	(This lecture mostly follows Quigg Cha	-Higgs Mechanism (non-Abelian	-Ginzburg-Laudau	-Recap of Abelian case	Overview:	LECTURE 6: Spontaneous Symmetry Breaking	
	igg Chapters 4-5)	elian case)				eaking (Part II)	

1 massive vector boson: 3 degrees of treedom 1 massive Hinns scalar: 1 degrees of freedom Total =4	Atter breaking we had (explicit in unitary gauge):	Tota = 4	1 massless vector boson: 2 degrees of freedom	2 scalars: 2 degrees of freedom	In the case we studied, we had before symmetry breaking:	massive gauge boson without the massless Goldstone boson.	gauge boson and the massless Goldstone boson conspire to give us a	massless	We saw however that in the case of a local gauge theory, the	boson per broken generator.	to massless bosons (Goldstone bosons). We expect one massless	We saw that spontaneous breaking of a continuous symmetry leads	Higgs Mechanism (Abelian case recap)
													Ø

 W/Z bosons acquire mass 	disturbed by gauge bosons	 Higgs condenses below T_c ~10¹⁵K. Condensate 	 equivalent to photon acquiring a mass 	 Cooper pairs form BEC condensate below T_c ~ 10⁰-10² K. Condensate disturbed by EM field Short range force, attenuation length ~10⁻⁶cm 	Meisner Effect:	clerived using (5 super(13) lead	C Super (15) = C Super (0) + 15 = 2 = 2 + 1 + 4 + (G Super (U) = "G Normal (0) + 2 12 + 1	4: macroscopic wave function Free energy of superconductor	Ginzburg Landau Supercond	
						o massive photon		5141 ⁴	describing condensate	luctivity 3	

Hisss Medanish (non-Abelian ase)
We will study an SU(2) doubt of complex salar
Fields:
$$\mathcal{R} = \sqrt{2} \left(\begin{array}{c} \mathcal{R}_{1} + i \left(\mathcal{R}_{2} \right) \\ \mathcal{R}_{2} + i \left(\mathcal{R}_{3} \right) \\ \mathcal{R}_{2} + i \left(\mathcal{R}_{3} \right) \\ \mathcal{R}_{3} + i \left(\mathcal{R}_{3} + i \left(\mathcal{L}_{3} \right) \right) \\ \mathcal{R}_{4} = \mathcal{R}_{3} + i \left(\mathcal{L}_{3} \right) + i \left(\mathcal{L}_{4} \right) + i \left(\mathcal{L}_{4} \right) + i \left(\mathcal{L}_{5} \right) \\ \mathcal{R}_{4} = \mathcal{R}_{5} + i \left(\mathcal{L}_{5} \right) + i \left(\mathcal{L}_{5} \right) \\ \mathcal{R}_{4} = \mathcal{R}_{5} + i \left(\mathcal{L}_{5} \right) \\ \mathcal{R}_{5} = \mathcal{R}_{5} + i \left(\mathcal{L}_{5} \right) \\ \mathcal{R}_{5} = \left(\mathcal{L}_{6} + i \left(\mathcal{L}_{5} \right) + i \left(\mathcal{L}_{5} \right) \\ \mathcal{R}_{5} = \left(\mathcal{L}_{6} - \mathcal{R}_{5} \right) \\ \mathcal{R}_{5} = \left(\mathcal{L}_{6} - \mathcal{R}_{5} \right) \\ \mathcal{R}_{5} = \left(\mathcal{L}_{7} - \mathcal{R}_{7} \right) \\ \mathcal{R}_{5} = \left(\mathcal{L}_{7} - \mathcal{R}_{7} \right) \\ \mathcal{R}_{5} = \left(\mathcal{L}_{7} - \mathcal{R}_{7} \right) \\ \mathcal{R}_{5} = \left(\mathcal{L}_{7} - \mathcal{L}_{7} \right) \\ \mathcal{R}_{7} = \mathcal{L}_{7} \\ \mathcal{R}_$$

We parametrize Fluctuations from the vacuum $e_0 = \frac{1}{12} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ in terms of 4 neal scalar fields $\varepsilon_1, \varepsilon_2, \varepsilon_3, \eta$ $\varepsilon_1 = \frac{1}{12} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Hisss Meducian (non-Abelian case) minimum of potential at $Q^{\dagger}Q = \frac{1}{2}\left(e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}\right) = \frac{1}{2}\left(e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}+e_{4}^{2}\right) = \frac{1}{2}\left(e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}+e_{4}^{2}\right) = \frac{1}{2}\left(e_{1}^{2}+e_{2}^{2}+e_{4}^{2}+e_{4}^{2}+e_{4}^{2}\right) = \frac{1}{2}\left(e_{1}^{2}+e_{2}^{2}+e_{4}+e_{4}^{$ we chose $\left(\frac{\psi_{+,\lambda}}{\lambda} \right) = e^{i\gamma \cdot \xi \omega / \nu} \left(\frac{\omega}{\lambda} \right) = \frac{1}{\lambda} \left(\frac{\omega}{\lambda} \right)$ expansion: d $\frac{1}{\sqrt{2}} \left(\frac{2}{5^2 + 2^3}, \frac{1}{5^2} + \frac{1}{5^2} \right) \frac{1}{5^2} \left(\frac{2}{5^2 + 2^3}, \frac{1}{5^2} + \frac{1}{5^2} + \frac{1}{5^2} \right) \frac{1}{5^2} \left(\frac{2}{5^2 + 2^3}, \frac{1}{5^2} + \frac{1}{5^$ $\frac{1}{\sqrt{2}}\left(\begin{array}{c}\xi_{2}+i\xi_{1}\\\chi^{+}\eta^{-}&i\xi_{2}\end{array}\right)\frac{1}{\sqrt{2}}$ Minimum around which To do our $Q_3^2 = -\frac{N^2}{\lambda} \equiv \sqrt{2}$ which To do our $Q_1 = Q_2 = Q_1 = 0$ = 9+9 os A marive scolor ن ک

