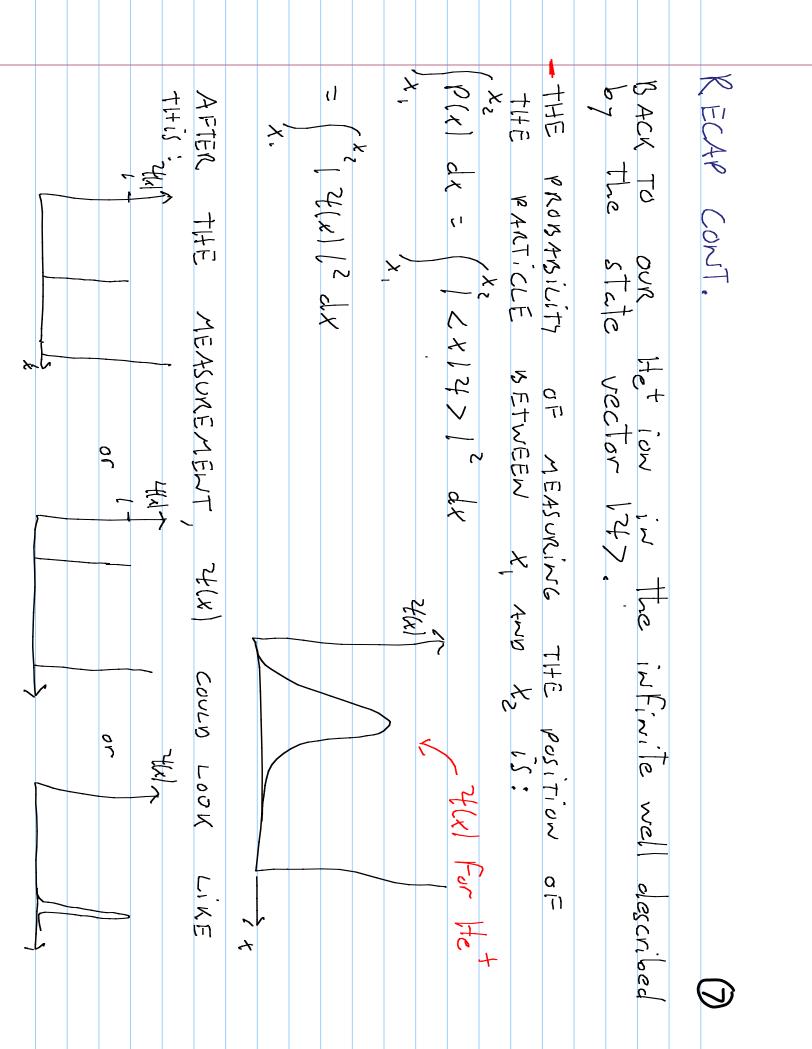
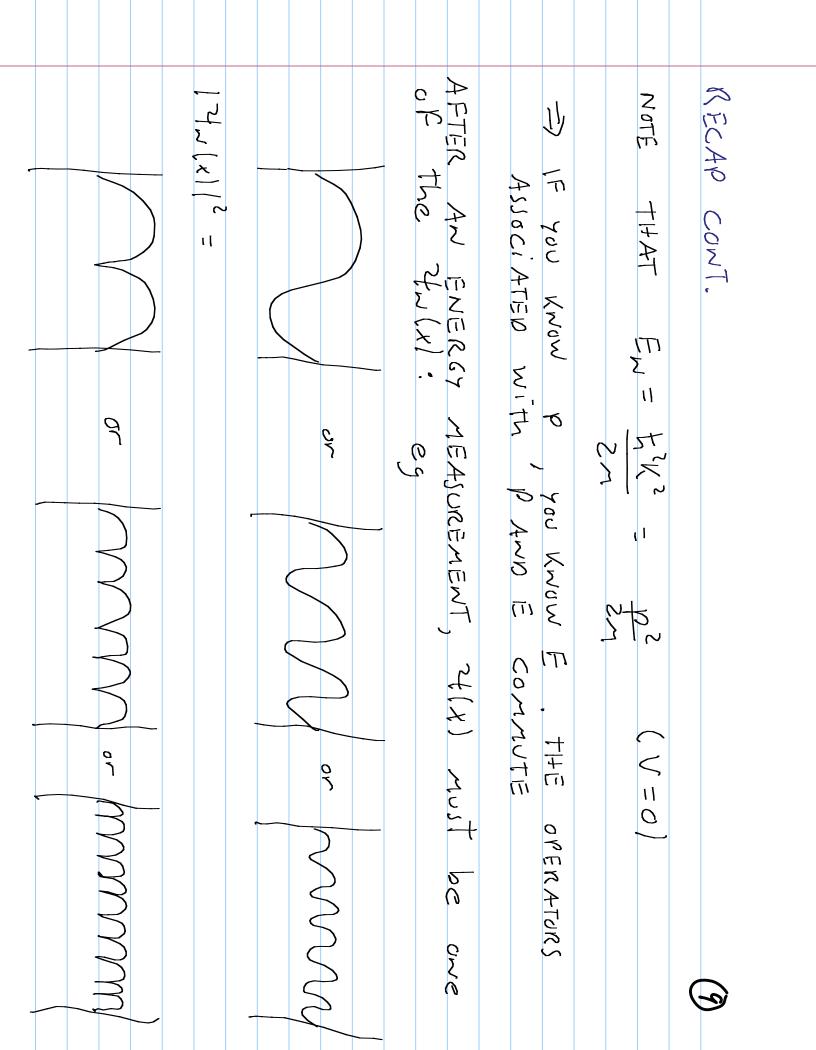
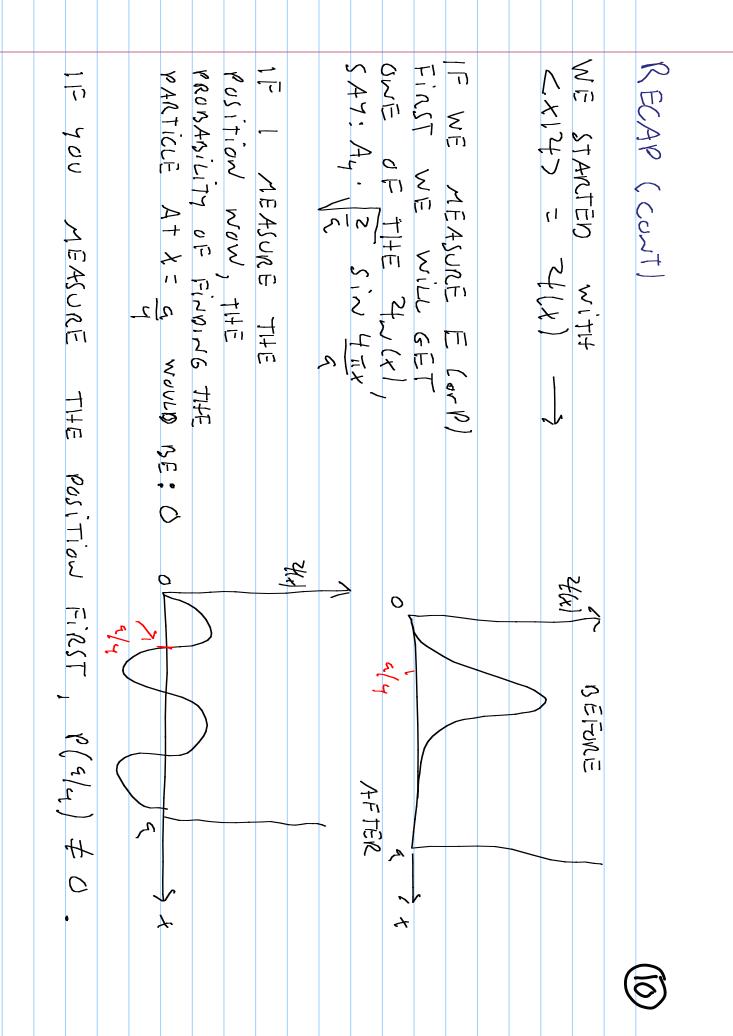

