	(This roughly corresponds to section 2.4 and 2.5 of textbook)	Principle	-What is Heisenberg s Uncertainty	Gaussian wave backet	-How to do calculations with a	-How wave packets propagate in time	What I expect you to learn:		Uncertainty Principle	wave packets and introduce Heisenberg's	Goal of the lecture: Complete our introductory discussion of	rrincipie	LECTURE 10: Move Wave Packets and The Heisenberg Uncertainty		
													(E	

 $\frac{1}{24(x)} = \frac{1}{1!} \sqrt{4} \sqrt{2b} \frac{1}{6!} \frac{1}{5x} - \frac{1}{5x^2}$ D×Dp=t (Jaussian Wave From math standpoint: if the "interval of amplitudes" is small the resulting sum will have large spacial extension implies that the is a limit to how well I can Know shared ap at a given Time packet (cont) -> IF I reduce Ap, Dx will -> IP I reduce DX, Dp will -> in the limit where sp= S(p) 4(x) becomes a plane wave: increase INCRESC

11/							
There is no dispersion for photons (in vacuum)	Note: For photons: E=pc, dE=Vs=c, E=Vp=c	-) wave packet width increases with Time -) wave packet undergoes dispersion	-> wave packet moves with velocity vs	$\left \frac{2}{x_{1}}\right ^{2} = \frac{C_{1}}{\Delta x(t)} = \frac{C_{1}}$	the answer For 12(x,t)12 looks like this:	We won't integrate (3) here but I invite you to sive it atty e.g. lift some weights at the math sym	GAUSSIAN WAVE PACKETS (cont)

