tau=-q^{2} /\left(4 m^{2}\right)\right]$

$$
\frac{d \sigma_{L}}{d \Omega}=\frac{d \sigma_{\mathrm{Mott}}}{d \Omega}\left\{\frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau}-2 \tau G_{M}^{2} \tan ^{2} \theta / 2\right\}
$$

Hoftadter et al (56), Nobel prize 1961

$$
F_{1}=\frac{G_{E}+\tau G_{M}}{1+\tau} \quad F_{2}=\frac{G_{M}-G_{E}}{1+\tau}
$$

inelastic - structure functions
$q=k^{\prime}-k ; \quad Q^{2}=-q^{2}>0$
$\nu=E_{L}-E_{L}^{\prime}=p \cdot q / m$
$x_{\mathrm{Bj}}=Q^{2} /(2 p \cdot q) ; \quad 0 \leq x_{\mathrm{Bj}} \leq 1$

$$
\frac{d^{2} \sigma_{L}}{d Q^{2} d \nu}=\frac{4 \pi \alpha_{\mathrm{em}}^{2} E^{\prime}}{m E Q^{4}}\left[2 \sin ^{2} \theta / 2 W_{1}+\cos ^{2} \theta / 2 W_{2}\right]
$$

Bjorken limit

Bjorken limit: $Q^{2}, \nu \rightarrow \infty \quad, x_{\mathrm{Bj}}$ fixed

$$
\lim _{\mathrm{Bj}} m W_{1}\left(\nu, Q^{2}\right)=F_{1}\left(x_{\mathrm{Bj}}\right) \quad \lim _{\mathrm{Bj}} \nu W_{2}\left(\nu, Q^{2}\right)=F_{2}\left(x_{\mathrm{Bj}}\right)
$$

scaling with finite F_{i}
Friedman-Kendall-Taylor et al (72), Nobel prize 1990
scaling already at low Q^{2} early scaling parton model
more precise measurements
scaling violations $F_{i}\left(x_{\mathrm{Bj}}, Q^{2}\right)$

Chan et al (75)
QCD

Interpretation of scaling

scaling with finite limits is evidence for elastic electron scattering off point-like constituents (partons)

- nucleon at rest - partons possess isotrope momentum distribution (rotational symmetry) $\sum \mathbf{p}_{i}=0 \quad \Delta p=1 / \Delta x \simeq 200 \mathrm{MeV}$
- boost to frame with large momentum P of proton (IMF)
$\mathbf{p}_{\perp i} / P \ll 1$ neglect collinear appr.
neglect binding energy too, treat partons as quasi free
- $p_{i}=\xi_{i} P, \quad 0<\xi_{i}<1$ momentum fraction (IMF: $\xi_{i}=p_{i}^{+} / P^{+}$)

mass-shell condition

$$
\begin{aligned}
\frac{d^{3} p^{\prime}}{2 E^{\prime}} \delta\left(p^{\prime}-q-\xi_{i} P\right) & =\delta\left(Q^{2}-\xi_{i} 2 P \cdot q\right) \\
& =\frac{x_{\mathrm{Bj}}}{Q^{2}} \delta\left(\xi_{i}-x_{\mathrm{Bj}}\right)
\end{aligned}
$$

light-cone coordinates $a=\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \Rightarrow\left[\left(a_{0}+a_{3}\right) / \sqrt{2},\left(a_{0}-a_{3}\right) / \sqrt{2}, a_{\perp}\right]$
different types of partons may exist
$q_{i}(\xi)(\geq 0)$ number of partons of type i (with charge $e_{i} e_{0}$) with momentum fractions between ξ and $\xi+d \xi \quad$ Feynman (69)

Consequences

- contribution to structure functions
$2 m W_{1}=\sum_{i} e_{i}^{2} \int_{0}^{1} d \xi q_{i}(\xi) \delta\left(\xi-x_{\mathrm{Bj}}\right)=\sum_{i} e_{i}^{2} q_{i}\left(x_{\mathrm{Bj}}\right), \nu W_{2}=\sum_{i} e_{i}^{2} x_{\mathrm{Bj}} q_{i}\left(x_{\mathrm{Bj}}\right)$
only partons with $\xi=x_{\mathrm{Bj}}$ contribute at fixed Q^{2}, ν
- structure fcts. reveal scaling $\quad F_{1}(x)=1 / 2 \sum e_{i}^{2} q_{i}(x)$
$F_{2}(x)=2 x F_{1}(x) \quad$ Callan-Gross relation characteristic of spin $1 / 2$
- partons as quarks (isospin symmetry $u_{p}=d_{n}, d_{p}=u_{n}, s_{p}=s_{n}$)
$1 / x F_{2}^{e p}(x)=4 / 9[u(x)+\bar{u}(x)]+1 / 9[d(x)+\bar{d}(x)]+1 / 9[s(x)+\bar{s}(x)]+\cdots$
$1 / x F_{2}^{e n}(x)=4 / 9[d(x)+\bar{d}(x)]+1 / 9[u(x)+\bar{u}(x)]+1 / 9[s(x)+\bar{s}(x)]+\cdots$