			(Roughly I eviews chapter 2 of the real book)	(Doughly neviews chanter 5 of the texthook)			-How to work with the Dirac notation	-What are the QM postulates	What I expect you to learn:		LECTURE 23: The QM Postulates (part deux)	E	


177 = C, 147 + C2187 could also DESCRIBE A Het ion in Another inFinite WELL	B-1P 173 DESCRIBES A Het ION IN AN INFINITE WELL AND ISS DESCRIBES ANOTHER Het ION IN AN INFINITE WELL, THEN:	A-WE USE A "STATE VECTOR" TO DESCRIBE THIS DARTICLE: 127, THIS VECTOR CONTAINS ALL THE INFORMATION ABOUT THIS PARTICLE: - ENERGY - MONENTUM	SUPPOSE WE PUT A PARTICLE (SAY A Het ION) in AN INFINITE WELL.	RECAP OF POSTULATES USING THE INFINITE (2) WELL EXAMPLE:




Π RECAP. ١ 0 7 17 OPERATOR THAT REPRESENTS A PHYSICALLY MEASURABLE QUANTITY (ENERGY, MON., MOSITION, ANGULAR MON., ETC) OF THE EIGENSTATES ASSOCIATED WITH THE 0 てた トく > 142 = 2 1E22E142 = PROJECTION PERFORM THIS CAZ (I d もく X A ~ LEX (discrete ~ dx c(x) | x > (continu EXPAND A STATE LAD IN TERMS (1 dx 1x><x1x> = <+1x><x1 xb (×)ナ ヘ OVERATOR : EXPANSion X> (continuous basis/ Ly position eigenstate (discrete OWE CAN USE $\sum_{n} M = \sum_{n} A_{n}$ 6 as is / Ś

ONE オキロ NOW WHEN WE MEASURE ENERGY, WE CAN ONLY GET $\frac{\mathcal{L}(x)}{\mathcal{L}} \geq A_{\mathcal{N}} = \sum_{x} A_{\mathcal{N}} = \sum_{x} A_{\mathcal{N}}$ THIS FUNCTION CAN BE BEFORE TITE MEASUREMENT WE HAD FOR 24(x): RECAP CONT. SERIES EXPANDED USING R FOURIER () OF THE FOLLOWING EIGENVALUES: PROBABILITY OF MEASURING A GIVEN FIGENVALUE is: $dx \mathcal{A}_{n}(x) \mathcal{A}(x) |^{2}$ $| \leq E_{v}|^{4} > |^{2} = \left| \left| \frac{dx}{dx} \leq E_{v}|^{2} > \frac{dx}{dx} \right|^{2}$ 8 C ۱ گ 26/ VR SIZ NTIX 0 $E_{\mathcal{N}} = \frac{f_{\mathcal{N}}}{f_{\mathcal{N}}} = \frac{f_{\mathcal{N}}}{f_{\mathcal{$. ۲

ALSO $P(E_{\gamma}) = A_{\gamma} ^2$ when $E = E_{\gamma}$ Finst But $P(E_{\gamma})$ AFTER A POSIT THE AY COEFFICIENT WILL HAVE H_{1} H_{2} H_{3} H_{4}
TENERGY WAS MEASURED A POSITION MEASUREMENT L HAVE CHANGED: The changes in the second in the seco