Standard Model Effective Field Theory

Tae Hyoun Park

Outline

- Effective Field Theory
- Standard Model EFT
- Higgs phenomenology
- Experiment efforts

Effective Field Theory

"I don't need to understand QCD to know that I'm not in danger of sinking through the floor."

-Physics Professor

- Physics at short & long distances are separated.
 - Ex: Hard-scatter & PDF factorization.
- EFTs are:
 - 1. Not renormalizable in general.
 - 2. Renormalizable at fixed-order.
 - 3. Able to predict finite observables with finite error.

Effective Field Theory

- Consider renormalized Lagrangian with spacetime dimension d.
- Reminder: couplings run with scale.

EFT Lagrangian

Expansion around the renormalized Lagrangian.

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= \sum_{\mathscr{D} \geq 0, i} \frac{c_i^{(\mathscr{D})} O_i^{(\mathscr{D})}}{\Lambda^{\mathscr{D}-d}} = \sum_{\mathscr{D} \geq 0} \frac{\mathcal{L}_{\mathscr{D}}}{\Lambda^{\mathscr{D}-d}} \\ O_i^{(\mathscr{D} \leq d)} : \text{renormalized operators} \\ O_i^{(\mathscr{D} > d)} : \text{external operators} \\ c_i^{(\mathscr{D})} : \text{Wilson coefficient} \end{aligned}$$

• Coefficients are finite constants, operators run with scale.

Power counting & matching

Power Counting Rule

Inserting of a set of external operators in a tree-level scattering diagram leads to an amplitude:

$$\mathscr{A} \sim \left(\frac{p}{\Lambda}\right)^n, \quad n = \sum_i \mathscr{D} - d$$

Matching

For a given UV completion of a theory, one can construct an EFT such that it produces the same S-matrix elements.

Fermi 4-point interaction

Standard Model Effective Field Theory

• Small deviations may still exist.

Strategy:

- Identify all possible deviations from SM.
- Parametrize in terms of additional interactions between SM fields (EFT).
- Measure amount of deviations (Wilson coefficients).

Standard Model Effective Field Theory

Assumptions

- 1. UV completion contains $SU(3) \times SU(2) \times U(1)$ gauge theory.
 - Higgs is part of the SU(2) doublet.
- 2. No new hidden light states at low energy.

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{C_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \cdots$$

D = 5 : L violation.

 $D \ge 7 \text{ (odd)} : B - L \text{ violation.}$

 $D \geq 8$ (even) : sub-dominant.

d=6 operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{C_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \cdots$$

• First complete classification of dimension-6 operators: 80.

W. Buchmuller et al. (1985)

Field redefinitions (EOM)

- Non-redundant basis: totalling 59 new operators.
 - "Warsaw"
 - Strongly-interacting light Higgs (SILH) → "Higgs"

B. Grzadkowski et al. (2010)

UV assumptions

CERN YR4

• Truncated of parameters for scenario-specific hypotheses.

On the choice of basis

- In principal, any well-preserved experimental data can always be
- Experimentalists tend to favour SILH; theorists Warsaw.
- SMEFT predictions readily available at LO, but need NLO results for errors.
 - NLO worked out in Warsaw.
 - Technical challenges in SILH.
- SILH (apparently) makes a BSM-constraining assumption that Warsaw does not: Minimal Flavour Violation.

Higgs *k*-framework

• Narrow width approximation:

• Higgs cross section factorized as:

$$\frac{\Gamma_h}{m_h} \ll 1$$

$$\sigma(i \to h \to f) = \frac{\sigma_i(\vec{\kappa})\Gamma_f(\vec{\kappa})}{\Gamma_h}$$

11

• Deviations in production cross section and decay widths parametrized by κ 's.

$$\kappa_i^2 = \sigma_i / \sigma_i^{\rm SM}$$

 $\kappa_f^2 = \Gamma_f / \Gamma_f^{\rm SM}$

 $\{\kappa_i\} \leftarrow \{c_i\}$

• The κ -framework is also an (ad-hoc) EFT.

$$\mathcal{L} = \kappa_3 \frac{m_H^2}{2v} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu H + \kappa_W \frac{2m_W^2}{v} W^+_\mu W^{-\mu} H + \kappa_g \frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a\mu\nu} H + \kappa_\gamma \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_Z \gamma \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H + \kappa_{VV} \frac{\alpha}{2\pi v} \left(\cos^2 \theta_W Z_{\mu\nu} Z^{\mu\nu} + 2 W^+_{\mu\nu} W^{-\mu\nu} \right) H - \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f \overline{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f \overline{f} + \kappa_\tau \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \overline{f} \right) H$$

• Possible to construct a map to decompose κ_i 's into SMEFT c_i 's.

$$\frac{\Gamma^{\text{SMEFT}}(h \to \gamma\gamma)}{\Gamma^{\text{SM}}(h \to \gamma\gamma)} = \left| 1 + \frac{8\pi^2 \bar{v}_T^2}{I\gamma} \mathscr{C}_{\gamma\gamma} \right|^2 + \left| \frac{8\pi^2 \bar{v}_T^2}{I\gamma} \widetilde{\mathscr{C}}_{\gamma\gamma} \right|,$$

$$\mathscr{C}_{\gamma\gamma} = \frac{c_{HW}}{\bar{g}_2^2} + \frac{c_{HB}}{\bar{g}_1^2} - \frac{c_{HWB}}{\bar{g}_1\bar{g}_2}$$

$$\tilde{\mathscr{C}}_{\gamma\gamma} = \frac{c_{H\tilde{W}}}{\bar{g}_2^2} + \frac{c_{H\tilde{B}}}{\bar{g}_1^2} - \frac{c_{H\tilde{W}B}}{\bar{g}_1\bar{g}_2}$$

$$= 1 + \Delta\kappa_\gamma,$$

Higgs differential cross sections

- Unfold detector effects \rightarrow paritcle-level differential cross sections.
 - Maximal model-independence.
- EFT fits can take advantage of shape differences.