Nachtmann inequality $\quad \frac{1}{4} \leq \frac{F_{2}^{e n}(x)}{F_{2}^{e p}(x)} \leq 4$
dominance of

$$
u+\bar{u} \quad d+\bar{d}
$$

exp: - dominance of $u(d)$ in proton (neutron) at large x

- $x \rightarrow 0$ many types of partons contribute
- $\operatorname{SU}(3)_{F}$ symmetric PDFs $\quad F_{2}^{e n} / F_{2}^{e p}=1$
- how many quarks are in the proton?
$\int_{x_{0}}^{1} F_{2}^{e p} d x / x=\sum e_{i}^{2} \int q_{i}(x) d x=\sum e_{i}^{2} n_{i}$
integral seems to diverge \quad HERA: $x_{0}=10^{-4} \Longrightarrow n=12$
- does sea contribute equally to proton and neutron?

Gottfried sum rule $\quad u_{v}=u-\bar{u} \quad d_{v}=d-\bar{d}$ (definition)
$1 / x\left(F_{2}^{e p}-F_{2}^{e n}\right)=1 / 3[u-d+\bar{u}-\bar{d}]=1 / 3\left[u_{v}-d_{v}\right]+2 / 3[\bar{u}-\bar{d}]$
$\int_{0}^{1} d x / x\left(F_{2}^{e p}-F_{2}^{e n}\right)=1 / 3+2 / 3\left(n_{\bar{u}}-n_{\bar{d}}\right)$
integral seems to exist

$$
\exp : 0.24 \pm 0.016 \Longrightarrow n_{\bar{u}}-n_{\bar{d}} \simeq-0.14
$$

- momentum sum rule $\quad x q_{i}(x)$ momentum distr. of type i partons $F=\int_{0}^{1} d x x[u+\bar{u}+d+\bar{d}+s+\bar{s}]$ total momentum carried by charged partons (i.e. quarks) exp: $F \simeq 0.5$ at $10 \mathrm{GeV}^{2}$
\Longrightarrow there are uncharged partons in the proton as well:

Evolution

QFT: due to splitting processes - a particle is always surrounded by a cloud of other particles (with strong fluctuations)

What one sees in an experiment depends on resolution DIS: resolution set by wave length of virtual photon $1 / Q$ with increasing Q one sees more (effective) constituents - with different PDFs $F_{2}\left(x, Q^{2}\right)=x \sum_{i} e_{i}^{2} q_{i}\left(x, Q^{2}\right) \quad$ scaling violations

$Q<Q^{\prime}$

evolution is calculable within pert. theory (in contrast to PDFs at Q_{0})

DGLAP equation

- change of PDFs $\propto \alpha_{\text {s }}$
- change of $q(x)$ only depends on $q(y)$ with $x \leq y$ (mom. distr. over larger number)
- change of q can only depend on ratios of momenta (quark masses neglected)

$$
\begin{gathered}
\frac{\partial q_{i}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \int_{x}^{1} \frac{d y}{y}\left[q_{i}\left(y, Q^{2}\right) P_{q q}(x / y)+g\left(y, Q^{2}\right) P_{q g}(x / y)\right] \\
\frac{\partial g\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \int_{x}^{1} \frac{d y}{y}\left[\sum_{j} q_{j}\left(y, Q^{2}\right) P_{g q}(x / y)+g\left(y, Q^{2}\right) P_{g g}(x / y)\right]
\end{gathered}
$$

