	Corresponds to pages 31-33 and 38-44 of textbook		wavelength of the electron	-how to calculate the de Broglie	Germer experiment	-how to describe the Davisson-	-what is de Broglie's hypothesis	experiment and its results	-how to describe the Franck-Hertz	What I expect you to learn:	how this was experimentally confirmed	can exhibit wave properties and learn	Boar of the recture. To mitrounce the idea that matter	Cool of the losting, to introduce the idea that matter	Hypothesis, and the Davisson-Germer Experiment	_ECTURE 6: The Franck-Hertz Experiment, de Broglie's いいいいのの	

electrons	-a continuum of positive energies for free e
o bound states	-discreet negative energies corresponding t
n take any positive value:	atom, the energy of the ejected electron can
ergy is available to ionise an	It can also be shown that when sufficient end
50 nm)	radiation of that energy (corresponds to ~25
	Franck and Hertz confirmed that Hg emits
, v	The eye does not see 5 eV photons but
	retarding potential).
	has to be ~5 Volts (a bit more due to
	that. So the voltage between the two grids
	energy. The electrons need ~5 eV to do
	Hg atoms to a state of higher internal
	acquire just enough energy to excite the
	The first dip will occur when electrons \bot
	4
(Sr	FRANCK-HERTZ EXPERIMENT (cont.)

Apply it to natter: $v = E$, $\lambda = h/p$ $\lambda = de Broglie wavelength , \lambda = h/p$	Around that time, Louis de Broglie hypothesised that particles could have wave-like properties: For $\rho h \sigma T \sigma r s$: $\Xi = h v$, $\rho = h/\lambda$	of the 1920s. Matter was believed to exhibit only particle characteristics	We've seen before that em radiation exhibits particle characteristics	De Broglie's Hypothesis

