PHY 2408: LONG PROBLEM SET 1

1- Calculate the cross section for the process $e^{+} e^{-} \rightarrow Z \rightarrow \mu^{-} \mu^{+}$in terns of the vector and axial couplings C_{v} and C_{A}, and given that the $e^{+} e^{-}$are unpolarized.
note: we did this in class but Try To do it by yourself and if you get sTuck, consult the notes
2- The Forward-backward asymmetry that can be obtained from the process above can be written as: (see wotes)

$$
\begin{array}{rl|l}
A_{F B}=\frac{\sigma_{F}-\sigma_{B}}{\sigma_{F}+\sigma_{B}}=\frac{3}{4} A e A_{\mu}, & \text { with } A_{F} & =\frac{\left(c_{c}^{e}\right)^{2}-\left(c_{C}^{e}\right)^{2}}{\left(c_{c}^{e}\right)^{2}+\left(c_{1}^{e}\right)^{2}} \\
\Rightarrow A_{F B} \propto c_{V}^{2} \text { and } & =\frac{2 c_{c}^{F} c_{A}^{F}}{\left(c_{v}^{E}\right)^{2}+\left(c_{A}^{E}\right)^{2}}
\end{array}
$$

c_{v} is small for charged leptons

Problem 2 continued
Now $\frac{C_{v}}{C_{A}} \propto \sin ^{2} \theta_{w}$ so given that $A F b \propto C v^{2}$ and c_{v} is small, the measurement of $\sin ^{2} \theta_{w}$ will wot be as accurate. We can do better with either incoming polarized beans, or by measuring the polarization of the leptons.

- Let's start with polarized incoming beams. Assume that the electron bean is fully polarized but that the positron bean is unpolarized.

Show that $A_{L R}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=A_{e}$
with σ_{L} as the cross section for a left-handed electron bean, and σ_{R} is the same for a right-houled beam. The cross section is at the Z° resonance.

Problem 3
Now we consider the process $e^{+} e^{-} \rightarrow Z \rightarrow \tau^{+} \psi^{-}$
The polarization of the τ leptons caw be inferred using the momatum of the T decay products.

- Show that the average tau polarization: $\frac{\omega \uparrow-w \downarrow}{\omega \uparrow+N \downarrow}=-A_{\tau}$
where N_{\uparrow} and $N \downarrow$ are the number of Tau leptons produced in right-handed and leFt-hauded helicity states.
\rightarrow this allows a measurement of $\sin ^{2} \theta_{w}$ with a quantity that involves C_{V} (and not C_{V}^{2})
\rightarrow The measurement is done as a function of $\cos \theta: P_{\tau_{-}}(\cos \theta)$
\rightarrow wote that at lop, $A_{\text {Fib }}$ caw be exTracted using measurements away from the resonance, where its value is not small.