DGLAP equation continued

splitting function $P_{i j}$ represent leading $\ln Q^{2}$ of parton cross sections ($\mu_{\mathrm{F}}=Q$) (DIS: $\gamma^{*} q \rightarrow q g, \gamma^{*} g \rightarrow q \bar{q}, \gamma^{*} g \rightarrow q \bar{q} g$)

$$
\begin{gathered}
\left.P_{q q}(x)=\frac{4}{3}\left[\frac{1+x^{2}}{(1-x)_{+}}+\frac{3}{2} \delta(1-x)\right]\right] \quad P_{g q}(x)=\frac{4}{3} \frac{1+(1-x)^{2}}{x} \\
P_{g g}(x)=6\left[\frac{x}{(1-x)_{+}}+\frac{1-x}{x}+x(1-x)+\left(\frac{11}{12}-\frac{n_{f}}{18}\right) \delta(1-x)\right] \\
P_{q g}(x)=\frac{1}{2}\left[x^{2}+(1-x)^{2}\right] \quad \int d x f(x) \frac{1}{(1-x)_{+}}=\int_{0}^{1} d x \frac{f(x)-f(1)}{1-x}
\end{gathered}
$$

$\mathrm{SU}(3)_{F}: q_{i}^{N S}=q_{i}-\bar{q}_{i}$ no mixture with gluons $\quad q^{S}=\sum_{i}\left(q_{i}+\bar{q}_{i}\right)$ mixes with gluons

Scaling violation in F_{2}

taken from PDG

DIS with neutrinos

weak interaction
$\nu_{\mu} N \rightarrow \mu^{-} X$ and $\bar{\nu}_{\mu} N \rightarrow \mu^{+} X \quad W_{1}^{\nu, \bar{\nu}}, W_{2}^{\nu, \bar{\nu}}$ and $\pm W_{3}^{\nu, \bar{\nu}}$

$$
\lim _{\mathrm{Bj}} \nu W_{3}\left(\nu, Q^{2}\right)=-F_{3}\left(x_{\mathrm{Bj}}\right)
$$

$+(s, c)$ and flavor mixing
below charm threshold

$$
\begin{array}{ll}
1 / x F_{2}^{\nu}(x) \sim 2 d(x)+2 \bar{u}(x) & 1 / x F_{2}^{\bar{\nu}}(x) \sim 2 u(x)+2 \bar{d}(x) \\
1 / x F_{3}^{\nu}(x) \sim 2 d(x)-2 \bar{u}(x) & 1 / x F_{2}^{\bar{\nu}}(x) \sim 2 u(x)-2 \bar{d}(x)
\end{array}
$$

Parton Distributions

extraction of quark PDFs from DIS $e N$ and νN scattering (and some other inclusive reactions in order to improve the flavor separation)
determination of $g(x)$ with the help of DGLAP (evolution with Q^{2})

Polarized DIS: $\Delta q, \Delta g \quad(q(\Delta q)=q(\rightarrow) \pm q(\leftarrow), \quad|\Delta q| \leq q)$

PDFs describe longitudinal momentum distr. of partons within proton (IMF)

30 years of experimental (SLAC, CERN, HERA, FNAL, JLab) and theoretical (Barger-Phillips (74), GRV, CTEQ, MRST, ...)
effort has lead to a fair knowledge of the PDFs (although not perfect, e.g. $x \rightarrow 0,1, g, \Delta g$)

quark PDFs

$Q^{2}=4 \mathrm{GeV}^{2}$

from Bluemlein-Boettcher (02) dotted line: bound $|\Delta q| \leq 2 q$ $\mathrm{SU}(3)_{F}$ symmetric sea assumed

What do we know about the gluon PDF?

not too well constrained in region $\simeq 10^{-2}$

$$
Q^{2}=4 \mathrm{GeV}^{2}
$$

$$
s(x) \neq \bar{s}(x) ?
$$

there is no net strangeness in the proton $\Longrightarrow \int_{0}^{1} d x[s(x)-\bar{s}(x)]=n_{s}-n_{\bar{s}}=0$ CTEQ PDFs: weak indication for $s(x) \neq \bar{s}(x)$
strangeness form factor (g0, HAPPEX, A4, SAMPLE)
$G_{E, M}^{a} \propto q^{a}-\bar{q}^{a}$ (see lecture 2)
$e p$ scattering with long. pol. electrons $A^{\mathrm{PV}}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}} \quad$ parity violation measures interference between elm. FF and strange ones data not yet conclusive but probably $s-\bar{s}$ small

taken from HAPPEX 05

Total cross section for absorption of virtual photons by unpolarized protons

optical theorem

$$
\left.\sum_{n}|\langle 1 \ldots n| T| \gamma^{*}\right\rangle\left.\right|^{2}=2 \Im m\left\langle\gamma^{*} p\right| T(\theta=0)\left|\gamma^{*} p\right\rangle=\sigma^{\gamma * N}
$$

