Top Quark Phenomenology

Sahibjeet Singh

Top Quark Properties

- One of six possible quarks in Standard Model (SM)
- ▶ 3rd generation of quarks
 - Doublet with b quark
- ► Fermion spin ¹⁄₂
- ▶ Mass of 173.0 ± 0.4 GeV
 - ~mass of Tungsten atom (171.25 GeV)!
- Charge of +2/3

PDG

Top Quark Proposal

Existence first proposed by Kobayashi and Maskawa

- Study of CP violation in weak interaction
- Discovery of τ lepton and third generation of leptons gave credence
- Constrain due to axial anomaly diagram

Top Quark Guaranteed

Sum over fermions

$$\blacktriangleright \propto C_A^f Q_f^2, \ C_A^f = T_3$$

$$\sum_{N_{families}} -\frac{1}{2}(-1)^2 + \frac{1}{2}N_c \left(\frac{2}{3}\right)^2 - \frac{1}{2}N_c \left(-\frac{1}{3}\right)^2$$

- First term from leptons
- Second from up type quarks (u, c, t)
- Third from down type quarks (d, s, b)

Top Quark Discovery

Search lasted two decades!

High mass of top quarks

 Discovered by CDF and Dφ collaboration at Tevatron in 1995

Figure 2: Top mass distribution for the data (solid histogram), the W+jets background (dots), and the sum of background + Monte Carlo $t\bar{t}$ for $M_{top} = 175 \text{ GeV/c}^2$ (dashed). The background distribution has been normalized to the 1.4 background events expected in the mass-fit sample. The inset shows the likelihood fit used to determine the top mass.

Top Quark, Pair Production

- At LO, two Feynman diagrams contribute
 - Quark anti-quark annihilation
 - Gluon gluon fusion (GGF)
- At Tevatron, ~85% quark antiquark annihilation
 - ▶ $p\bar{p}$ collider

6

► At LHC, ~99% GGF

Top Quark, Single Production

- Single top production mediated by flavor changing using W boson
- ▶ Proportional to $|V_{tb}|^2$ in CKM matrix
- At LO, four Feynman diagrams contribute
 - s-channel
 - ▶ Two t-channel
 - Wt Associated production

Top Quark At LHC

- ► ~ 140 fb⁻¹ integrated luminosity
- ► $\sigma_{t\bar{t}} \sim 800 \text{ pb} \rightarrow N_{events} = \sigma \cdot L_{int} \sim 1.1 \cdot 10^8$
- 8 orders of magnitude higher than Tevatron
 - Allow for precision measurements in top sector

Top Quark At LHC

ATL-PHYS-PUB-2018-034

Top Quark Decay

- ► $\Gamma_t \sim 1.5 \ GeV \sim 5 \cdot 10^{-25} s$ order of magnitude higher than QCD hadronization scale ($\Lambda_{QCD} \sim 0.2 GeV \sim 10^{-24} s$)
 - Top quark decays faster than hadronization time scale only bare quark decay
 - > Also decays before spin decorrelation timescale $(10^{-23} s)$
- ▶ Top quark decays predominantly to $t \to W^+ b$

Top Quark Final States

- Top quark final stated depend on W decays
- $\blacktriangleright W^{\pm} \to q \bar{q} \sim 46\%$
 - All hadronic chanel
- ▶ One W decays hadronically, the other $W \rightarrow l + \nu \sim 44\%$
 - I+jets channel
- $\blacktriangleright W^+ b W^- \overline{b} \rightarrow l^+ \nu + l^- \overline{\nu} \sim 10\%$
 - Dilepton channel

13

Top Quark and Electroweak Sector

- Single top produced via W boson flavor changing current
- Decays predominantly to W boson
- LO radiative correction to Z and W boson mass
 - $\blacktriangleright m_Z, m_W \propto m_t^2$

Top Quark And Higgs Sector

 \blacktriangleright Highest mass \rightarrow highest Yukawa coupling to Higgs boson

$$\blacktriangleright y_t = \frac{m_t \sqrt{2}}{v} \sim 1$$

Predominantly top quark involved in Higgs production via GGF

Plays a major role inn Higgs naturalness problem

$$\blacktriangleright \delta m_H^2 \propto \Lambda_{SM}^2 (-4m_t^2 + 2m_w^2 + m_Z^2 + m_H)$$

Largest contribution from high mass of top quark

Ref

Top Quark And BSM

- High top quark mass connects to many BSM theories
- Large Higgs corrections from top quark imply a connection with electroweak symmetry breaking
 - New models such as topcolor and topcolor assisted technnicolor
- ► Topcolor: High top quark mass arises from $t\bar{t}$ condensate formed via new strong gauge force
- Topcolor assisted technicolor: Predicts existence of heavy Z' boson

Top Quark And Z'

- Heavy Z' boson expected to decay into highly boosted tt pairs
- Simple search for excess tt̄ events in invariant mass distribution of tt̄ system

Top Quark Charge Asymmetry

- Higher order corrections to top pair production lead to charge asymmetry
 - Only exists in $q\bar{q}$ annihiliation ~10% at LHC!
 - Symmetric to all orders for GGF
- Top quarks are produced with higher rapidity than anti-top
- ▶ Measured to be $0.6 \pm 0.15\%$
 - Agrees with NNLO QCD + NLO EW Monte Carlo predictions

Top Quark Spin Correlations

- Top quark pairs produced via QCD are not polarized
 - Spin between top and anti-top correlated
- Top quarks decay before spin decorrelation occurs

Questions