PHENOMENOLOGY OF THE STANDARD MODEL PHY2408S

- I will cover:
 - Introduction To gauge theories
 - Spontaneous symmetry brecking
 - Weak interactions
 - Strong interactions
 - CP Violation
 - Neutrino physics

Suggested TexTs:

Main - thomson Modern Particle Physics

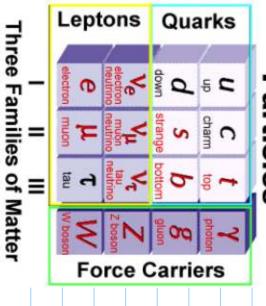
others - Quigg - Burgess and Moore - Italzen Martin - Griffiths

- Aitchison and Hay

Grading

- Weekly* problem sets - Long problem sets - Presentation (in April) 25% ** 50% **

25%


* alnost weekly

** -20% per week late

The Standard Model

A quantum field theory. Lagrangian obeys local gauge invariance

Elementary **Particles**

associated vector fields (gauge fields) (gauge transformations). They form a Lie Group whose generators have Lagrangian invariant under a continuous group of local transformations

Zow	B	° 7		, z	ر ک	ζ.		and	٦
We	\ \					c3		Su(rore
shove	$\begin{pmatrix} e^{2} \\ e^{3} \end{pmatrix}$	CP	$\begin{pmatrix} v_{eL} \end{pmatrix}$	2	ر ح	$\left(\begin{array}{c} Q_L \\ Q_L \end{array}\right)$		SU(3) x SU(2) 2 x U(1) 4	detail: SM
add		NA.	マロ スプト	× ×	C	(25)		2), * (2
weutrings		77	$\begin{pmatrix} \gamma_{\nu} \\ \gamma_{\nu} \end{pmatrix}$	ης	**	(5L)			based
os above		-		w	w	ω	SV(3)	dance s	on the
	2	-	2	-	_	2	Su(2) _L	symetries	e fields
(and we will)	3/2		-1/2	-1/3	2/3		ر(ا) ^د	iės.	lds below

We can break the SM into the Following: LSn = LGAUGE + LNAMER + LYUNAWA + LHIGGS

A brief look sheed and an answer To a question sometimes asked to graduate students.

- in the late 80s early 90s, physicists started designing machines to probe physics at the TeV scale. The arguments

the Itisss or something else," I either

why ??

Let's look at Lyill;

ZHices = (pre) + Dre+ hr 8+6-> (8+6)2

potential

m²-is the only dimension ful parameter of the

- sign chosen To provided NowZero VEV

とのショ 2N2 = N2 N2 = N2

V = 246 GEV

Higgs acquisition of non-zero VEV breaks electroweak symmetry and gives mass of w,2 bosons and fermions

Now SU(2) XU(1) part of Lawce: -1 Fin Fari -1 Bor Bar

-> self interactions (non-Abelian theory)

Have D ₹ diagrans 2/2 Net 1 **E E** 8 and scattering: violates unitarity unless add the Higgs grows 7. 15 3

New Physics -> problem corrections from loop diagrams. in contrast dome a la (1) with our fundamental scalar:

=> "Natural" value for Hisss mass is U Keeping Hisss ass at week scale while setting 1 at GUT scale (~10" GeV) requires very precise fine-Tuning. the cutoff energy

To prevent this fine Tuning, men physics should be close to week scale.