Global fit

• Constrain full set of 20 Higgs & EW parameters with combined data from LEP, Tevatron, ATLAS & CMS.

Conclusions

- EFTs are well-justified intuitively.
 - Implementation with mathematical rigor & consistency needed.
- SMEFT is a model-independent way to parameterize deviations from SM.
 - Measurements done now, UV completion later.
 - Can impose additional assumptions to restrict BSM scenarios.
- Higgs measurements at LHC will play an important role in SMEFT constraints.
 - Some theoretical issues & experimental challenges.

Backup

Warsaw basis

$1: X^{3}$		$2:H^6$		$3: H^4D^2$				$5:\psi^2H^3+{\rm h.c.}$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H (1	$(H^{\dagger}H)^3$	$Q_{H\square}$	(H^{\dagger})	$H)\Box(H^{\dagger}$	H)	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D_{\mu})$	H) [*] (H^{\dagger}	$D_{\mu}H$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$							Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$	
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$									
$4: X^2 H^2$		$6: \psi^2 XH + \text{h.c.}$				$7:\psi^2H^2D$				
Q_{HG}	$Q_{HG} = H^{\dagger} H G^A_{\mu\nu} G^{A\mu\nu}$		Q_{eW} $(\bar{l}_p \sigma^{\mu\nu} \epsilon$		$e_r)\tau^I H W^I_{\mu\nu}$		$Q_{Hl}^{(1)}$		$(H^\dagger i\overleftrightarrow{D}_\mu H)(\bar{l}_p\gamma^\mu l_r)$	
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$		ν	$Q_{E}^{(i)}$	3) 11	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG} $(\bar{q}_p \sigma^{\mu\nu})$		$({}^{A}u_{r})\widetilde{H}G^{A}_{\mu\nu}$		Q_{H}	le.	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$		
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu})$	$(u_r)\tau^I \widetilde{H} V$	$V^{I}_{\mu\nu}$	$Q_{Hq}^{(1)}$		$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{O}_{\mu}H)(\overline{q}_p\gamma^{\mu}q_r)$	
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{H} B_{\mu\nu}$			$Q_{H}^{(3)}$	$Q_{Hq}^{(3)}$		$(\bar{q}_p \tau^I \gamma^\mu q_r)$	
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$_{G} \left \left(\bar{q}_{p} \sigma^{\mu\nu} T^{A} d_{r} \right) H G^{A}_{\mu\nu} \right.$			Q_{Hu}		$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{\partial}_{\mu}H)(\overline{u}_{p}\gamma^{\mu}u_{r})$	
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau$		$V^{I}_{\mu\nu}$	Q_{Hd}		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	Q_{dB} $(\bar{q}_p \sigma^{\mu\nu} q)$		$Q_{Hud} + h$		+ h.c.	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$		
$8:(\bar{L}L)(\bar{L}L)$		$8:(\bar{R}R)(\bar{R}R)$				$8:(ar{L}L)(ar{R}R)$				
$Q_{\ell\ell}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee} (i		$_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}$	$(\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$		($(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$		
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu} $(\bar{u}_p$		$(\bar{u}_s)(\bar{u}_s)$	$(\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$		($(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$\left (\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \right $	Q_{dd} (d		$(\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$		Q_{ld}	($(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$		
$Q_{\ell q}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu} ($(\gamma_{\mu}e_{r})(\bar{u}_{s})$	$(\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$		()	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{\ell q}^{(3)}$	$\left (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \right $	Q_{ed}		$(\bar{d}_s \gamma_\mu e_r)(\bar{d}_s)$	$\gamma^{\mu}d_t)$	$Q_{qu}^{(1)}$	(4	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$Q_{ud}^{(1)}$ $(\bar{u}_{p'})$		$_{s}\gamma^{\mu}d_{t})$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu)$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$		
		$Q_{ud}^{(8)} \mid (\bar{u}_p \gamma_\mu T)$		$T^A u_r)(\bar{d}_s)$	$(\bar{d}_s \gamma^\mu T^A d_t)$		$(\bar{q}_p\gamma_\mu q_r)(\bar{d}_s\gamma^\mu d_t)$			
					$Q^{(8)}_{qd} \mid (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$					
$8: (\bar{L}R)(\bar{R}L) + \text{h.c.}$		$8: (\bar{L}R)(\bar{L}R) + \text{h.c.}$			$8:(\bar{L}R)(\bar{L}R)+{\rm h.c.}$					
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	(\bar{q}_p^j)	$u_r)\epsilon_{jk}(\bar{q}_s^k)$	$d_t)$	$Q_{lequ}^{(1)}$	(\bar{l}_{1}^{2})	$(\bar{l}_{p}^{j}e_{r})\epsilon_{jk}(\bar{q}_{s}^{k}u_{t})$		
		$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A)$	$u_r)\epsilon_{jk}(\bar{q}_s^k)$	$T^A d_t$)	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu}$	$(e_r)\epsilon_{jk}(\bar{q}_s^{\mu})$	$s_{\sigma}^{k}\sigma^{\mu u}u_{t})$	

Table 1: \mathcal{L}_6 of Refs. [222] as given in Ref. [204]. The flavour labels p, r, s, t on the Q operators are suppressed on the left hand side of the tables.