Corresponds to section 1.4 of textbook	brewing company	-why Carlsberg is a respectable	of angular momentum	from Bohr's quantisation of	-how to derive hydrogen spectr	incompatible with classical phys	-why Ruthertord's model is	-Ritherford's model	-Thomson's atomic model	What I expect you to learn:	and Einstein's photons	Ruthertord S model, Planck S quanta	spectrum of the hydroaen atom usina	Goal of the lecture: to understand how Bohr explained th		LECTURE 5: BOHR MODEL OF THE HYDROGEN ATOM
		able			ctrum	physics						Ö	ina	the	e	

	In 1897, J.J Thomson discovered the electron and proceeded to develop a theoretical model of the atom	electrolysis experiments supported Dalton's theory.	Modern atomic theory began 200 years ago with the work of Dalton: all atoms of an element are of the same size and weight. Faraday's	the 5th century B.C. In this model, matter is composed of tiny indivisible particles in constant motion. Aristotle opposed the theory and it took > 1500 years for the idea to regain popularity.	I will not go through the history of the concept of the atom. I will just mention 4 atomic models and spend most of the time on Bohr's model. Democritus first proposed the idea of the atom (meaning indivisible) in	What did people know about the atom and when did they know it??

THE BOHR ATOM (cont.) (13) Bohr's correspondence principle: quantum theory results must tend asymptotically to those obatined from classical physics in the limit of large quantum numbers. EXAMPLE: $V = \frac{M}{4\pi} \frac{2}{53} \left(\frac{1}{4\pi\xi_0}\right)^2 \left[\frac{1}{(n-1)^2} + \frac{1}{n^2}\right]$ $V = \frac{M}{4\pi} \frac{2}{53} \left(\frac{2}{4\pi\xi_0}\right)^2 \left[\frac{1}{(n-1)^2} + \frac{1}{n^2}\right]$ $F_{or} = \frac{N}{2} \frac{2}{(n-1)^2} \frac{N^2}{n^2} + \frac{N^2}{(n-1)^2}$ $\frac{1}{(n-1)^2} - \frac{1}{n^2} + \frac{N^2}{n^2} + \frac{N^2}{(n-1)^2}$ $\frac{2}{n^2(n-1)^2} = \frac{N(2-1)n}{n^2(n-1)^2} = \frac{N^2(n-1)^2}{n^3}$														
	$\frac{1}{2} \sum_{n=1}^{2} \frac{1}{n} \sum_{n=1}^{2} \frac{1}$	$(N-1)_{S}$ M_{S}	1 - 1 - 2N - 2N - 1 - 2N - 2N - 2N - 2N	For N>>1, we have	$\frac{4\pi k^3}{4\pi k^3} \left(\frac{4\pi \epsilon_0}{1 - \kappa_0} \right) \left[\frac{1}{(\kappa - 1)^2} - \frac{1}{\kappa^2} \right]$	2 1 N (2 e ²) ² [- 1]	N is large. From (13 WE HAVE:	IN A TRANSITION FROM E. To E. where	EXAMPLE:	large quantum numbers.	asymptotically to those obatined from classical physics in the limit of	Bohr's correspondance principle: quantum theory results must tend	THE BOHR ATOM (cont.)	