cross section for fixed helicity of photon
$\sigma_{T}=1 / 2\left(\sigma_{+}+\sigma_{-}\right)=2 m W_{1} \sigma_{0} \quad \sigma_{L}=2 m\left[-W_{1}+W_{2}\left(1+Q^{2} /\left(4 m^{2} x_{\mathrm{Bj}}^{2}\right)\right)\right] \sigma_{0}$
$r=\sigma_{L} / \sigma_{T}=W_{2} / W_{1}\left(1+Q^{2} /\left(4 m^{2} x_{\mathrm{Bj}}^{2}\right)\right)-1$
parton approach $r=4 m^{2} x_{\mathrm{Bj}}^{2} / Q^{2} \rightarrow 0$ for $Q^{2} \rightarrow \infty$
in agreement with experiment

Fragmentation functions

in hard inclusice processes: sharply collimated jets of particles in final state single particle spectra described by

$$
\text { fragmentation fct } \quad z=p_{h}^{+} / k^{+}
$$

$D_{i}^{h}(z)$ probability that a hadron h with mom. fraction between z and $z+d z$ is emitted by parton i
satisfy same evolution eq. as the PDFs $\Longrightarrow D_{i}^{h}\left(z, Q^{2}\right)$
momentum conservation: $\quad \sum_{h} \int_{0}^{1} d z z D_{i}^{h}(z)=1$
e.g. in $e^{+} e^{-} \rightarrow q \bar{q}: \quad \sum_{h} \int_{0}^{1} d z\left[D_{i}^{h}(z)+D_{\bar{i}}^{h}(z)\right]=1$

Applications

PDFs (and frag. fcts) are input to calculations of other hard inclusive processes QCD gets predictive power master formula (to leading-twist order or collinear appr.)

$$
\begin{aligned}
& \sigma(A B \rightarrow C X) \text { and } \hat{\sigma}\left(q_{i} q_{j} \rightarrow q_{k} X\right) \\
& E_{C} \frac{d \sigma}{d^{3} p_{c}}=\sum_{i, j, k} \int d x_{1} d x_{2} \frac{d z}{z^{2}} q_{A}^{i}\left(x_{1}\right) q_{B}^{j}\left(x_{2}\right) E_{k} \frac{d \hat{\sigma}}{d^{3} k} D_{k}^{C}(z)
\end{aligned}
$$

holds also if A, B or C is elementary

$$
\text { e.g. } \quad q_{A}^{i}=\delta_{i A} \delta\left(1-x_{1}\right)
$$

if proton PDFs known $(\bar{p}: q \leftrightarrow \bar{q})$

- $p p(\bar{p}) \rightarrow \pi X$
- $p p(\bar{p}) \rightarrow \gamma X \quad$ prompt photon prod.
- $p p(\bar{p}) \rightarrow e^{+} e^{-} X \quad$ Drell-Yan process
- $p p(\bar{p}) \rightarrow$ jets "QCD background" understanding important for discovery of new physics at LHC

Jet cross section at the TEVATRON

reconstruction of jet, i.e. the parton subprocesses to lowest order
$q q \rightarrow q q, \quad q g \rightarrow q g, \quad g g \rightarrow g g$,
$q \bar{q} \rightarrow g g, \ldots$
4-jet structure
today: NLO (5 jets)

D0 results

Tevatron $\sqrt{s}=1.8 \mathrm{TeV}$
pseudorapidity $|\eta|=|\ln [\tan \theta / 2]|<0.5$
NLO QCD prediction using CTEQ4M

CDF results

Generalization

Only forward imaginary part of graph realized in nature?
would be a bad feature of the theory
what about

- real part at $t=0$?
- non-forward directions $(t \neq 0)$?
- unequal virtualities of the photons?
\Longrightarrow hard exclusive reactions and generalized parton distributions (GPDs)

Handbag factorization in excl. reactions

only one active parton (others are spectators)
hard process: $\gamma^{(*)} q \rightarrow \gamma q$
soft physics: GPDs
two classes of hard exclusive reactions:

DEEP VIRTUAL $\quad Q^{2}$ large $\quad-t / Q^{2} \ll 1$

WIDE-ANGLE $\quad-t(-u)$ large $\quad Q^{2} /(-t) \leq 1$

